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Abstract
Background: Genome-wide association studies (GWAS) have emerged as a powerful approach
for identifying susceptibility loci associated with polygenetic diseases such as type 2 diabetes
mellitus (T2DM). However, it is still a daunting task to prioritize single nucleotide polymorphisms
(SNPs) from GWAS for further replication in different population. Several recent studies have
shown that genetic variation often affects gene-expression at proximal (cis) as well as distal (trans)
genomic locations by different mechanisms such as altering rate of transcription or splicing or
transcript stability.

Methods: To prioritize SNPs from GWAS, we combined results from two GWAS related to
T2DM, the Diabetes Genetics Initiative (DGI) and the Wellcome Trust Case Control Consortium
(WTCCC), with genome-wide expression data from pancreas, adipose tissue, liver and skeletal
muscle of individuals with or without T2DM or animal models thereof to identify T2DM
susceptibility loci.

Results: We identified 1,170 SNPs associated with T2DM with P < 0.05 in both GWAS and 243
genes that were located in the vicinity of these SNPs. Out of these 243 genes, we identified 115
differentially expressed in publicly available gene expression profiling data. Notably five of them,
IGF2BP2, KCNJ11, NOTCH2, TCF7L2 and TSPAN8, have subsequently been shown to be associated
with T2DM in different populations. To provide further validation of our approach, we reversed
the approach and started with 26 known SNPs associated with T2DM and related traits. We could
show that 12 (57%) (HHEX, HNF1B, IGF2BP2, IRS1, KCNJ11, KCNQ1, NOTCH2, PPARG, TCF7L2,
THADA, TSPAN8 and WFS1) out of 21 genes located in vicinity of these SNPs were showing aberrant
expression in T2DM from the gene expression profiling studies.

Conclusions: Utilizing of gene expression profiling data from different tissues of individuals with
or without T2DM or animal models thereof is a powerful tool for prioritizing SNPs from WGAS
for further replication studies.
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Background
Genome-wide association study (GWAS) offers unbiased
ways to examine association of more than a million single
nucleotide polymorphisms (SNPs) with disease [1]. Sev-
eral GWAS have indentified novel genomic regions influ-
encing risk for type 2 diabetes mellitus (T2DM) [2-6].
However, the challenge remains to prioritize SNPs from
GWAS for further replication [1]; even if one would try to
replicate only the top 1% with strongest genetic evidence
5,000-10,000 SNPs need to be genotyped in replication
studies. Most available methods for prioritizing genes for
follow-up from GWAS are based upon bibliometric anal-
yses such as Gene Relationships Among Implicated Loci
(GRAIL) [7]. In addition, bioinformatic tool such as
TEAM (a tool for the integration of expression and linkage
and association maps) is designed to integrate linkage,
association and expression data, together with functional
annotations however currently it is not implemented to
handle GWAS data [8].

Genetic variation often influences gene expression by dif-
ferent mechanisms such as altering rate of transcription or
splicing or transcript stability [9]. In this study we first
have used published gene expression profiling data in key
tissues (i.e. pancreas, adipose tissue, liver and skeletal
muscle) from humans and animal models of T2DM to
identify genes in GWAS which would deserve follow-up in
replication studies. Secondly to provide further validation
of our approach, we reversed the approach and tested 21
genes (ADAMTS9, CDKAL1, CDKN2B, FTO, GCK, GCKR,
HHEX, HNF1B, IGF2BP2, IRS1, JAZF1, KCNJ11, KCNQ1,
MTNR1B, NOTCH2, PPARG, SLC30A8, TCF7L2, THADA,
TSPAN8 and WFS1) located in vicinity of 26 known SNPs
associated with T2DM and related traits [2,5,6,10-13] for
their expression in the same data sets.

Methods
Results from two separate GWAS are reported here.

Diabetes Genetics Initiative (DGI)
The DGI included 1,464 T2DM patients and 1,467 nor-
moglycemic controls from Sweden and Finland [2]. These
samples were genotyped on the Affymetrix GeneChip®

Human Mapping 500K Array Set which contains
~500,000 SNPs for interrogation. 386,731 autosomal
SNPs were included for further analyses which have geno-
type call frequency > 0.95, the Hardy-Weinberg equilib-
rium (HWE) P > 10-6 in controls and a minor allele
frequency (MAF) > 0.01 in both populations.

