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Abstract
Background: Hypermethylation of promoter CpG islands with associated loss of gene expression, and
hypomethylation of CpG-rich repetitive elements that may destabilize the genome are common events in
most, if not all, epithelial cancers.

Methods: The methylation of 6,502 CpG-rich sequences spanning the genome was analyzed in 137
ovarian samples (ten normal, 23 low malignant potential, 18 stage I, 16 stage II, 54 stage III, and 16 stage
IV) ranging from normal tissue through to stage IV cancer using a sequence-validated human CpG island
microarray. The microarray contained 5' promoter-associated CpG islands as well as CpG-rich satellite
and Alu repetitive elements.

Results: Results showed a progressive de-evolution of normal CpG methylation patterns with disease
progression; 659 CpG islands showed significant loss or gain of methylation. Satellite and Alu sequences
were primarily associated with loss of methylation, while promoter CpG islands composed the majority
of sequences with gains in methylation. Since the majority of ovarian tumors are late stage when diagnosed,
we tested whether DNA methylation profiles could differentiate between normal and low malignant
potential (LMP) compared to stage III ovarian samples. We developed a class predictor consisting of three
CpG-rich sequences that was 100% sensitive and 89% specific when used to predict an independent set of
normal and LMP samples versus stage III samples. Bisulfite sequencing confirmed the NKX-2-3 promoter
CpG island was hypermethylated with disease progression. In addition, 5-aza-2'-deoxycytidine treatment
of the ES2 and OVCAR ovarian cancer cell lines re-expressed NKX-2-3. Finally, we merged our CpG
methylation results with previously published ovarian expression microarray data and identified correlated
expression changes.

Conclusion: Our results show that changes in CpG methylation are cumulative with ovarian cancer
progression in a sequence-type dependent manner, and that CpG island microarrays can rapidly discover
novel genes affected by CpG methylation in clinical samples of ovarian cancer.
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Background
Ovarian cancer remains the most deadly gynecologic
malignancy. There were an estimated 22,430 new cases
and 15,280 deaths in the United States in 2007[1]. In con-
trast to other gynecologic malignancies, 81% of ovarian
cancers are late stage III or IV at the time of diagnosis,
implying upper abdominal or distant metastases[1].
Because of late stage at diagnosis, the 5 year survival of
ovarian cancer for all stages is only 45%, and the 5 year
survival for patients with stage III or IV disease is only
30%[1].

Aberrant DNA methylation at CpG islands, often in close
proximity to transcription start sites, is associated with the
epigenetic regulation of genes through altered transcrip-
tion factor binding and chromatin structure[2]. Wide-
spread changes in CpG island methylation have also been
associated with neoplastic progression [3-5]. Previous
researchers have successfully used various genome-wide
scanning approaches to analyze tumor cells and their epi-
genomic states [6-10]. Results have shown that CpG
islands display tumor-specific patterns of aberrant meth-
ylation[6], while selected CpG islands have been reported
to show stage-specific patterns of aberrant methylation
[11-15], and others have not[16]. Two recently published
studies have examined broad epigenetic changes in ovar-
ian cancer[10,11]. Widschwendter et al. examined DNA
hypomethylation at satellite sequences and found a
strong association between satellite DNA hypomethyla-
tion and advanced tumor stage and grade. In addition, sat-
ellite DNA hypomethylation was found to be an
independent marker of prognosis. Wei et al. used CpG-
island microarrays to analyze stage III and IV ovarian
tumor samples and developed a classifier that predicted
six month progression free survival with 95% accuracy
and specificity. Neither of these studies performed a study
of CpG island methylation across all stages of ovarian can-
cer as reported here.

We have used a 6,560 element CpG island microarray to
analyze the epigenomic profile of clinical samples of ovar-
ian tissues ranging from benign to late stage tumors. We
identified CpG methylation changes that progressed with
disease severity and distinguished stage III ovarian cancer
from normal or LMP ovarian tissue. We confirmed the
microarray results with bisulfite sequencing, 5-aza-2'-
deoxyazacytidine re-expression, and correlation with pre-
viously published expression profile data.

