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Abstract

Background: The identification of genes that predict in vitro cellular chemosensitivity of cancer cells is of great
importance. Chemosensitivity related genes (CRGs) have been widely utilized to guide clinical and cancer
chemotherapy decisions. In addition, CRGs potentially share functional characteristics and network features in
protein interaction networks (PPIN).

Methods: In this study, we proposed a method to identify CRGs based on Gene Ontology (GO) and PPIN. Firstly,
we documented 150 pairs of drug-CCRG (curated chemosensitivity related gene) from 492 published papers.
Secondly, we characterized CCRGs from the perspective of GO and PPIN. Thirdly, we prioritized CRGs based on
CCRGs’ GO and network characteristics. Lastly, we evaluated the performance of the proposed method.

Results: We found that CCRG enriched GO terms were most often related to chemosensitivity and exhibited higher
similarity scores compared to randomly selected genes. Moreover, CCRGs played key roles in maintaining the
connectivity and controlling the information flow of PPINs. We then prioritized CRGs using CCRG enriched GO
terms and CCRG network characteristics in order to obtain a database of predicted drug-CRGs that included
53 CRGs, 32 of which have been reported to affect susceptibility to drugs. Our proposed method identifies a
greater number of drug-CCRGs, and drug-CCRGs are much more significantly enriched in predicted drug-CRGs,
compared to a method based on the correlation of gene expression and drug activity. The mean area under ROC
curve (AUC) for our method is 65.2%, whereas that for the traditional method is 55.2%.

Conclusions: Our method not only identifies CRGs with expression patterns strongly correlated with drug activity,
but also identifies CRGs in which expression is weakly correlated with drug activity. This study provides the
framework for the identification of signatures that predict in vitro cellular chemosensitivity and offers a valuable
database for pharmacogenomics research.
Background
Chemotherapy serves as a general defense against a large
number of malignancies. However, only a portion of
patients favorably respond to chemotherapy; drug effi-
cacy and adverse drug reactions vary widely among
patients [1-3]. Thus it is important to predict chemo-
therapy response prior to treatment and to select alter-
native treatment regimens for chemotherapy-resistant
patients. A number of potential biomarkers have been
identified in previous studies and utilized for patient
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reproduction in any medium, provided the or
specific chemotherapy selection [4]. Gene expression
profiles of patients pre-treatment have the potential cap-
ability to predict responses to chemotherapy; for ex-
ample, ERCC1 activation is critical in the generation of
cisplatin resistance [5]. Asparagine synthetase protein
expression measured by immunoassay is a predictor of
L-asparaginase activity in ovarian cancer cell lines [6].
Ovarian cancer cell lines that express low ASNS protein
levels are generally more sensitive to L-ASP treatment.
The expression level of p27 is also a potential candidate
predictor for patient selection for rapamycin analogs-
based therapy [7]. The National Cancer Institute has
used a panel of 60 diverse human cancer cell lines (NCI
60 cell line) (http://genome-www.stanford.edu/nci60/
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

http://genome-www.stanford.edu/nci60/index.shtml
mailto:lixia@hrbmu.edu.cn
http://creativecommons.org/licenses/by/2.0


Chen et al. BMC Medical Genomics 2012, 5:43 Page 2 of 12
http://www.biomedcentral.com/1755-8794/5/43
index.shtml) for drug-related research [8]. It was
reported that proteomic data solved pharmacologic issues
more directly than genomic data [9]. For NCI 60, protein
expression levels have been measured for 52 antibodies
using reverse-phase protein lysate microarrays [10]. The
limited number of proteins restricts identification of
chemosensitivity proteins.
Some researchers have devised methods to identify