Wellcome Trust Case Control Consortium (WTCCC)
The WTCCC included 1,924 T2DM patients and 2,938
population controls from UK (6). These samples were
also genotyped on the Affymetrix GeneChip® Human
Mapping 500K Array Set which contains ~500,000 SNPs

for interrogation. 393,453 autosomal SNPs were included
for further analyses which have genotype call frequency >
0.95, the HWE P > 10-4 in the total sample and a MAF >
0.01.

Meta-analysis of T2DM and related traits GWAS
Recently large scale meta-analysis of T2DM and related
traits GWAS comprised tens of thousands of individuals
and investigated ~2.2 million SNPs (directly genotyped
and imputed), followed by well-powered replication stud-
ies have robustly identified a total of 26 SNPs (rs4607103,
rs12779790, rs7754840, rs10811661, rs2191349,
rs9939609, rs560887, rs4607517, rs780094, rs1111875,
rs4430796, rs757210, rs1470579, rs2943641, rs7578326,
rs864745, rs5219, rs2237892, rs10830963, rs10923931,
rs1801282, rs13266634, rs7903146, rs7578597,
rs7961581 and rs10010131) located in vicinity of 21
genes (ADAMTS9, CDKAL1, CDKN2B, FTO, GCK, GCKR,
HHEX, HNF1B, IGF2BP2, IRS1, JAZF1, KCNJ11, KCNQ1,
MTNR1B, NOTCH2, PPARG, SLC30A8, TCF7L2, THADA,
TSPAN8 and WFS1) been associated with T2DM and
related traits in several population [2,5,6,10-13].

Gene expression profiling data
Results from five gene expression profiling studies from
four different tissues (i.e., pancreas, adipose tissue, liver
and skeletal muscle) in humans and animal models have
been used for the analysis of the putative affect of a SNP
on gene expression.

(a) From pancreas
(1) Pancreatic islets from healthy controls and T2DM patients

We included gene expression profiling data of human
islets from cadaver islet donors with and without
T2DM [14]. We downloaded the raw gene expression
data from the Diabetes Genome Anatomy Project
(DGAP) database, accession number 103 http://
www.diabetesgenome.org/chipperdb/
expt.cgi?id=103.

(2) Pancreas from healthy and diabetic rats
We also evaluated the effect of streptozotocin (STZ)
induced diabetes on expression of genes of interest in
pancreas using previously published microarray data
[15]. We downloaded the raw gene expression data
from diabetic and healthy untreated rats from the
National Center for Biotechnology Information's
(NCBI) Gene Expression Omnibus (GEO) database,
accession number GSE2470 http://
www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE2470.
Page 2 of 8
(page number not for citation purposes)

http://www.diabetesgenome.org/chipperdb/expt.cgi?id=103
http://www.diabetesgenome.org/chipperdb/expt.cgi?id=103
http://www.diabetesgenome.org/chipperdb/expt.cgi?id=103
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2470
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2470
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2470


BMC Medical Genomics 2009, 2:72 http://www.biomedcentral.com/1755-8794/2/72
(b) From skeletal muscle
(3) Skeletal muscle from healthy controls and T2DM patients

We analyzed the expression of individual genes using
our previously published microarray data from
human skeletal muscle of healthy controls and T2DM
patients [16]. We downloaded the raw gene expression
data from the DGAP database, accession number 54
http://www.diabetesgenome.org/chipperdb/
expt.cgi?id=54

(4) Skeletal muscle from healthy and diabetic mice
We evaluated the effect of STZ- induced diabetes on
expression of genes of interest in skeletal muscle from
previously published microarray data [17]. We down-
loaded the raw gene expression data from diabetic and
healthy mice from the DGAP database, accession
number 104 http://www.diabetesgenome.org/chip
perdb/expt.cgi?id=104

(c) From adipose tissue, liver and skeletal muscle
(5) From Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) 
rats

Finally, we also examined the expression of genes of
interest in insulin-sensitive tissues like adipose tissue,
liver and skeletal muscle of ZDF rats at age of 6 weeks
(pre-diabetic) and 12 weeks (diabetic) and compared
with age- and sex-matched ZLC rats [18]. We down-
loaded the normalized gene expression data from the
NCBI's GEO database, accession number GSE1080
http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE1080

All studies were conducted according to the principles of
the Helsinki Declaration and approved by respective local
ethics committees [2,5,6,10-18].