Methods
Sample Collection and Nucleic Acid Isolation
Ovarian tissue samples were obtained from The Univer-
sity of Iowa Gynecologic Oncology Tumor Bank. Samples
were collected with informed consent in accordance with
the standards of the Institutional Human Subjects Protec-

tion Review Board and were surgically staged according to
FIGO staging guidelines. Tumor samples were taken from
primary tumors only, with no prior exposure to chemo-
therapy. Normal tissue and tissue samples of low malig-
nant potential were also collected for comparison to
tumor. Tissues were snap frozen at the time of surgery in
liquid nitrogen and high molecular weight tumor DNA
extracted with Trizol reagent by following the manufac-
turer's instructions (Life Technologies, Inc., Gaithersburg,
Maryland). The DOT quantitative test was used to esti-
mate the DNA concentration[17].

CpG island library, probe preparation, microarray 
production
The CpG island clones, their preparation for printing, and
microarray production were performed as previously
described[18].

Target preparation
Genomic DNA was cut be MseI (New England Biolabs,
Beverly, MA), and then a catch-linker was ligated to the
MseI fragments. The fragments were then cut with a meth-
ylation-specific restriction enzyme, McrBc (New England
Biolabs, Beverly, MA). Mock-cut reference samples were
exposed to the same conditions and reagents as the
digested samples; however, no GTP was added to drive the
restriction digest. Twenty nanograms of the mock-
digested or twenty nanograms McrBc-cut genomic DNA
was then amplified by PCR using primers specific to the
linkers and purified with the QIAquick PCR purification
kit (Qiagen, Valencia, CA). Fluorescent Cy3 or Cy5 dye
was incorporated into the PCR product using the Bio-
Prime DNA labeling system (Invitrogen, Carlsbad, CA).

CpG Island Microarray
Two-color fluorescence hybridizations analogous to
expression microarrays were used to compare DNA
digested with the methylation-specific enzyme McrBc to
mock-digested reference DNA as described previ-
ously[18]. After labeling, cut and mock reactions are
mixed and re-purified with the QIAquick PCR purification
kit. After purification, the labeled target was lyophilized to
dryness, re-suspended in 60 microliters Oligo Hyb Buffer
(The Gel Company, San Francisco, CA) and denatured by
boiling for ten minutes. The sample was then added to the
processed array slide in a chamber of the ArrayBooster
Hybridization Station (Advalytix, Concord, MA). An
AdvaCard with two mixer chips (Advalytix, Concord, MA)
was used to cover and seal the array during hybridization
at 42°C for 4–8 hours. Following hybridization, slides
were washed by placing them into 50 ml conical tubes
containing 2 × SSC, 0.1% SDS for five minutes, 0.06 ×
SSC, 0.1% SDS for five minutes, and 0.06 × SSC for five
minutes all at room temperature. Slides were dried by cen-
trifugation at 500 × g for one minute and scanned for Cy3
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and Cy5 fluorescence using an Axon GenePix 4000 (Axon
Instruments, Foster City, CA).

Data Analysis
The data from scanned microarray images were extracted
using GenePix software. Median pixel intensity of each
spot was used for analysis. To normalize Cy3 and Cy5 sig-
nal intensities we used the "interactive linear regression"
approach with minor modifications[19]. Raw data was
normalized using unmethylated mitochondrial[20]
sequences dispersed across the microarrays: first, all inten-
sity values were log transformed, than linear regression
was performed using data from the mitochondrial
sequences only. Residuals were calculated and outliers
(those residuals where |e| > 2 × standard deviation of e)
were removed and the regression function was recalcu-
lated. If the difference between the r-squared values of the
new and previous regression line was less than 0.001, then
no further residuals were removed. Y-Intercept values
were applied as correction factors to the log transformed
channel 2 values of all clones. The result is that the func-
tion of log channel 1 and log channel 2 of mitochondrial
clones closely approximates y = x. Data was loaded into
BRB ArrayTools v3.5.0 for normalization between arrays
and analysis. Representative M versus A plots for three
hybridizations are shown in Additional File 1. Samples
were labeled as normal, LMP, or stage III for class predic-
tion using the Prediction Analysis of Microarray (PAM)
classification algorithm, with separate training and test
sample sets as recommended by Simon et al. [21]. The
PAM algorithm as implemented in BRB ArrayTools was
used to create linear combinations of loci and weight
them according to the stability of their methylation pro-
file within each group of samples (normal/LMP or stage
III). The PAM algorithm then attempted to identify the
smallest list of loci with the highest prediction accuracy as
measured by 10-fold cross-validation.