chemosensitivity related genes (CRGs) based on the
correlation of gene expression data and drug activity
within the NCI 60 dataset [11-14]. Mariadason et al.
identified CRGs for 5-fluorouracil (5-FU) by calculating
the correlation coefficient of gene expression and 5-FU
activity. The 50 most highly correlated genes were
used to predict the response to 5-FU [15]. Szakacs
et al. coupled gene expression and drug activity with
bootstrap analysis to identify gene-drug pairs in which
the gene potentially predicts resistance to the drug
[16]. Lorenzi et al. reported that correlation coefficient
of some drug-gene was not high (r=−0.21). The gene
would not be regarded as CRG based on correlation
analysis. However, aspargine synthetase was able to
predict sensitivity of L-ASP [6]. However, Researchers
have developed additional computational methods
based on gene expression. Staunton et al. substituted
correlation with t-statistics and applied 10-fold cross-
validation to define classifiers for each of 232 com-
pounds [17]. Gao et al. identified CRGs by integrating
gene expression and transcription factor binding data
[18]. Bayesian networks have identified CRGs by inte-
grating different types of data such as gene expression
and ChIP-chip data [19]. Although these methods pro-
vide vital information regarding CRGs, they consider
individual genes in isolation rather than in the context
of their functional interactions. In fact, genes are not
functionally independent; they work in synergy to per-
form certain biological functions, such as biological
processes, molecular function, complexes or pathways
[20-22]. Moreover, it has been reported that chemo-
sensitivity does not appear to be determined by the ex-
pression of a single gene [23]. Prediction of CRGs
with gene sets is indeed a much more robust method
compared to single gene measurement [24]. Taken to-
gether, these findings indicate that it is warranted to
comprehensively explore biologically significant CRGs
by not only considering the correlation between drug
activity profiles and gene expression profiles, but by
investigating the functional interactions of genes; this
could potentially broaden the current understanding of
chemosensitivity by elucidation of the context of a
functional gene set.
Analyses of protein-protein interaction networks

(PPINs) have revealed that genes with high betweenness
centrality may be common predictive markers of
chemosensitivity [25]. Sensitivity to a variety of com-
pounds may be also influenced by certain aspects of
Gene Ontology (GO) functionality, such as cell death,
NADH dehydrogenase activity, ABC transporter, cell ad-
hesion, G-protein coupled receptor protein signalling
and macromolecule metabolism [16,24,26-29]. Previous
studies have identified disease genes, radioresistance
genes and drug target genes based on Gene Ontology
and protein-interaction networks [30-32].
In this study, we proposed a novel method to identify

CRGs by integrating information of Gene Ontology, pro-
tein interaction network, drug activity profile and gene
expression profile. We documented 150 drug-CCRG
pairs (curated chemosensitivity related gene) from
492 published papers. Most of the GO terms enriched
by CCRGs were related to chemosensitivity and these
terms were more similar to each other than random GO
terms. Moreover, network analysis indicated that CCRGs
exhibited a higher degree and betweenness centrality
than random genes. Thus, we constructed an initial
drug-candidate CRG network that included two types of
nodes: drug nodes, in which activity data were available,
and gene nodes in which expression data were available
in NCI 60 cell lines. Edges of the network were weighted
by Pearson’s correlation coefficient (PCC) between gene
expression and drug activity. We then pruned the net-
work using CCRGs’ enriched GO categories and the
CCRG network characteristics. Using this method we
obtained a database of predicted drug-CRGs.

Methods
An overview of the workflow of the proposed method is
shown in Figure 1. It includes four steps: 1) extensive lit-
erature survey and manually curated compendium of
drug-CCRG pairs. 2) characterization of CCRGs based
on Gene Ontology (GO) categories and filtering of can-
didate CRGs using these categories.3) characterization of
CCRG networks. CCRGs exhibited higher betweenness
centrality and degree compared to random genes. Based
on network features, we further filtered the candidate
CRGs after step 2. In Step 4 we further refined the drug-
candidate CRG pair using the Pearson’s correlation coef-
ficient between gene expression and drug activity. After
performing these four steps, we finally identified CRGs
for each drug; thus, researchers will be able to conduct
follow-up studies on specific drugs and genes of interest.
In the manuscript, drug-CCRG specifically refers to
“drug-curated chemosensitivity related gene”.