Statistical Analysis
SNPs and gene selection
We used the NCBI's single nucleotide polymorphism
database (dbSNP) build 130 to identify genes located in
the vicinity of selected SNPs. Homologues of the genes for
mouse and rat were identified using the NCBI's Homolo-
Gene release 64. We included only those genes that were
evolutionarily conserved in three different species namely
human, mouse and rat.

Analysis of microarray data
We used ENTREZ custom chip definition files to regroup
the individual probes into consistent probesets and remap
them to the correct sets of genes for different Affymetrix
arrays [19-21]. The method used for calculating gene
expression from Affymetrix array data can have a major
impact on the results [22-24]. Hence, we used four differ-
ent procedures for normalization and summarization
which combines the multiple probe intensities for each

gene to produce an expression value: (1) by MAS5.0 algo-
rithms to adjust for background noise level using esti-
mates of the distribution of probe intensities, scaling
based normalization and summarization based on a
Tukey's biweight [25], (2) by the GC-content Robust
Multi-array Average (GC-RMA) method [26] with addi-
tional background adjustment using sequence informa-
tion to estimate probe affinity for nonspecific binding,
quantile based normalization and summarization based
on a multi-array model fit using median polish algorithm,
(3) by Probe Logarithmic Intensity Error (PLIER) method
(Affymetrix) utilizing both perfect match and mismatch
signaling with quantile based normalization and (4) by
Robust Multi-array Average (RMA) method [27,28] which
implements model-based background adjustment, quan-
tile based normalization and summarization based on a
multi-array model fit using median polish algorithm.

For interclass, unpaired comparisons, we used a two-
tailed Student's t-test with equal variance to identify dif-
ferences in expression (log (base 2) transformed) of indi-
vidual gene from different gene expression profiling
studies (for each of four normalization methods namely
MAS5.0, GC-RMA, PLIER and RMA discretely). Due to
hypothesis generating nature of this study, we considered
only those genes that were significantly altered in diabetes
or associated traits with a P < 0.05 in at least one normal-
ization method. For the ZDF and ZLC rat studies, we used
fold change values which were calculated by dividing the
median of normalized signal channel intensity (Cy5) by
the median of normalized control channel intensity (Cy3)
to assess the difference between ZDF vs. ZLC. The genes
with expression ratios (i.e., ratio of normalized mean sig-
nal intensities of ZDF rat gene to that of ZLC) lesser than
0.67 or greater than 1.50 were considered differentially
expressed.

Results
To identify T2DM susceptibility loci, we compiled results
from two previously reported GWAS which used the
Affymetrix GeneChip® Human Mapping 500K Array Set
containing ~500,000 SNPs for interrogation [2,6]. To pro-
vide a framework for the analytical approach, we have
used different cut-off of P-values from both GWAS (Table
1). For instance, we selected 1,170 directly genotyped
SNPs associated with T2DM with P < 0.05 in both GWAS
(Table 1) and 243 genes were located in the vicinity of
these SNPs (Table 2). To determine whether any of these
genes exhibit altered expression in diabetes or associated
traits in humans or rodent organisms, we utilized pub-
lished gene expression profiling data from pancreas, adi-
pose tissue, liver and skeletal muscle (Methods). Out of
243 genes, we identified 115 genes differentially
expressed between diabetic and healthy tissues in these
studies (Additional file 1: Supplemental Table S1, Tables
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3 and 4 and Figure 1). Out of 115 genes, we identified five
genes (namely IGF2BP2, KCNJ11, NOTCH2, TCF7L2 and
TSPAN8) for which SNPs located in their vicinity have
shown association with T2DM in different populations
[2,5,6]. Moreover, the results for SNPs selected based on
different GWAS P-values thresholds are shown in Table 1
to Table 4.

While in the first part we used the GWAS studies to con-
firm the findings from the expression arrays, in the second
part we asked the question whether any of the 26 SNPs
associated with T2DM or related traits identified through
meta-analysis of GWAS would show differences in expres-
sion between diabetic and healthy tissues in the same data
sets (Methods). Intriguingly, 12 (57%) (HHEX, HNF1B,
IGF2BP2, IRS1, KCNJ11, KCNQ1, NOTCH2, PPARG,
TCF7L2, THADA, TSPAN8 and WFS1) out of 21 genes
located in vicinity of these SNPs were differentially
expressed in tissues from T2DM individuals/animal mod-
els as compared to healthy tissues (Additional file 1: Sup-
plemental Table S2 and Figure 2). Out of these 12 genes,
eight (HHEX, HNF1B, KCNQ1, NOTCH2, TCF7L2,
THADA, TSPAN8 and WFS1) showed differential expres-
sion in pancreatic islets, five (HNF1B, IRS1, KCNJ11,
NOTCH2 and WFS1) showed differential expression in
skeletal muscle, two (IGF2BP2 and PPARG) showed dif-
ferential expression in adipose tissue and only one
(PPARG) showed differential expression in liver (Addi-
tional file 1: Supplemental Table S2). This finding further
supports the notion that defects in different tissues con-
tribute to the pathogenesis of T2DM.