Class prediction using five other methods was performed
in BRB ArrayTools using sequences univariately signifi-
cant at p < 0.001. Only data from the training set was used
to develop the classifier. Cross-validation was done using
the leave-one-out method and repeating the entire analy-
sis for each iteration of the cross-validation including
determination of which sequences were univariately sig-
nificant. The permutation p-value for the cross-validated
mis-classification rate was estimated by analysis of 2000
permutations in which the sample labels were scrambled
and the class prediction analysis performed. The permu-
tated p-value is the proportion of the random permuta-
tions that gave as small a cross-validated misclassification
rate as was obtained with the real class labels. Additional
information on how BRB ArrayTools implements the
algorithms and performs cross-validation can be found in

the manual: http://linus.nci.nih.gov/pilot/Manual.doc.
All other settings were default.

NKX2-3 Bisulfite sequencing
Five micrograms of genomic DNA was modified with
sodium bisulfite as previously described[22]. The NKX2-3
CpG islands were amplified from the bisulfite-modified
DNA by two rounds of PCR using nested primers: Forward
Primer 1: 5'-GTGGTTTTGATGATGTTATTAA-3', Reverse
Primer 1: 5'-ACTCCCTTACAAATACCTAC-3', Forward
Primer 2: 5'-AGTTAAAGATATTTTGAATTTGGA-3', Reverse
Primer 2: 5'-CTAACAAAATCTATAAACTATTTAT-3'. Both
rounds of PCR were performed under the same parame-
ters, with 1% of the first round PCR product serving as the
template in the second round of PCR. PCR amplification
was performed in an MJ thermal cycler (PTC200) under
the following conditions: 94 C for four min followed by
five cycles of 94 C for one min, 56 C for two min, 72 C for
three min, then 35 cycles of 94 C for 30 s, 56 C for two
min, 72 C for 1.5 min, and a final extension of 72 C for six
min.

The resulting PCR product was cloned into a TA cloning
vector according to the manufacturer's instructions
(pGEM-T-Easy cloning kit, Promega, Madison, WI). Forty-
seven positive recombinants from each of ten samples
(five normal ovaries, and 5 stage III or IV ovarian tumors)
were isolated using a Qiaprep Spin Plasmid Miniprep kit
(Qiagen, Valencia, CA) according to the manufacturer's
instructions and sequenced on an ABI automated DNA
sequencer by the Genomic Analysis, Technology, &
Sequencing Core at the University of Arizona. The meth-
ylation status of individual CpG sites was determined by
comparison of the sequence obtained with the known tar-
get sequence. The number of methylated CpGs in each
sample was counted and averaged over each tissue class.
The means for normal and tumor tissue were compared
using an unpaired Welch's t-test.