Curating drug-CCRG pairs
We searched the PubMed database with a list of key-
words, such as ‘drug/compound/chemical/small molecule’
and ‘sensitive/sensitivity/resistant/resistance/response’ in
the title/abstract, and using ‘National Cancer Institute’ and
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Figure 1 Outline of the proposed method. Firstly, we manually curated a compendium of curated chemosensitivity related genes (CCRGs)
from published papers. Then we selected genes on the microarray that had same enriched GO categories and network characteristics with the
CCRGs. These genes were considered as candidate CRGs. To get CRGs for each drug, we further filtered the initial drug-candidate CRG network
based on PCC of drug-CCRGs. Filter A is based on Gene Ontology. We characterized CCRG using GO enrichment analysis with Fisher Exact Test.
We considered three aspects of GO: biological process (BP), molecular function (MF), and cellular component (CC). p represents the enrichment
significance. If enriched p value is smaller than 0.01, CCRGs are significantly enriched in the GO term. Moreover, we investigated that whether
CCRGs exhibited functional consistency. We compared the functional similarity of CCRG enriched GO terms to randomly selected gene enriched
GO terms. We found that CCRG enriched GO terms exhibited higher similarity scores compared to randomly selected genes. Thus, we regarded
all genes in the enriched GO terms as candidate CRGs. Filter B is based on protein interaction networks. We analyzed several network features
such as degree and betweenness centrality in six PPINs. Degree and betweenness centrality were selected as network features to prioritize CRGs.
The green curve represents betweenness centrality of random genes, and the vertical green line is the betweenness centrality of CCRGs. The blue
curve represents degree of random genes, and the vertical blue line is the degree of CCRGs. Filter C is based on gene expression. The majority of
drug-CCRGs exhibit a low correlation between gene expression and drug activity. We ranked the absolute PCC of all drug-CCRG pairs in
ascending order and set the PCC threshold as 5th percentile of all PCCs.
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‘gene/transcript/protein’ in any field of the literature. The
drug-CCRG pairs were derived from experimental studies
of NCI 60 cell lines (RT-PCR, siRNA, crystallographic data,
etc.); of the 492 retrieved published papers, 150 pairs of
drug-CCRG were documented, including 64 drugs and 94
genes. Each entry in the database contained detailed infor-
mation on a drug-CCRG relationship, including the general
name of the drug, gene symbol of CCRG, the cell line where
the relationship was documented, literature ID in the NCBI
PubMed database, and a brief description of the drug-
CCRG relationship. For example, over-expression of
Macrophage inhibitory cytokine-1 (MIC-1) predicted sensi-
tivity of ribotoxic anisomycin. The annotated drug-CCRG
table is supplemented in Additional file 1.

Drug activity data and gene expression data
The National Cancer Institute's NCI 60 cell line panel
is the most extensively characterized set of cells. These
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60 human tumor cell lines are derived from patients
with leukemia, melanoma, lung, colon, central nervous
system, ovarian, renal, breast and prostate cancers. The
analysis is presented in terms of drug activity data and
microarray-based gene expression profiles of the NCI
60 cell lines.
The drug activity data we utilized included 4463 drugs

[33]. Drug activities were recorded across the 60 human
cancer cell lines using the logarithm of GI50 to base 10
(lgGI50). GI50 is the concentration required to inhibit
cell growth by 50% compared with untreated controls.
The activity profile of an agent consists of 60 such activ-
ity values, one for each cell line.
NCI 60 cell lines have been subjected to DNA and

RNA microarray analysis. We utilized gene expression
RNA profile data [12] (Affy-U133A, GCRMA-normal-
ized), downloaded from the CellMiner database [34]; it
comprises expression patterns of 22283 probes in NCI
60 cell lines.
Table 1 Illustration of Fisher Exact test

User Genes Genome

In GO term a b

Not In GO term c d
Correlation of drug activity and gene expression
Among the original 4463 drugs, 19 drugs were discarded
because their activity data were missing in more than
80% of the NCI 60 cell lines. Thus the total number of
drugs we analyzed in this study was 4444. D represents
drug activity profile of the NCI 60 cell lines, each row
represents a drug and each column represents a cell line,
each element aij represents the drug activity (GI50) of
drug dj in cell line Cj, i= 1,2,. . .,4444, j= 1,2,. . .,59. G
represents the gene expression profiles of the NCI 60
cell lines, each row represents a gene and each column
represents a cell line, each element eij represents the ex-
pression level of gene gi in cell line Cj, i= 1,2,. . .,12633.
The total number of genes we analyzed in the manu-
script was 12633.
In filter C based on gene expression, we characterized

drug-CCRG using Pearson’s correlation coefficient
(PCC).

