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Abstract

Background: Comparative Genomic Hybridization (CGH) is a molecular approach for detecting DNA Copy Number
Alterations (CNAs) in tumor, which are among the key causes of tumorigenesis. However in the post-genomic era,
most studies in cancer biology have been focusing on Gene Expression Profiling (GEP) but not CGH, and as a
result, an enormous amount of GEP data had been accumulated in public databases for a wide variety of tumor
types. We exploited this resource of GEP data to define possible recurrent CNAs in tumor. In addition, the CNAs
identified by GEP would be more functionally relevant CNAs in the disease pathogenesis since the functional
effects of CNAs can be reflected by altered gene expression.

Methods: We proposed a novel computational approach, coined virtual CGH (vCGH), which employs hidden
Markov models (HMMs) to predict DNA CNAs from their corresponding GEP data. vCGH was first trained on the
paired GEP and CGH data generated from a sufficient number of tumor samples, and then applied to the GEP data
of a new tumor sample to predict its CNAs.

Results: Using cross-validation on 190 Diffuse Large B-Cell Lymphomas (DLBCL), vCGH achieved 80% sensitivity,
90% specificity and 90% accuracy for CNA prediction. The majority of the recurrent regions defined by vCGH are
concordant with the experimental CGH, including gains of 1q, 2p16-p14, 3q27-q29, 6p25-p21, 7, 11q, 12 and
18q21, and losses of 6q, 8p23-p21, 9p24-p21 and 17p13 in DLBCL. In addition, vCGH predicted some recurrent
functional abnormalities which were not observed in CGH, including gains of 1p, 2q and 6q and losses of 1q, 6p
and 8q. Among those novel loci, 1q, 6q and 8q were significantly associated with the clinical outcomes in the
DLBCL patients (p < 0.05).

Conclusions: We developed a novel computational approach, vCGH, to predict genome-wide genetic
abnormalities from GEP data in lymphomas. vCGH can be generally applied to other types of tumors and may
significantly enhance the detection of functionally important genetic abnormalities in cancer research.

Background
DNA Copy Number Alterations (CNAs), or chromoso-
mal gains and losses, play an important role in regulat-
ing gene expression and constitute a key mechanism in
cancer development and progression [1-3]. Comparative
Genomic Hybridization (CGH) was developed as a
molecular cytogenetic method for detecting and

mapping such CNAs in tumor cells by comparing hybri-
dization intensity of a tumor and a normal DNA sample
[4,5]. Recently, improved resolution and sensitivity of
CGH have been achieved by array CGH (aCGH) by
hybridizing to arrayed genomic DNA or cDNA clones
[6-9]. However, in the post-genomic era, most cancer
studies have been focusing on Gene Expression Profiling
(GEP) but not CGH, and as a result, a tremendous
amount of GEP data have been accumulated and made
publicly accessible [10-14], but few CGH studies have
been performed in large series of tumor samples [15].
The enormous amount of GEP data represents an
important resource for cancer research, yet it has not
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been fully exploited for their links to CNAs. From the
literature review, most studies including GEP and CGH
have been focusing on the impact of one on the other
or combining the two for identifying candidate tumor
suppressor genes or oncogenes [16-28]. We hypothe-
sized that with a well-designed computational model,
GEP data can be readily used to derive functionally rele-
vant genetic abnormalities in tumor.
In this paper, we proposed a novel computational

approach, virtual CGH (vCGH), to predict DNA CNAs
from GEP data, which may be functionally important as
impact is being evaluated at the expression level. The
biological foundation for vCGH lies in the observation
that a region with a chromosomal gain or loss generally
results in corresponding increased or decreased mRNA
expression along the aberrant loci, as reported in Diffuse
Large B-Cell Lymphoma (DLBCL) [17], Mantle Cell
Lymphoma (MCL) [18], Natural Killer-Cell Lymphoma
(NKCL) [19], Acute Myeloid Leukemia (AML) [20], sar-
coma [25], glioblastoma [27], breast cancer [21,22,28],
prostate cancer [23] and gastric cancer [24]. We recently
studied a large group of DLBCL and MCL samples pre-
viously GEP profiled with Lymphochip [29-31] for
genetic abnormalities using CGH, and found that DNA
CNAs had a substantial impact on the expression of
genes in the involved chromosomal regions [17,18]. In
another study on a number of tumor specimens and cell
lines of NKCL using high-resolution aCGH and Affyme-
trix GEP microarrays, we observed a similar relationship
between DNA CNAs and mRNA expression; a consider-
able percentage of variance in mRNA expression is
directly attributable to underlying variation in gene copy
numbers [19]. The association between GEP and CGH
allows the development of vCGH when trained on a suf-
ficient number of tumor samples. To our advantage, we
had 190 DLBCL and 64 MCL samples examined by
both CGH (Vysis CGH kits, Downers Grove, IL) and
GEP (Affymetrix Inc., Santa Clara, CA). The paired GEP
and CGH data on a large number of tumor samples
provide a unique resource for developing and verifying
the vCGH model.
vCGH was built on hidden Markov models (HMMs).