Cell culture and drug treatment
ES2 cells were maintained in McCoy's media at 37 C
under 95%/5% air/CO2 atmosphere with 10% fetal
bovine serum and 100 mg/mL penicillin and streptomy-
cin. OvCar 3 cells were maintained in the same conditions
as ES3 except the media was RPMI 1640. 5-aza-2'-deoxy-
cytidine (Sigma-Alrich, St. Louis, MO) was added to the
culture media at a concentration of 0, 2, or ten micromo-
lar for six days with drug added every other day starting on
day one. On day six cells were washed with 4 C phosphate
buffered saline and collected for RNA isolation using Qia-
gen's RNeasy Midi kit according to manufacturer's instruc-
tions.
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ENKX2-3 Real Time RT-PCR
PCR amplification was performed using Taqman primer/
probes specific for NKX2-3 obtained from Applied Biosys-
tems (Foster City, CA); the primer probe sequences are
available upon request. PCR was performed with the ABI
Prism 7000 sequence detection system following Applied
Biosystem's PCR Master Mix protocol. Real-time PCR was
carried out in triplicate on five nanograms of cDNA using
parameters recommended by Applied Biosystems. Rela-
tive expression was determined by applying the compara-
tive Ct method, as described previously[23].

Results
DNA methylation differences in benign and malignant 
ovarian tissue
137 samples of benign and malignant ovarian tissues (ten
normal, 23 low malignant potential, 18 stage I, 16 stage II,
54 stage III, and 16 stage IV) from various stages and his-
topathologies were analyzed to develop a broad view of
DNA methylation changes with progression of ovarian
cancer (Additional File 2). The CpG island microarray
contained 6,560 CpG-rich genomic clones, representing
approximately 15% of the CpG islands in the
genome[24]. The CpG islands spanned the genome with
varying proximity to 5' promoter regions: rank 1 were
within 0.5 kb of transcription start, rank 2 were within 1
kb of transcription start, rank 3 were within 2 kb of tran-
scription start, and rank 4 were located >2 kb from tran-
scription start. Clones containing satellite repeats or
>25% Alu sequence were designated as such[18].

To examine the relationship between tumor stage and
changes in DNA methylation, samples were grouped by
stage, and analysis of variance (ANOVA) was performed.
2,042 CpG-rich clones with significant differences in
methylation by stage at p = 0.01 (Benjamini Hochberg
False Discovery Rate (FDR) adjusted) were identified, and
the list reduced to 659 clones by selection for at least a 1.5-
fold difference in methylation between any two stages
(Additional File 3). The fold change cut-off was used in
addition to statistical significance to limit the number of
CpG-rich sequences to those with the largest differences.

The 659 CpG-rich clones were clustered along with dis-
ease stage using hierarchical clustering with Pearson cor-
relation and distance measured by average linkage. The
resulting dendrogram showed gains and losses of DNA
methylation at specific CpG-rich clones were correlated
with ovarian cancer progression from normal to stage IV
disease (Figure 1a). 334 CpG-rich sequences gained meth-
ylation with disease progression, while 325 lost CpG
methylation. The majority of CpG-rich sequences that lost
methylation during cancer progression were repetitive ele-
ments (satellite and Alu sequences, Figure 1a), while
those that gained methylation were primarily CpG-

islands associated with gene promoters (Rank 1–4, Figure
1a). A graph of the 659 CpG-rich clones by stage showed
that unlike the methylated sequences, loss of methylation
was not incremental with each stage progression. While
stage I tumors had lost methylation relative to normal and
LMP samples, the same sequences were partially methyl-
ated in stage II tumors, and reverted back to a un-methyl-
ated state in stage III and IV (Figure 1b). Examination of
the 659 sequences by histopathology and stage showed
that the re-methylation of sequences in stage II tumors
occurred in tumors of endometrial and serous his-
topathologies, but not mucinous tumors (Additional File
4). Overall, the results showed an association between
disease stage and progressive hyper-methylation of pro-
moter-associated CpG islands and hypo-methylation of
repetitive sequences. The same association was seen with
disease grade (Additional File 5).