PCCX;Y ¼ cov X;Yð Þ
δXδY

¼ E X � μXð Þ Y � μYð Þð Þ
δXδY

where E is expectation, cov is covariance, and X, Y repre-
sent a drug and a gene, respectively. δX

2 = E(X2)− E2(X),
δY
2 = E(Y2)− E2(Y).
For drug-CCRG pair d2-g1, we calculated the PCC be-

tween drug activity of d2 and gene expression of g1 in
the NCI 60 cell line. Similarly, we calculated PCC of
other drug-CCRG pair. We ranked the absolute PCC of
all N drug-CCRG pairs in ascending order and set the
PCC threshold as the 5th percentile of N PCCs. Thus,
95% of drug-CCRGs were detected using this threshold.
Constructing the initial drug- candidate CRG network
The initial drug-candidate CRG network includes two
types of nodes: drug nodes, all the drugs with available
activity data, and gene nodes with available expression
data in NCI 60 cell lines. The edges of the network are
weighted by Pearson’s correlation coefficient (PCC) be-
tween gene expression and drug activity. For some
drugs, their activity data are unavailable and represented
by NaN. We calculated PCC in the cell lines whose ac-
tivity data are non-NaN.

GO enrichment using fisher exact test
Fisher Exact test was adopted to measure the gene en-
richment in annotation terms [35]. See details in Table 1.

P ¼
aþ b

a

� �
cþ d
c

� �

n
aþ c

� �

¼ aþ bð Þ! cþ dð Þ! aþ cð Þ! bþ dð Þ!
a!b!c!d!

where n= (a+ b+ c+ d), a was the total number of user
genes annotated in a GO term; b was the number of
genes annotated in this GO term; c was the number of
user genes not annotated in this GO term; d was the
number of background genes not annotated in this GO
term. If p ≤ 0.01, we hypothesized that the user gene lists
were specifically associated (enriched) in this GO term.
We considered all three ontologies: biological process
(BP), molecular function (MF) and cellular component
(CC). We limited the enriched GO term to depth 5 of
GO according to DAVID [36,37].

Protein-protein interaction network
A number of publicly available human protein-protein
interaction databases have become an important re-
source for the investigation of biological networks. PPI
(protein-protein interaction) data in Human Protein
Reference Database (HPRD) [38] are experimentally
derived and manually extracted from the literature by
expert biologists who read, interpret and analyze the
published data. We downloaded protein interaction
data from HPRD on the website http://www.hprd.org/
download. The number of binary non-redundant human
PPIs is 36687 in HPRD. The number of genes annot-
ated with at least one interaction is 9408. We utilized
“MatlabBGL” toolbox (http://dgleich.github.com/matlab-

http://www.hprd.org/download
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Figure 2 The distribution of Pearson’s correlation coefficient
(PCC) of drug-CCRG pairs. The x-axis represents PCC, the y-axis
represents the frequency of a certain PCC. The value 80.6% indicates
that drug-CCRG pairs whose PCC range from −0.3 to 0.3 accounts
for 80.6% of all drug-CCRG pairs; 91.9% indicates that drug-CCRG
pairs whose PCC range from −0.5 to 0.5 accounts for 91.9% of all
drug-CCRG pairs.
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bgl/) and R package “igraph” to calculate network scores
[39].

Characterizing CCRG properties in PPIN
The degree of a gene is the number of its neighborhood
genes in PPI network. One gene with high degree,
termed a hub gene, plays a key role in maintaining the
interactions between this gene and its neighborhood
genes.
Betweenness centrality of one gene g is calculated as

following: Bi ¼
X
s 6¼i 6¼t

δst ið Þ
dst

;

Where nodes s and t are nodes in the network differ-
ent from node i in PPI network, dst denotes the number
of shortest paths from s to t, δst(i) is the number of
shortest path from s to t that i lies on. For two genes s
and t, the ratio is the number of shortest path that g lies
on relative to all the possible shortest paths between
genes s and t. The sum of the ratio of all gene pairs is
betweenness centrality of gene g. If one gene exhibits
high betweenness centrality, it is likely to play a vital role
in gene communication and is termed a bottleneck gene.