HMMs are well-developed statistical models for captur-
ing hidden patterns from observable sequential data,
having been successfully applied in biology for finding
CpG islands, protein secondary structure, etc. [32].
HMMs have recently been applied in aCGH for segmen-
tation, a procedure to divide the signal ratios of each
clone on the array into states, where all of the clones in
a state have the same underlying copy number [33,34].
In this paper, HMM was first time used for an integra-
tive analysis of the GEP-to-CGH prediction which
intended to capture two primary sources of uncertainty
embedded in genomic data: (1) the significant but subtle

correlations between GEP and CGH; (2) the sequential
transitions of DNA CNAs along a chromosome. Hertz-
berg et al. has developed a method for predicting chro-
mosomal aneuploidy from GEP data using fold change
and chromosomal relative expression calculation for
each chromosome [35]. The major limitation with this
approach is that it can only call whole chromosome
gain or loss. Nilsson et al. proposed a method that
employed total variance minimization techniques for
chromosomal segmentation based on altered gene
expression pattern [36]. Our proposed vCGH method
differs from the previous methods in two important
respects. First, the proposed vCGH is based on HMMs,
which are classical pattern recognition methods with a
rich set of existing estimation and inference algorithms
for sequential observations. Second, the vCGH is specifi-
cally designed to train paired CGH and GEP datasets
and predict CNAs using GEP data only. The special
requirement of vCGH is to ensure specificity of CNA
calling from the GEP data.
vCGH was aimed to enhance the limited CGH data

with the wealth of GEP data and provide an integrative
genomic-transcriptomic approach for identifying func-
tionally relevant CNAs in tumor pathogenesis. Many of
the common CNAs are pathogenetically significant and
provide additional information on a tumor which may
not be immediately evident from the CGH data. CGH
in principle defines only the chromosomal structural
changes, but the functional effects of CNAs can be
reflected by altered gene expression. The information is
important in cancer research to identify the target genes
in regions of CNAs and the biological effect of the
CNAs.

Methods
In vCGH, HMMs are used to address the following
question: “Given a sequence of GEP data as observations
along a chromosome, predict the hidden CGH status of
the chromosomal gains or losses.”

vCGH model structure
A HMM is a Bayesian network which describes a doubly
embedded stochastic process with one observable pro-
cess and one hidden process. In vCGH, the observable
process {xi} describes GEP observations along a chromo-
some, where xi ="H”, “L” or “M” for high, low or med-
ium expression of a gene; the hidden process {πi}
describes the underlying CNAs, where πi = “+”, “-” or
“o“ for gain, loss or normal copy number status of a
gene. In Figure 1A, vCGH model was illustrated as a
Bayesian network, where the shaded nodes S1, S2, ..., Sn
represent hidden state variables and the visible nodes
E1, E2, ..., En represent observations for the variables.
The emission space consists of three symbols from GEP
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observations {H, L, M} and the hidden state space con-
sists of nine states that GEP superimposed on the CNA
{H+, L+, M+, H-, L-, M- , Ho, Lo, Mo}, where Ea emits E,
E Î {H, L, M} and a Î {+, -, o}. A hidden state H+can
only emit H; however an emission H could come from
any of the three underlying hidden states, H+, H- or Ho.
The reason that we limit the number of levels to three
for GEP (L, M, H) and three for CGH (-, o, +) is the
model complexity. Five levels for CGH (–, -, o, +, ++)
and GEP (LL, L, M, H, HH) in the HMM would give
5*5 = 25 hidden states (i.e., the five GEP observations
superimposed on the five CNA levels) and the transition
matrix would have 25*25 = 625 parameters which is
much more than the current 9*9 = 81 parameter model.
Since we generally have a limited number of training
samples, the three-level model is more appropriate in
the current framework.
Figure 1B showed the state transition diagram of

vCGH. The model is a single chain incorporating three
Markov sub-chains. In each sub-chain, there is a com-
plete set of state transitions, describing a continuous
DNA segment within a gain, loss or normal CNA status.

The state transitions between sub-chains are also
allowed to describe the state change of a gain, loss or
normal CNA. This design of intra- and inter-sub-chain
transitions in vCGH makes it possible to identify altera-
tive gain, loss and normal regions of variable length
automatically.

vCGH training and prediction
For a specific tumor type, genomic aberrations often
occur in a specific set of chromosomal hotspots. For
example, DLBCL has frequent aberrations involving
gains of 2p, 6p and 18q and loss of 6q and 17p [17],
and the hallmark aberrations of MCL are gains of 3q
and 8q and losses of 1p, 6q, 8p, 9p, 9q, 11q and 13q
[18]. To accurately reflect the chromosomal differences,
we developed and trained a separate HMM for each
chromosome so that each chromosome can have a dif-
ferent statistical transition and emission distributions.
Our training dataset includes the paired GEP and CGH
data, and hence the hidden state path for each observa-
tion sequence is known. Therefore, the transition and
emission probabilities can be estimated using Maximum
Likelihood Estimation (MLE) in Eq. (1) and (2),

akl = P(πi = l|πi−1 = k) =
Akl

∑
l′ Akl′

(1)

el(b) = P(xi = b|πi = l) =
El(b)

∑
b′ El(b′)

(2)

where akl is the transition probability from state k to
state l, el(b) is the emission probability on output sym-
bol b for state l, Akl and El(b) are the counts that a state
transition (k to l) and that a particular emission (bl)
happened in the training data. k, l and l’ Î {H+, H-, Ho,
L+, L-, Lo, M+, M-, Mo} and b and b’ Î {H, L, M}. The
initial probabilities of the states at the beginning of the
chain for each chromosome are estimated using MLE,
pi(l) = Nl/N, where pi(l) is the initial probability for
state l, Nl is the number of samples with state l at the
beginning of the chain, and N is the total number of
samples in the training data.
Having the vCGH parameters trained by the paired