Classification of normal or LMP and stage III samples using 
CpG methylation data
The majority of ovarian tumors are stage III at the time of
diagnosis. Based on the sample cluster results, we tested
whether the cumulative CpG methylation changes could
distinguish between normal or LMP ovarian tissue and
stage III cancer. The normal, LMP, and stage III samples
were randomly and evenly divided into two groups. The
first group of 43 samples was used as a training set to
develop a classifier of CpG-rich sequences to differentiate
normal or LMP from stage III samples. The second group
consisting of 44 samples was used to test the performance
of the classifier on an independent data set. The Predic-
tion Analysis of Microarrays (PAM) algorithm as imple-
mented in BRB-ArrayTools was used to develop a classifier
using all CpG-rich sequences on the microarray. The PAM
algorithm optimizes the size of the classifier such that the
fewest number of elements are included without decreas-
ing performance.

The PAM algorithm produced a classifier at a threshold
value of 6.26 that consisted of three CpG-rich clones, all
of which were hypomethylated in stage III tumors relative
to normal or LMP tissue (Figure 2). The three hypometh-
ylated sequences included two satellite sequences and one
Alu repeat (clone IDs: BF.44.F11, BF.44.B7, BF.21.B1;
average methylation ratios for all clones are in Additional
File 6), and all three were present in the 659 sequences
identified above as significant by disease stage. During
cross-validation of the classifier on the training set, the
three-sequence classifier had 94% sensitivity and 96%
specificity. One LMP and one stage III sample were incor-
rectly classified (sample IDs 6 and 69, Additional File 2).
Overall, the classifier misclassification rate was 5% (Fig-
ure 3). On the independent test set of samples the three-
sequence classifier had a sensitivity of 87% and specificity
of 100% – two normal and two LMP samples were mis-
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Figure 1 (see legend on next page)
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classified as stage III (sample IDs 62, 64, 72, 77, Addi-
tional File 2).

A separate class prediction analysis was performed in
which the training and test sets were analyzed using sev-
eral class prediction methods implemented in BRB Array-
Tools. The training set was used to select sequences that
were differentially methylated between the classes at the p
< 0.001 significance level, and resulted in a classifier with
911 sequences. The 911-sequence classifier was then
tested using five class prediction methods: compound
covariate predictor, diagonal linear discriminant analysis,
1-nearest neighbor, 3-nearest neighbors, and support vec-
tor machines. Cross-validation using the leave-one-out
method was performed to determine the mis-classifica-
tion error rate of each class prediction method. To prevent
bias in estimation of the mis-classification error rate, the
entire analysis was repeated during each iteration of the

cross-validation, including determination of which
sequences were significant on the reduced training sam-
ple. The sensitivity and specificity of the class prediction
methods in cross-validation were nearly identical: 94%
and 89% respectively for the compound covariate predic-
tor, diagonal linear discriminant analysis, and 1-nearest
neighbor methods; and 94% and 93% for the 3-nearest
neighbors and support vector machines methods (Addi-
tional File 7). The class prediction methods were further
validated by estimation of the permutation p-value of the
cross-validated mis-classification rate. The entire analysis
was repeated 2,000 times with scrambled sample labels to
determine the proportion of the random permutations
that gave as small a cross-validated misclassification rate
as was obtained with the real class labels. Results showed
all five class prediction methods had a permutation p-
value for the cross-validated mis-classification rate of p <
0.001. Finally, strong additional support for the classifier
came from the independent test set of data. When used to
predict the class of the samples in the independent test set,
three of the class prediction methods (1-nearest neighbor,
3-nearest neighbors, and support vector machines) were
100% correct, while the remaining two methods were
98% correct; the compound covariate predictor and diag-
onal linear discriminant analysis methods both mis-clas-
sified sample 73 as Stage III when in fact it was a LMP
sample (Additional File 7).