Q statistics to integrate ranks from multiple data
resources
The receiver operating characteristic (ROC) curve
was used to assess the performance of the two
methods: the proposed method that integrates gene
expression and functional interaction, and the other
method based on gene expression. We ranked all
CRGs in both methods and determined whether
CCRGs ranked at the top of the list. Each gene
was ranked in the order of degree and betweenness
centrality, respectively. Next, we utilized Q statistic
to integrate the two ranks into a final rank. The
details are described as follows: Q r1; r2; . . . ; rNð Þ ¼
N !VN ;V0 ¼ 1;Vk ¼

Xk

i¼1
� 1

i�1
Vk�i
i! riN�kþ1, where ri is

the rank ratio for data source i, N is the number
of data sources used, and r0= 0. In the proposed
method, N= 2.

Results
Correlation-based analysis of the drug-CCRG pairs
Previous studies identifying CRGs have been generally
based on correlation of gene expression and drug activ-
ity. A gene with expression highly correlated to drug ac-
tivity is regarded as a candidate CRG for the drug. Thus,
we initially investigated whether CCRGs were highly cor-
related with their interactive drugs. Of the 150 pairs of
drug-CCRG, 62 pairs were available for correlation ana-
lysis. We evaluated the PCC between drug activity and
gene expression for drug with drug activity and genes
with expression available in the NCI 60 cell lines. The
150 drug-CCRG pairs included 64 drugs and 94 genes.
A total of 47 of 94 genes were detected for their expres-
sion in NCI 60 cell lines and 31 of 64 drugs were
detected for their activity in NCI 60 cell lines; these
31 drugs and 47 genes comprised 62 drug-CCRG pairs
of the original 150 drug-CCRG pairs. We then per-
formed correlation-based analysis on these 62 drug-
CCRG pairs. In Figure 2, drug-CCRG pairs whose PCC
range from −0.3 to 0.3 accounts for 80.6% of all drug-
CCRG pairs while drug-CCRG pairs whose PCC range
from −0.5 to 0.5 accounts for 91.9% of all drug-CCRG
pairs. Thus when we identify the drug-candidate CRGs
with high PCC (PCC0.3% = 0.39, PCC0.5% = 0.51, both
PCC thresholds are set in concordance with previous
studies [40,41]), the PCCs of the majority of drug-CCRG
pairs fall below the cut off threshold.
Although the PCCs of drug-CCRG pairs are not high,

they may be significantly larger than random genes.
Thus, for each of the 62 drug-CCRG pairs we deter-
mined whether the PCC was significantly larger or smal-
ler than random PCC. We found that PCC of certain
drug-CCRG pairs was significantly smaller than random
pairs, whereas PCC of certain drug-CCRG pairs was sig-
nificantly larger. There were also some pairs with PCC
similar to random drug-gene pairs. The comparisons of
drug-CCRG PCC with random PCC are shown in
Additional file 2 for each of the 62 drug-CCRG pairs.

http://dgleich.github.com/matlab-bgl/
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We calculated how many pairs of drug-CCRG exhibited
significant larger or smaller PCC than random PCC. The
statistical method we used was zi= |xi− μ|/δ, where xi is
the PCC of drug-CCRG pair i, and μ and δ are the mean
and standard deviation of all the PCC for the drug in
Figure 3 Correlation-based analysis of the drug-CCRG pairs. (A) For ea
with that of random drug-gene pairs. The numbers of drug-CCRG pairs, wh
the blue bar. We set zthreshold to 0.8 in concordance with previous reports (
we conducted further analysis (Figure 3B, Figure 3C, and Figure 3D). (B, C,
shows the PCC of drug-gene pair, the y-axis shows the probability density
while the blue curves shows the distribution of PCC of random drug-gene
drug-gene pairs. 21/62 indicates that 21 of 62 drug-CCRG pairs exhibit PCC
between doxorubicin and ABCB1. It was reported that ABCB1 overexpressio
larger than that of random drug-gene pairs. 14/62 indicates that 14 of 62 d
was reported PRKCB can predict chemosensitivity of NSC169517. (D) PCC o
indicates that 27 of 62 drug-CCRG pairs do not exhibit PCCs significantly di
predict chemosensitivity of paclitaxel (taxol).
this drug-CCRG pair. Figure 3A shows the number of
identified drug-CCRG pairs under different thresholds.
If zi≥ zthreshold, the PCC of drug-CCRG pair i is signifi-
cantly different from random PCC. The numbers of
drug-CCRG pairs, which were identified under the
ch of the 62 drug-CCRG pairs, we compared the PCC of drug-CCRG
ich were identified under the corresponding zthreshold, were listed over
Proc Natl Acad Sci U S A 2001, 98:10787–10792). Under this threshold,
D) Three types of PCC distribution compared to random PCC. The x-axis
value of PCC. The red line represents the PCC of a drug-CCRG pair,
pairs. (B) PCC of drug-CCRG is significantly smaller than PCC of random
s significantly smaller than random PCCs. We offered an example
n predicts doxorubicin resistance. (C) PCC of drug-CCRG is significantly
rug-CCRG pairs exhibit PCCs significantly largerr than random PCCs. It
f drug-CCRG is similar with that of random drug-gene pairs. 27/62
fferent from random PCCs. It was reported that GRIK1 was able to