GEP and CGH data in the training dataset, we used
Viterbi and Posterior (also called Forward and Back-
ward) decoding algorithms [32] to predict hidden CGH
states based on the GEP observations for a new tumor
sample in the testing dataset. Viterbi algorithm works
by finding the highest probability path as a hidden state
path, whereas Posterior algorithm finds the most likely
state for each position and then concatenate those states
into a hidden state path. The detailed algorithms of
Viterbi and Posterior were given in Additional file 1.
Preliminary versions of vCGH Viterbi and vCGH

H+

M+

L+ H-

M-

L-

Ho

Mo
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sub-chain (+)

sub-chain (o)

sub-chain (-)

(A)

(B)

S1 …Chromosome S2 Sn
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Figure 1 vCGH model structure. (A) vCGH model presented as a
Bayesian network. The shaded nodes S1, S2, ..., Sn represent hidden
state variables for genes and the white nodes E1, E2, ..., En represent
the observations for the variables. There are three symbols for GEP
observations, “H”, “L” and “M” for high, low and medium expression,
respectively. There are nine hidden states that GEP profiles
superimposed on CGH, H+, L+, M+, H-, L-, M-, Ho, Lo and Mo, where =
“+”, “-” and “o“ for gain, loss and normal CGH status, respectively. (B)
State transition diagram of vCGH model. The model is a single
HMM chain integrating three Markov sub-chains: (+), (-) and (o). In
each sub-chain, a Markov chain is graphically shown as a collection
of states, with arrows between them describing the state transitions
within a CNA (gain, loss or normal). There are also arrows between
sub-chains, describing the state transitions from one CNA to
another CNA.
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Posterior methods were presented in conferences by
Geng et al. [37-39].
An alternative inference method for HMM when given

only emissions as training data, i.e., only GEP observations
in training, is the Baum-Welch algorithm [32]. Baum-
Welch algorithm estimates the model parameters (transi-
tion and emission probabilities) together with unknown
CGH states by an iterative procedure. We chose not to
use this algorithm, as there are many parameters in the
model but relatively few data points at each gene position
to estimate these parameters. Instead, we used the Viterbi
or Posterior algorithms in which the true CGH states were
used to guide the HMM prediction.

vCGH validation
The procedure of vCGH was illustrated in Figure 2. The
entire dataset was split into training and testing datasets.
In the training dataset, the paired GEP and CGH data
were used for HMM parameter estimation, and in the
testing dataset, only the GEP data of a tumor sample was
used to predict the CNAs. The predicted gain, loss or
normal status of each gene was compared with those
from the experimental CGH on the same tumor samples
using the criteria of sensitivity, specificity and accuracy to
validate vCGH. The entire process was repeated and the
model performance was evaluated by Leave-One-Out
Cross Validation (LOOCV). The sensitivity, specificity
and accuracy can be calculated from the 2 × 2 contin-
gency table for gain and loss. For example, in the contin-
gency table for gain, true positive (TP) is the number of

genes as a gain by both CGH and vCGH, true negative
(TN) is the number of genes not as a gain by both CGH
and vCGH, false positive (FP) is the number of genes as a
gain by vCGH but not by CGH, and false negative (FN) is
the number of genes as a gain by CGH but not by vCGH.
Then, Sensitivity = TP/(TP+FN), Specificity = TN/(TN
+FP), and Accuracy = (TP+TN)/(TP+TN+FP+FN). The
same statistics were calculated for loss as well.
We also created two other methods to compare with

vCGH, named rGEP (raw GEP) and sGEP (smoothing
GEP), by simply mapping GEP status to CGH status
without an intelligent learning and predicting process.
By rGEP, we mean that a high expression status of a
gene is mapped to a gain (”H“ ® “+“), low expression
mapped to loss (”L“ ® “-”), and medium expression
mapped to normal (”M“ ® “o“). In sGEP, a smoothing
method (a multinomial model, as described below) was
applied after rGEP to get a gain or loss status for a
chromosomal cytoband, which contains a number of
consecutive genes.

Smoothing algorithm
Since gains and losses identified by our experimental
CGH reflected the resolution in cytobands, we deter-
mined as well the gains and losses on cytoband resolu-
tion for vCGH by applying a smoothing method.
Basically, a multinomial probability was used to measure
the likelihood of a cytoband harboring a gain or loss. In
Eq. (3), L is the likelihood under a hypothesis H, where
H0 is the null hypothesis that “a cytoband is not harbor-
ing a gain or loss” and H1 is the alternative hypothesis
that “a cytoband is harboring a gain or loss"; n+, n- and
no are the numbers of genes in the gain, loss or normal
status, and n is the total number of genes on this cyto-
band (n = n++n-+no); θ+, θ- and θo are the correspond-
ing multinomial parameters which can be estimated
using MLE in Eq.(4). Under H1 hypothesis, θ1,+, θ1,- and
θ1, o are estimated by the number of genes n+, n- and no
on a cytoband; Under H0 hypothesis, θ0,+, θ0,- and θ0, o
are estimated by the number of genes N+, N- and No on
the whole genome as the background (N = N++N-+No).
Log-of-odds (LOD), which is Log10 of the ratio of the
two likelihoods, was used to measure the likelihood that
a cytoband harbors a gain or loss, as described in Eq.(5).
The higher the LOD score, the more likely a cytoband
harbors a genomic gain or loss.