Discussion
The main objective of this study was to test a novel
approach for prioritizing of SNPs from GWAS by combin-
ing the results from these studies with publicly available
genome-wide expression profiling data from key tissues
(i.e. pancreas, adipose tissue, liver and skeletal muscle) of
T2DM. We identified five genes namely IGF2BP2,
KCNJ11, NOTCH2, TCF7L2 and TSPAN8 for which SNPs
located in their vicinity have been consistently associated
with T2DM in several populations [2,5,6]. More intrigu-
ingly, 12 (57%) (HHEX, HNF1B, IGF2BP2, IRS1, KCNJ11,
KCNQ1, NOTCH2, PPARG, TCF7L2, THADA, TSPAN8
and WFS1) out of 21 genes located in vicinity of known
26 T2DM or related traits associated SNPs showed differ-
ent expression in tissues of individuals with or without
T2DM or animal models thereof.

Prioritizing SNPs from GWAS for further replication in
other populations is a challenging task due to the fact that
a large numbers of comparisons are made in parallel.
Moreover, effect sizes of individual SNPs are usually very
small and would often not reach significance after correc-
tion for multiple testing. To address this problem several
strategies were applied including meta-analysis of GWAS
and bibliometric-bioinformatic approaches like GRAIL
[7]. A meta-analysis of GWAS from different populations
identified six novel loci associated with T2DM [5]. How-
ever, even though top signals are selected based upon the
strength of association large scale replication studies are
still needed.

GRAIL is a web-tool to examine relationships between
genes in different disease associated loci. It is based on

Table 1: Numbers of SNPs associated with T2DM with different cut-off of P-values in DGI and WTCCC GWAS

P < 0.01 (DGI) P < 0.05 (DGI)

P < 0.01 (WTCCC) 61 299

P < 0.05 (WTCCC) 215 1,170

P < 0.01 in DGI and P < 0.05 in WTCCC or
P < 0.01 in WTCCC and P < 0.05 in DGI

453

Table 2: Numbers of genes located in the vicinity of the SNPs (from Table 1) which are associated with T2DM with different cut-off of 
P-values in DGI and WTCCC GWAS

P < 0.01 (DGI) P < 0.05 (DGI)

P < 0.01 (WTCCC) 18 86

P < 0.05 (WTCCC) 52 243

P < 0.01 in DGI and P < 0.05 in WTCCC or
P < 0.01 in WTCCC and P < 0.05 in DGI

118
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finding similarities in the published scientific text among
the associated genes. Using GRAIL for the 1,170 SNPs
associated with T2DM (Figure 1) we could identify three
genes subsequently being associated with T2DM, namely
JAZF1, KCNJ11 and TCF7L2 [4]. In comparison, five genes
(IGF2BP2, KCNJ11, NOTCH2, TCF7L2 and TSPAN8) were
identified using our current approach. Moreover, our
approach can be very useful for designing tissue specific
functional studies. Also, a more general approach such as
GeneMiner (which is a meta-analysis approach that inte-
grates data of heterogeneous origin e.g. DNA microarrays
and complementing qualitative data covering several
human and mouse tissues related to T2DM) has identified
several functional T2DM candidate genes [29]. However,
we were able to identify only two (HNF1B and IRS1) out
of the 21 genes which are associated with T2DM and
related traits [2,5,6,10-13] using GeneMiner in contrast to
12 (57%) using our approach (Additional file 1: Supple-
mental Table S2).