Of the 911 sequences with significant (p < 0.001) methyl-
ation differences between the normal and LMP samples
and the Stage III cancers, 373 had a greater than 1.5-fold
change (Additional File 8). The 911 sequences used by the
class prediction methods included the three sequences in
the classifier developed by the PAM algorithm as well as
425 of the 659 (64%) of the sequences identified above as
significant by stage with a 1.5-fold change in methylation.
The large difference in the number (911) of sequences
with significant differences between the classes and the
three sequences in the classifier developed by the PAM
algorithms reflected the fact that while a large number of
sequences had altered CpG methylation between normal

Differences in DNA methylation patterns across the genome distinguish ovarian tissues by stage (see Additional Files 2 and 3 for sample histopathology and the list of sequences used in clustering)Figure 1 (see previous page)
Differences in DNA methylation patterns across the genome distinguish ovarian tissues by stage (see 
AdditionalFiles2and3for sample histopathology and the list of sequences used in clustering). a) The 659 CpG-rich 
clones with differential methylation between any two tumor stages were used in hierarchical clustering by Pearson correlation 
and average linkage. Each CpG-rich clone is represented by one bar and colored by their average methylation relative to the 
median of the ten normal samples; hypermethylation is shown in red and hypomethylation shown in blue. Horizontally aligned 
black bands mark the position of specific ranks of clones: Rank 1, the clone sequence lies within 0.5 kb of the transcription start 
of a known gene; Rank 2, the clone lies within 1 kb of transcription start; Rank 3, the clone lies within 2 kb of transcription 
start; Rank 4, the clone lies >2 kb from transcription start; Satellites, probes containing satellite repeats; Alu, probes of which 
the clones consist of >25% Alu sequence. b) The same 659 CpG-rich clones are graphed by tumor stage. Each CpG-rich clone 
is represented by one line. Lines are colored by their average methylation in Stage IV; blue indicates loss of methylation, and 
red indicates gain of methylation, relative to the median of the ten normal samples.

The optimal number of sequences to predict normal or LMP ovarian tissue from stage III ovarian tumorFigure 2
The optimal number of sequences to predict normal 
or LMP ovarian tissue from stage III ovarian tumor. 
Graph of misclassification rate for each class (normal/LMP 
tissue or stage III ovarian tumor) as a function of the thresh-
old value in the PAM algorithm. As the threshold parameter 
increases, the number of sequences in the classifier 
decreases. The optimal point was reached at a threshold 
value of 6.26, or 3 sequences.
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or LMP tissue and stage III tumor (compare normal and
LMP to Stage III in Figure 1), the optimal number of
sequences for good performance in class prediction was
small.

Bisulfite sequencing confirmation of CGI microarray data
The clones with significant differences in methylation
between ovarian tissues included a gene of interest: NKX2-
3. NKX2-3 is a member of the homeodomain-containing
transcription factor family, and The NKX family members
have been implicated in cell type-specific gene expression
and regulation of cell differentiation. Our previous work
identified another family of homeobox binding proteins,
the HOXA cluster, as epigenetically silenced in breast can-
cer[25]. We therefore examined NKX2-3 further to verify
our microarray results. To confirm the methylation
changes found using the CGI microarrays, we measured
methylation of the NKX2-3 CpG island that overlapped
the clone on the CGI microarray by bisulfite sequencing.
Figure 4a shows the position of the sequence queried on
the CGI microarray relative to the region that was bisulfite

sequenced, and the NKX2-3 gene sequence. Forty-seven
bisulfite modified clones were sequenced from five stage
III or IV tumors and five normal ovaries. The number of
methylated CpG sites in each sample was counted and the
result shown as a boxplot in Figure 4b. The difference in
methylation detected between normal and tumor ovarian
tissue by bisulfite sequencing was significant (p < 0.01,
unpaired Welch's t-test).

Re-expression of NKX2-3 by 5'-aza-deoxycytidine
The increased methylation of the NKX2.3 CpG island sug-
gested epigenetic silencing of NKX2-3 expression that
could be reversed by the demethlyating agent 5-aza-2'-
deoxycytidine. To test this possibility, the ovarian cancer
cell lines ES2 and OVCAR3 were treated with 5-aza-2'-
deoxycytidine and re-expression of the NKX2-3 gene was
measured by real time RT-PCR. As expected for an epige-
netically silenced gene promoter, the 5-aza-2'-deoxycyti-
dine treatment increased expression of NKX2-3 in a dose-
dependent manner in both cell lines. NKX2-3 expression
at 10 uM 5-aza-2'-deoxycytidine increased 7.2-fold in ES2