L(n+,n−,n0|H) =
n!

n+!n−!no!
θn+
+ θ

n−
− θno

o (3)

θ1,+ =
n+
n
, θ1,− =

n−
n
, θ1,o =

no
n
, and

θ0,+ =
N+

N
, θ0,− =

N−
N

, θ0,o =
No

N

(4)
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vCGH Parameter
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Figure 2 Procedure of vCGH training and validation. The entire
dataset was split into training and testing datasets. In the training
dataset, the paired GEP and CGH data were used for model
parameter estimation; in the testing dataset, only the GEP data was
used for vCGH prediction and the corresponding CGH data was
used for validating vCGH prediction. The whole process was
repeated by different splitting of training and testing datasets and
the model performance was evaluated by LOOCV.
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LOD = log10
L(n+,n−,no|H1)
L(n+,n−,no|H0)

= log10
θ
n+
1,+θ

n−
1,−θ

no
1,o

θ
n+
0,+θ

n−
0,−θ

no
0,o

(5)

Sample description and data processing
The GEP and CGH experiments were performed on 190
DLBCLs [17] and 64 MCLs [18]. The survival data was
also available for 190 DLBCL patients, who were all trea-
ted with CHOP (a regimen of cyclophosphamide, doxor-
ubicin, vincristine and prednisone). The GEP data were
obtained using Affymetrix HG-U133 plus2 arrays and
normalized (global median normalization) using BRB-
Array Tool [40]. The gene expression values (continuous
variable) were discretized into three distinct levels, “H”,
“L” or “M“, representing high, low or medium gene
expression, respectively. 1.5-fold change was used as the
threshold to determine high (>1.5fold increase), low
(>1.5fold decrease) or medium (between 1.5 fold increase
and decrease) expression of a gene in a tumor as com-
pared to the median expression of the gene across the
tumor cohort. The CGH experiments were performed by
Vysis CGH kits (Downers Grove, IL). aCGH-Smooth [41]
was used to determine breakpoints and relative levels of
DNA copy number. The company recommended 1.25
and 0.75 signal ratio of tumor to normal cells was used
to segregate gain (>1.25), loss (<0.75) and normal
(between 0.75 and 1.25) chromosomal regions. Small-
sized chromosomes and sex chromosomes were excluded
from the study due to technical limitation and lack of
gender data, including chromosomes 19-22, X and Y.
For a gene on GEP, we actually refer to the probeset

level data without averaging multiple probesets within the
same gene. A probeset in GEP data would be marked with
“+” or “-” if its chromosomal locations were covered by
the start and the end of a gain or a loss region from the
CGH data; Otherwise it was marked with “o” representing
not covered by a gain or loss region. The chromosomal
locations of probesets, genes and cytobands were obtained
by Affymetrix probesets alignments and NCBI Human
Genome database Build 36.1. The vCGH model is based
on HMMs that consider expression probesets as a
sequence of hidden states without considering the distance
between probesets. The vast majority of the expression
probesets were near the 3’ end of coding region and pro-
besets located at other regions were equally treated. The
LOD score of 2 was used as the cutoff to call a gain or loss
for a cytoband after the smoothing algorithm.

Association of gene expression and survival time with
recurrent abnormalities
In order to determine whether the additional recurrent
abnormalities identified by vCGH are associated with
altered gene expression or not, we performed a

permutation test as follows. 1) Consider all probesets
(genes) that are in the region of a recurrent abnormal-
ity. 2) For each probeset calculate a one-sided Stu-
dent ’s t-test p-value for the difference in gene
expression between the samples that exhibit the recur-
rent abnormality, and those that are wild type for that
abnormality, in the direction of increased gene expres-
sion being associated with increased copy number or
decreased gene expression being associated with
decreased copy number. 3) Generate a statistic equal
to the sum of the log (p-values) for the genes in the
region. 4) Randomly permute sample labels as gain,
loss or normal according to the abnormality and repeat
steps “1-3” 1000 times. 5) Calculate how many times
the unpermuted statistic is smaller than the same sta-
tistics calculated with the permuted data. For example,
the significance of a recurrent abnormality associated
with the gene expression in this region is 0.05 if 95%
of the time the sum of log (p-value) for the real data is
less than that of the permuted data.
In order to determine whether the additional recur-

rent abnormalities identified by vCGH were associated
with survival time or not, we performed survival analysis
on the patient groups defined by the recurrent abnorm-
ality. Overall survival (OS) distributions were estimated
using the Kaplan-Meier method and the patient groups
were compared with the log-rank test.
The vCGH source code and the GEP and CGH data

for DLBCL and MCL can be accessed at: http://vcgh.
sourceforge.net.

Results and discussion
Using cross-validation, vCGH was applied to 190
DLBCLs and 64 MCLs on which both GEP and CGH
data were available [17,18]. vCGH was first trained by
the paired GEP and CGH data on the same tumor sam-
ples in the training dataset, and then applied to the GEP
data of a new tumor sample in the testing dataset to
predict its CNAs. The predicted gains and losses were
compared with those identified by experimental CGH
on both on gene level and cytoband level.