Importantly, our findings demonstrate that more than
50% of the genes in which genetic variants have been
known to increase risk of T2DM showed altered expres-
sion in different tissues. The perturbation was highest, as
expected, in pancreatic islets, where eight genes i.e. HHEX,
HNF1B, KCNQ1, NOTCH2, TCF7L2, THADA, TSPAN8
and WFS1, showed aberrant expression. All of these
genetic loci, apart from the less studied TSPAN8, have

been implicated in pathways primarily involved in insulin
secretion, cell proliferation and regeneration [30]. Of
note, genetic variants in the THADA and WFS1 have
recently been shown to impair glucagon-like peptide-1-
stimulated insulin secretion [31,32]. Furthermore, many
of these loci have also shown effects on insulin sensitivity
[33]. In line with this, five genes, i.e. HNF1B, IRS1,
KCNJ11, NOTCH2 and WFS1, were also differentially
expressed in skeletal muscle. Of all T2DM genes, IRS1
seems to have a clear effect on insulin sensitivity; the
T2DM-associated allele was associated with decreased
IRS1 protein expression as well as reduced phosphatidyli-
nositol-3-kinase-activity and insulin-stimulated glucose
uptake in humans [12].

Defects in fat metabolism and excess fat deposition in the
abdominal region play an important role in the pathogen-
esis of T2DM and obesity [34]. Our findings that expres-
sion of the IGFBP2 and PPARG, genes was altered in
adipose tissue further supports this notion. PPARG is a
nuclear receptor that regulates transcription of genes
involved in adipogenesis. A common Pro12Ala polymor-
phism has been associated with decreased transcriptional
activity and increased insulin sensitivity and thereby pro-
vides protection against T2DM [35]. Additionally, PPARG
also showed differential expression in the liver, where it
regulates a number of genes involved in both glucose and
lipid metabolism. These results add further support to a

Table 3: Numbers of genes for which expression levels in pancreas, skeletal muscle, adipose tissue or liver were altered in diabetes as 
compared to controls

P < 0.01 (DGI) P < 0.05 (DGI)

P < 0.01 (WTCCC) 11 42

P < 0.05 (WTCCC) 30 115

P < 0.01 in DGI and P < 0.05 in WTCCC or 
P < 0.01 in WTCCC and P < 0.05 in DGI

60

Table 4: Numbers of genes (out of the genes from Table 3) for which SNPs located in their vicinity have shown association with T2DM 
in different populations [2,5,6]

P < 0.01 (DGI) P < 0.05 (DGI)

P < 0.01 (WTCCC) 2
*(OR = 1.31, P = 1)

5
*(OR = 2.81, P = 0.26)

P < 0.05 (WTCCC) 2
*(OR = 1.49, P = 1)

5
*(OR = 2.85, P = 0.26)

P < 0.01 in DGI and P < 0.05 in WTCCC or
P < 0.01 in WTCCC and P < 0.05 in DGI

5
*(OR = 2.53, P = 0.44)

*OR = Odds ratio, P-values refer to a two-tailed Fisher's Exact test.
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role for variation in these genes in the pathogenesis of
T2DM.

There are several issues to consider in the interpretation of
the results. In the current study, we have only examined
cis-regulatory variants and their possible contribution to
phenotypic variations leading to T2DM in contrast to
trans-regulatory variants. Moreover, different SNP alleles
in the vicinity of or within a gene may not alter mRNA
level or stability and hence further functional studies are
needed to evaluate the biological mechanisms associated
with variants in model organisms as well as tissue sam-
ples. Future studies integrating genome-wide expression
profiles from key tissues of T2DM with GWAS mapping
are required for identification of SNPs that are associated
with variation in gene expression contributing to T2DM
[36].

Conclusions
Taken together these data show the utility of using gene
expression profiling studies to prioritize genes from
GWAS for further replication efforts.
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Schematic diagram of prioritizing SNPs from GWASFigure 1
Schematic diagram of prioritizing SNPs from GWAS. 1,170 SNPs were associated with T2DM with P < 0.05 in both 
GWAS and 243 genes were located in vicinity of these SNPs. Out of these 243 genes, 115 were differentially expressed 
between diabetic and healthy tissues in different gene expression profiling studies.
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Identification of differentially expressed genes using gene expression profiling studies from SNPs associated with T2DM and related traitsFigure 2
Identification of differentially expressed genes using gene expression profiling studies from SNPs associated 
with T2DM and related traits. 26 SNPs are associated with T2DM and related traits and 21 genes are located in vicinity of 
these SNPs. Out of these 21 genes, 12 were differentially expressed between diabetic and healthy tissues in different gene 
expression profiling studies.
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