Performance of the 3-sequence classifier during cross-validationFigure 3
Performance of the 3-sequence classifier during cross-validation. The probability of each sample belonging to one 
class (normal or LMP tissue, red; stage III ovarian tumor, green) is shown on the y-axis for each of the 43 samples used to 
develop the 3-sequence classifier. One normal sample and one stage III ovarian tumor were misclassified resulting in a misclas-
sification rate of 5%.
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Confirmation of increased methylation at a NKX2-3 gene CpG island in ovarian tumor by bisulfite sequencingFigure 4
Confirmation of increased methylation at a NKX2-3 gene CpG island in ovarian tumor by bisulfite sequencing. 
a) Representation the 5' NKZ2-3 gene region showing the chromosomal location, associated CpG islands, region covered by 
the clone on the CGI array, region that was bisulfite sequenced, and the NKX2-3 gene itself. For the row labeled NKX2.3, the 
5' untranslated region is indicated by the thin bar, the first and second exons are shown as thick bars, and the first intron is 
indicated by a thin line with overlaid arrow heads. b) Boxplot of the bisulfite sequencing results. The total number of methyl-
ated CpG sites in 47 clones from each of ten samples were averaged and plotted. The p-value for significance between the two 
means is shown (unpaired Welch's t-test).
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cells while the increase in OVCAR3 cells was 359-fold
(Table 1).

Correlation of CpG methylation with gene expression
Methylation of CpG islands associated with 5' gene pro-
moters is associated with loss of expression, as was the
case with NKX2-3 above. We therefore merged the CGI
array data from stage III and IV ovarian tumors with gene
expression data taken from a study by Hendrix et al. [26].
In their expression study, Hendrix et al. analyzed 99 indi-
vidual ovarian tumors: 35 stage I, 11 stage II, 44 stage III,
9 stage IV, and 4 normal ovary samples on Affymetrix
HG_U133A GeneChips (gene expression omnibus acces-
sion number: GSE6008). Of the 659 CpG-rich clones with
DNA methylation changes in our CGI array data, 201
could be mapped to the U133A GeneChip using gene
names: 126 were hyper-methylated with disease progres-
sion and 75 were hypo-methylated. Further selecting for
the CpG islands most closely associated with 5' promoters
(rank 1 or 2) resulted in 11 hypermethylated clones and
13 hypomethylated. Of the 11 clones with increased
methylation of their CpG islands, four: FLJ14146, FYCO1,
TUBA3, ZNF177 were expressed in normal ovary tissue
and the expression of all four decreased with disease as
would be predicted from the CpG methylation profile
(Figure 5a). Of the 13 clones that lost methylation with
disease progression, three were expressed in Stage III and
IV tumors at higher levels than in normal ovary: AHCYL1,
BYSL, and DUSP10 as suggested by their CpG methylation
profiles (Figure 5b).

Discussion
Genome-wide demethylation has long been thought to
play a role in tumorigenesis[3]. Demethylation of the
tumor cell genome has been observed in colon tumor cell
lines and associated with chromosome instability in
mouse stem cells[27,28]. The results reported here show
both CpG methylation and demethylation occur with
tumor progression in ovarian cancer. Demethylation
occurred predominantly at repetitive elements (satellite
and Alu repeats) of the genome. Demethylation of repeti-
tive elements may contribute to genome instability and
play a role in ovarian tumor progression[11]. The loss of
methylation with disease progression showed a reversal
between stages I and II, followed by a resumption of the
trend in stage III in endometrial and serous, but not muci-

nous ovarian cancer. In addition to progressive loss of
methylation at repetitive elements, our results show CpG
methylation increased at hundreds of promoter CpG
islands even as the genome was becoming demethylated
on average.