Gene-level validation of vCGH
We first evaluated vCGH, and for comparison purpose
rGEP and sGEP as well, using sensitivity, specificity and
accuracy against experimental CGH, in predicting gains
and losses for all the DLBCL or MCL samples using
LOOCV. Tables 1 and 2 summarized the sensitivity,
specificity and accuracy for all chromosomes on DLBCL
and MCL datasets, respectively. Figures 3 and 4 showed
the performance on individual chromosomes for DLBCL
and MCL datasets, respectively.
On the DLBCL dataset, in Figure 3, each box repre-

sents one chromosome. Good predictions should be at
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the upper right corner, where both sensitivity and speci-
ficity are good; while poor predictions are the points at
the lower left corner. It is obvious from Figure 3 that
vCGH, both Viterbi (in red) and Posterior (in multiple
colors representing different posterior probability cut-
offs) methods, predict better than rGEP (in light green)
and sGEP (in dark green) by lying at the most upper
right corner. On most of the chromosomes, vCGH
achieved 70-80% sensitivity and 90%-95% specificity, for
both gain and loss prediction; while sensitivity was
much lower in rGEP (30%) and sGEP (40%-50%), and
specificity was also lower in rGEP (80%) and sGEP
(90%). We also observed that vCGH Viterbi and vCGH
Posterior had similar performance (Viterbi point lied
among a series of Posterior points), and that as
expected, in vCGH Posterior, specificity increases and
sensitivity decreases as the posterior probability cut-off
increases. The results on the MCL dataset were similar
as in DLBCL dataset (Figure 4). On average, vCGH
achieved 75% sensitivity and 90% specificity for gain,
and 60% sensitivity and 90% specificity for loss, while
sensitivity was 40% for gain and 30% for loss in rGEP,
and 40% for gain and 50% for loss in sGEP, and specifi-
city was 70% for gain and 80% for loss in rGEP, and
85% for gain and 90% for loss in sGEP. In Tables 1 and
2, performance of vCGH, rGEP and sGEP were sum-
marized. The bold-highlighted were the best predictions,
which all fell into the vCGH category except one where
sGEP is marginally better than vCGH. Tables S1 and S2

in Additional file 2 showed the detailed sensitivity, spe-
cificity and accuracy of vCGH on each chromosome.
Those results suggested that vCGH was able to cap-

ture the hidden genomic CNA information buried in
the GEP data, while rGEP and sGEP didn’t work well,
which directly map GEP status to CGH status without
any learning process. We noticed that vCGH did not
predict well on some chromosomes, such as gain on
chromosome 4 and loss on chromosome 11 for DLBCL
(Figure 3) and gain on chromosomes 1, 6, 9, 10 and 13
and loss on chromosomes 4, 5, 15 and 18 for MCL (Fig-
ure 4). This is due to infrequent aberrations and hence
insufficient training data for the gains or losses on those
chromosomes. For example, in 190 DLBCLs, the num-
ber of samples with chr4 gain is n = 7 and with chr11
loss is n = 1; in 64 MCLs, the number of samples with
gains on chr1 is (n = 1), chr6 (n = 3), chr9 (n = 1),
chr10 (n = 2) and chr13 (n = 1), and with losses on
chr4 (n = 2), chr5 (n = 1), chr15 (n = 1) and chr18 (n =
2).

Cytoband-level validation of vCGH
Cytobands are defined as the chromosomal areas distin-
guishable from other segments by appearing darker or
lighter by one or more banding techniques for karyotype
description. Our experimental CGH detected chromoso-
mal gains and losses on cytobands. To compare vCGH
with experimental CGH on the same resolution, we also
determined the gains and losses on cytobands by apply-
ing a smoothing algorithm in vCGH as described in
Method section.
Figures 5 and 6 showed the results of cytoband level

gains and losses on DLBCL and MCL, respectively. The
two vCGH decoding methods, Viterbi and Posterior,
were shown in panels A and B, respectively. In each
panel, loss frequencies were shown on left-sided bars
and gain frequencies on right-sided bars. We found in
Posterior decoding, as expected, the frequencies of gains
and losses decrease as posterior probability increases (p
= 0.5, 0.6, 0.7, 0.8 and 0.9) (panel B in Figures 5 and 6),
and the frequencies at different posterior probability
cut-offs are highly correlated, with Pearson’s correlation
coefficients around 0.99 (Tables 3 and 4). Comparing
the results from Viterbi (panel A in Figures 5 and 6)
and Posterior (panel B in Figures 5 and 6), a high con-
cordance was also observed with Pearson’s correlation
coefficients around 0.95 (Tables 3 and 4). In panel C
(Figures 5 and 6), the Viterbi method was used to repre-
sent vCGH to compare with the experimental CGH side
by side. Gains and losses were shown separately. CGH
results were above the X-axis in yellow and vCGH
results were below the X-axis in red. Apparently, the
majority of the recurrent gains and losses predicted by
vCGH are in good concordance with those identified by

Table 1 Sensitivity, specificity and accuracy of vCGH*,
rGEP and sGEP on DLBCL dataset

Sensitivity (%) Specificity (%) Accuracy (%)

rGEP 29.22 ± 2.34 79.36 ± 0.86 76.69 ± 1.65

Gain sGEP 38.50 ± 6.91 90.52 ± 1.86* 87.72 ± 2.30

vCGH 69.63 ± 15.76 89.91 ± 3.53 89.05 ± 3.64

rGEP 27.82 ± 2.30 82.62 ± 0.81 81.54 ± 1.70

Loss sGEP 47.43 ± 15.96 92.07 ± 1.69 90.90 ± 1.78

vCGH 67.27 ± 23.56 95.13 ± 3.23 94.73 ± 3.52

*Viterbi method was used to represent vCGH.

Table 2 Sensitivity, specificity and accuracy of vCGH*,
rGEP and sGEP on MCL dataset

Sensitivity (%) Specificity (%) Accuracy (%)

rGEP 38.45 ± 2.93 71.43 ± 0.58 69.46 ± 1.50

Gain sGEP 42.77 ± 10.42 86.33 ± 2.97 83.59 ± 3.48

vCGH 74.49 ± 17.77 88.56 ± 4.78 87.50 ± 5.59

rGEP 28.26 ± 3.70 80.94 ± 0.70 77.71 ± 3.47

Loss sGEP 50.66 ± 24.13 92.71 ± 2.00* 89.19 ± 3.63

vCGH 59.63 ± 17.22 90.63 ± 4.91 89.30 ± 5.69

*Viterbi method was used to represent vCGH.
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experimental CGH, such as gains of 1q, 2p16-p14, 3q27-
q29, 6p25-p21, 7, 11q, 12 and 18q21 and losses of 6q,
8p23-p21, 9p24-p21 and 17p13 on DLBCL. The Pear-
son’s correlation coefficients between vCGH and CGH
are around 0.8 for gains and losses (Tables 3 and 4).
As described in the model design in the Methods sec-

tion, with intra- and inter- Markov sub-chain transi-
tions, vCGH can identify alterative gain, loss or normal
DNA segments automatically. vCGH is basically a seg-
ment-level prediction tool, and genes within a segment
can be considered as the unit of a segment. Sensitivity,
specificity and accuracy of vCGH on gene level and on
cytoband level were compared in Tables S3 and S4
(Additional file 2) for DLBCL and MCL, respectively. As
expected, the gene-level and cytoband-level vCGH gave
very similar prediction sensitivity, specificity and
accuracy.

Additional recurrent gains and losses predicted by vCGH
In addition to the common recurrent gains and losses
between vCGH and CGH, vCGH also predicted some

recurrent gains or losses that were not observed in
CGH, such as gains of 1p (in 33 out of 190 samples), 2q
(39/190) and 6q (37/190) and losses of 1q (25/190), 6p
(44/190) and 8q (19/190) on the DLBCL dataset (Figure
5C). We checked those additional recurrent abnormal-
ities predicted by vCGH and the corresponding gene
expression within those regions in Figure 7. We
observed higher expression of genes for the gain region
and lower expression of genes for the loss region, as
compared to the normal group.
We further evaluated the significance of a recurrent

gain or loss region being associated with the altered
gene expression by a permutation test as described in
the method section. We performed 1000 permutations
for each region and found that in all of the 1000 permu-
tations, the test statistic for the real data was less than
the test statistics of the permuted data (p < 0.001, Figure
8A). We also examined the association of those regions
with clinical characteristics of the patients. We plotted
overall survival (OS) time of the DLBCL patients charac-
terized by those abnormalities, and found that three of
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Figure 3 Sensitivity and specificity of vCGH, rGEP and sGEP compared with CGH on 190 DLBCLs. (A) Gain. (B) Loss. Each subfigure
represents one chromosome. Sensitivity and specificity was shown on X and Y axis, respectively. Different prediction methods were shown in
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those regions are significantly correlated with the survi-
val time of the patient groups: 1q (p = 0.025), 6q (p =
0.04) and 8q (p = 0.009) (Figure 8B). Those associations
revealed that the additional recurrent abnormalities
identified by vCGH may be functionally important since
the genes in those regions have consistently elevated or
decreased level of expression and reflect clinical charac-
teristics of DLBCL patients.
Experimental CGH might report false negative

CNAs, for example, CGH kits have technical limita-
tions; the optimal cut-off values may vary among sam-
ples when calling a “gain” or “loss"; normal cells in
stromal or other reactive elements in the tumor micro-
enviroment may contribute to the signal ratio of tumor
versus normal. Other than that, one reason that vCGH
has identified additional recurrent abnormalities is
that, there are other biological mechanisms which
exert control of the expression of a group of syntenic
genes other than through chromosomal structural
changes. For example, epigenetic modifications, such
as DNA methylation and histone modifications, may

turn on and off genes in DNA independent of the
structural changes. It may be important to check the
predicted amplified or deleted regions of these tumor
samples for epigenetic alterations. Transcriptional
units can also be turned on or off as a group of spa-
tially contiguous genes which may resemble, but not
due to, chromosomal structural changes. As another
example, UniParental Disomy (UPD) occurs when a
cell has two copies of a chromosome, or part of a
chromosome, from one parent and no copies from the
other parent. UPD can result in over- or uder- expres-
sion of genes in the affected regions if these genes
have undergone genomic imprinting. Therefore, vCGH
may identify not only the gain and loss regions caused
by chromosomal structural changes, but also the
apparent ("gain”) or silenced ("loss”) regions by other
biological mechanisms. Those recurrent abnormalities
may also be important to cancer biology and the clini-
cal outcome of the patients. Additionally, with increas-
ing evidence of polymorphic genomic variation in
genome it is more important to critically look at