The results suggest that the process of tumorigenesis dif-
ferentiates between types of CpG-rich elements in order to
simultaneously destabilize the genome while silencing
tumor suppressor genes. In addition, the cumulative
nature of the CpG methylation changes suggests that the
stages of ovarian cancer are progressive with one arising
from another. The exception to this observation was the
histopathology-specific re-methylation of Alu and satel-
lite CpG islands in stage II tumors relative to stage I
tumors which reverted back to a de-methylated state in
stage III tumors (Additional File 4). The observation raises
the possibility that either stage II tumors are unique in
their formation, or that there are two waves of demethyl-
ation, from benign to stage I, and then again in progres-
sion from stage II to stage III, during tumor progression.

To investigate the possible use of methylation patterns to
identify ovarian cancer, we focused on comparing stage III
serous papillary adenocarcinoma to normal and LMP tis-
sue. Our results showed large numbers of CpG islands are
hyper- and hypomethylated in stage III ovarian tumors
relative to normal or LMP samples (Additional File 8). We
were able to differentiate normal and LMP from stage III
with a three-sequence classifier developed using the PAM
algorithm with 87% sensitivity and 100% specificity on
an independent test set of data (Figure 3). In addition, we
used five other class prediction methods which had a high
degree of agreement in both cross-validation of the train-
ing data set and prediction of the test data set (98–100%
correct). The agreement between the various class predic-
tion methods supports the likelihood that our methyla-
tion data could produce a classifier capable of
differentiating between Normal and LMP samples and
Stage III cancer. Furthermore, estimation of the cross-val-
idated mis-classification error rate indicated that the clas-
sifier's performance was unlikely due to chance (p <
0.001).

The progressive nature of the methylation changes seen
between stage III and normal or LMP samples suggests

Table 1: 5'-aza-deoxycytidine induced re-activation of NK2-3 gene expression in ovarian cancer cell lines

cell line dose 5'-aza-dC (uM) fold increase over untreated control cells

ES2 2 1.3
ES2 10 7.2

OVCAR3 2 55
OVCAR3 10 359
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that the same changes, though smaller in magnitude, may
be useful in detecting early (stage I) cancers using more
sensitive methods for measuring altered CpG methyla-
tion. Early detection of ovarian cancer should improve
patient treatment, and is the focus of current research
using protein detection in blood samples[29]. Further
development of the methylation profiles identified here
may provide an additional variable that could comple-
ment protein expression to further improve detection of
early cancer. The demonstration that mutations in tumor
DNA are detectable in the blood supports the possibility
of detecting methylation events in the blood of women

with ovarian cancer in order to achieve an earlier diagno-
sis[30].

To validate the CGI microarray results, we confirmed
hypermethylation at a NKX2-3 CpG island in ovarian
tumor samples relative to normal tissue using bisulfite
sequencing. In addition, NKX2-3, was reactivated in two
ovarian tumor cell lines following treatment with the
demethlyating agent 5'-aza-2'deoxycytidine. Although we
did not measure the methylation status of the NKX2-3
CpG island in the cell lines, re-expression of the gene fol-
lowing treatment with 5'-aza-2'deoxycytidine and confir-
mation of methylation in patient samples suggests that
NKX2-3 is epigenetically silenced during ovarian tumori-
genesis. As a further confirmation of the CpG island
microarrays, we identified seven clones whose methyla-
tion profile predicted their loss or gain in expression with
disease progression by analyzing our methylation data in
conjunction with Wu et al.'s expression data. These results
demonstrate that CpG island microarrays can be used to
identify novel targets of epigenetic control in tumor sam-
ples.

Conclusion
We found patterns of DNA methylation that distinguish
tumor samples from benign tissue, and used this data to
discover genes affected by epigenetic regulation. We
showed that the changes in methylation are cumulative
with increasing stage, thus the methylation changes may
provide a marker for early detection of disease. Our results
extend previous studies that suggested simultaneous
hypo- and hyper-methylation occurred with tumor pro-
gression by measuring both in the same tumor cells.
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