Chr 1

0.0 0.2 0.4 0.6
0.7

0.8

0.9

1.0

rGEP
sGEP
Veterbi
p=0.5
p=0.6
p=0.7
p=0.8
p=0.9

Chr 2

0.3 0.5 0.7 0.9
0.7

0.8

0.9

1.0
Chr 3

0.2 0.4 0.6
0.7

0.8

0.9
Chr 4

0.0 0.5 1.0
0.0

0.5

1.0

Chr 5

0.0 0.5 1.0
0.0

0.5

1.0
Chr 6

0.0 0.4 0.8
0.6

0.7

0.8

0.9

1.0
Chr 7

0.2 0.6 1.0
0.7

0.8

0.9

Chr 8

0.4 0.6 0.8

0.7

0.8

0.9

Chr 9

0.0 0.5 1.0
0.6

0.8

1.0

Chr 10

0.0 0.5 1.0
0.6

0.8

1.0
Chr 11

0.2 0.4 0.6 0.8
0.7

0.8

0.9

1.0
Chr 12

0.2 0.6 1.0
0.7

0.8

0.9

Chr 13

0.0 0.5 1.0
0.6

0.8

1.0

Chr 14

0.2 0.6 1.0
0.7

0.8

0.9

1.0

Chr 15

0.2 0.4 0.6
0.7

0.8

0.9

Chr 16

0.2 0.6 1.0
0.7

0.8

0.9

1.0

Chr 17

0.3 0.6 0.9
0.7

0.8

0.9

1.0
Chr 18

Sensitivity0.3 0.5 0.7

Sp
ec

ifi
ci

ty

0.7

0.8

0.9

1.0

Gain

(A) Gain (B) Loss
Chr 1

Sensitivity

0.2 0.4 0.6

0.8

0.9

Chr 2

0.2 0.4 0.6

0.8

0.9

1.0

Chr 3

0.2 0.4 0.6 0.8

0.8

0.9

1.0
Chr 4

0.0 0.2 0.4
0.7

0.8

0.9

1.0

Chr 5

0.0 0.5 1.0
0.8

0.9

1.0

Chr 6

0.2 0.4 0.6 0.8 1.0
0.7

0.8

0.9

1.0
Chr 7

0.2 0.6 1.0
0.7

0.8

0.9

1.0
Chr 8

0.2 0.4 0.6 0.8
0.7

0.8

0.9

1.0

Chr 9

0.2 0.4 0.6 0.8
0.8

0.9

1.0
Chr 10

0.2 0.6 1.0

0.8

0.9

1.0
Chr 11

0.2 0.4 0.6

0.8

0.9

Chr 12

0.2 0.6 1.0
0.80

0.85

0.90

0.95

1.00

Chr 13

0.2 0.6 1.0
0.7

0.8

0.9

1.0
Chr 14

0.2 0.4 0.6 0.8
0.8

0.9

1.0
Chr 15

0.0 0.5 1.0
0.8

0.9

1.0
Chr 16

0.2 0.6 1.0
0.8

0.9

1.0

Chr 17

0.2 0.6 1.0
0.8

0.9

1.0
Chr 18

0.0 0.5 1.0

Sp
ec

ifi
ci

ty

0.7

0.8

0.9

1.0 rGEP
sGEP
Veterbi
p=0.5
p=0.6
p=0.7
p=0.8
p=0.9

Loss

Figure 4 Sensitivity and specificity of vCGH, rGEP and sGEP compared with CGH on 64 MCLs. (A) Gain. (B) Loss. Each subfigure represents
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structural changes and its influence on gene expression
status.

vCGH prediction on an independent dataset of 176
DLBCLs
We applied vCGH which is trained by the paired GEP
and CGH data on the 190 DLBCLs, to an independent
dataset of 176 DLBCLs with the GEP data [42]. The
GEP data of the 176 DLBCLs were downloaded at
http://www.broadinstitute.org/cgi-bin/cancer/publica-
tions/pub_paper.cgi?mode=view&paper_id=102[42].
Since the CGH data was not available for the 176
DLBCLs, we compared the vCGH-predicted CNAs for
the 176 DLBCLs with the CGH-identified CNAs for the
190 DLBCLs because a specific tumor type would fea-
ture specific genetic abnormalities even in different
patient cohorts. Figure 9 showed the prediction results
on the 176 DLBCLs in comparison with the CGH data
on the 190 DLBCLs. Since the two patient cohorts are
completely independent, we observed some differences
in recurrent abnormalities between the two cohorts,
especially in losses. However we do observe overall simi-
larity between the two cohorts, such as gains of 1q,
2p14-p16, chr3, chr5, 6p, chr7 and chr9, and losses of
chr4, 6q, 13q and 17p. Those recurrent regions have

also been reported in another independent aCGH study
on 99 DLBCLs [43].
There are some limitations of vCGH due to utilization

of transcripts-based GEP data. For example, it may not
predict well for regions with few genes (such as “gene
desert”), or if the genes in a region are generally not
expressed at a sufficiently high level on GEP in even
normal status. vCGH is also limited by the design of the
GEP arrays. For example, on Affymetrix HG-U133 plus
2 microarrays, there are no probes designed on the p
arms of chromosomes 13, 14, 15, 21 and 22. Therefore,
vCGH cannot predict gains or losses on those chromo-
somal regions.

Conclusions
We proposed a novel computational approach, vCGH,
to predict genetic abnormalities from the GEP data in
tumors. In addition to the wealth of GEP data already
publicly available, vCGH also takes advantage of the
paired GEP and CGH data on the same tumor samples
in training to infer functionally relevant CNA regions.
CNA regions identified by CGH alone in principle
define only the chromosomal structural changes; how-
ever, the functional effects of CNAs can be reflected by
altered gene expression and might be more important to

Table 3 Correlation of gain and loss frequencies* on cytobands among CGH, vCGH Viterbi and vCGH Posterior on
DLBCL dataset

CGH vCGH Viterbi vCGH Posterior

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

CGH 1 0.860 0.804 0.811 0.821 0.830 0.843

vCGH Viterbi 0.777 1 0.975 0.974 0.974 0.971 0.964

vCGH Posterior p = 0.5 0.653 0.941 1 0.996 0.991 0.985 0.975

p = 0.6 0.671 0.945 0.994 1 0.996 0.99 0.98

p = 0.7 0.683 0.948 0.987 0.993 1 0.995 0.987

p = 0.8 0.696 0.951 0.980 0.988 0.993 1 0.992

p = 0.9 0.713 0.943 0.966 0.975 0.981 0.988 1

*Gain was shown in the bottom left triangles, and loss in the top right triangles.

Table 4 Correlation of gain and loss frequencies* on cytobands among CGH, vCGH Viterbi and vCGH Posterior on MCL
dataset

CGH vCGH Viterbi vCGH Posterior

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

CGH 1 0.766 0.734 0.745 0.744 0.752 0.756

vCGH Viterbi 0.828 1 0.970 0.978 0.978 0.978 0.973

vCGH Posterior p = 0.5 0.831 0.978 1 0.990 0.986 0.982 0.969

p = 0.6 0.828 0.980 0.996 1 0.996 0.991 0.978

p = 0.7 0.828 0.983 0.992 0.995 1 0.993 0.981

p = 0.8 0.827 0.985 0.988 0.992 0.996 1 0.990

p = 0.9 0.820 0.981 0.983 0.986 0.991 0.993 1

*Gain was shown in the bottom left triangles, and loss in the top right triangles.
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Figure 7 Additional recurrent gains and losses predicted by vCGH in 190 DLBCLs. The recurrent gains of 1p, 2q and 6q and losses of 1q, 6p
and 8q were shown. For each of those regions, DLBCL samples were split into gain, loss or normal groups according to the vCGH prediction. The
gains and losses were displayed on the left side of each panel, with each vertical line representing a tumor sample (gain in pink and loss in blue).
The terminals of each line represent the start and the end of a gain or loss. Some samples harbored both gains and losses in the region and were
displayed in the middle between the gain and loss groups (marked by *). The expression of the genes in the region was shown in heatmap on the
right side of each panel. The samples were ordered the same way in the heatmap as in the gains and losses on the left side. The number of
samples in each group was listed under the heatmap. The average gene expression in each group (gain, loss or normal) was also plotted.
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Figure 8 Association of additional recurrent abnormalities with gene expression and survival time on 190 DLBCLs. (A) Permutation tests
for the association of recurrent abnormalities with the gene expression. The recurrent gains of 1p, 2q and 6q and losses of 1q, 6p and 8q were
shown. For each abnormality, the red square showed the test statistic for the real data. The histogram showed the distribution of the test
statistic from 1000 permutations. X axis presents the value of test statistics, which is the sum log p-value between the samples that exhibit the
recurrent abnormality and those that are wild type for that abnormality. (B) Kaplan-Meier estimates of overall survival of 190 DLBCLs grouped by
the abnormalities. The log rank test was used for the p values among the patient groups characterized by the regions of 1q, 6q and 8q.
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the tumorigenesis. vCGH was constructed on HMMs to
capture two primary sources of uncertainty embedded
in genomic data: the significant but subtle correlations
between GEP and CGH, and the sequential transitions
of CNAs along a chromosome. We applied vCGH to
two large cohorts of lymphoma samples on which both
GEP and CGH experiments were performed, including
190 DLBCLs and 64 MCLs. Using cross-validation,
vCGH achieved 80% sensitivity, 90% specificity and 90%
accuracy in predicting gains and losses as compared to
the experimental CGH on the same tumor samples. In
addition to the recurrent gains and losses that are con-
cordant with those by the experimental CGH, vCGH
also identified a few recurrent abnormalities not shown
by CGH, such as gains of 6q and losses of 1q and 8q on
DLBCL, and those regions are significantly correlated
with the patients’ outcomes. As vCGH utilized both
genomic and transcriptomic data, it can identify not
only gains and losses by chromosomal structural
changes, but also abnormal genomic regions activated
or silenced by other mechanisms. We presented the
results of vCGH on lymphoma samples, but vCGH is a

general computational tool which can be applied to
other tumor types and may significantly enhance the
identification of functionally important abnormal geno-
mic regions in cancer research.
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