Table 2 Degree of CCRG compared with random genes

mean of
CCRG

mean of random
genes

fold* p value#

BIND 9.24444 3.65349 2.53031 0.002

IntAct 22.01515 7.31961 3.0077 <0.001

MINT 9.77358 5.26234 1.85727 0.021

HPRD 26.10526 7.71614 3.3832 <0.001

BioGRID 24.86486 7.03614 3.53388 <0.001

OPHID 43.71429 12.2352 3.57283 <0.001

*fold is the result of mean degree of CCRG divided by that of random genes.
#1000 random gene sets was selected from network, each randomization
kept the number of selected genes same as that of real genes. Then for CCRG,
p value was calculated over 1000 randomization.
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corresponding zthreshold, were listed over the blue bar. As
the stricter zthreshold was, fewer drug-CCRG pairs were
identified. For example, when using 1 as the zthreshold,
only 32 of 62 drug-CCRGs were identified, whereas
when using 2 as the zthreshold, only 15 of 62 were identi-
fied, and when using 3 as the zthreshold only 6 of 62 were
identified. As shown in Figure 3A, we found it was
not sufficient to identify drug-CCRG pairs using PCC
based on random analysis. We set the threshold to 0.8 in
concordance with the previous reports [17]. Among the
62 drug-CCRG pairs, 21 pairs exhibit smaller PCC than
random drug-gene pairs (Figure 3B), 14 pairs exhibit lar-
ger PCC than random drug-gene pairs (Figure 3C) and 27
pairs exhibit random PCC (Figure 3D).
Figure 2 and Figure 3 show that the majority of drug-

CCRGs exhibit a low correlation between gene expression
and drug activity. Moreover, 27/62 (44%) of drug-CCRG
correlations tend to be random by comparing zi with
zthreshold. Thus we investigated to integrate additional
functional information to predict drug-CRGs.

GO enrichment analysis of CCRGs
CCRGs are significantly enriched in 204 terms (p < 0.01)
according to Fisher’s exact test. For a complete list of
enriched GO terms, see Additional file 3. The majority
of enriched GO terms are related to chemosensitivity.
For example, the GO terms “basolateral plasma mem-
brane” are related to chemosensitivity linked by ABCB5
[42]. First-pass elimination of CRC 220 is due to an ac-
tive carrier-mediated transport process in the “basolat-
eral plasma membrane” [43]. Lesions in oncogenes and
tumour suppressor genes involved in “the regulation of
programmed cell death” appear to be important in the
evolution of drug resistance [44]. Proteins involved in
“regulation of apoptosis” are associated with cisplatin
chemosensitivity in germ cell tumors [45]. Genes
involved in “regulation of cell cycle”, such as p53 protein
family, contribute to chemotherapeutic drug response in
gastrointestinal tumors [46]. “Xenobiotic metabolism”
involves modifying the chemical structure of xenobiotics,
such as drugs and poisons. Reactions in these pathways
contribute to chemosensitivity in cancer. Furthermore,
CCRG enriched GO terms exhibit significantly greater
similarity compared to randomly selected genes. This
indicates that CCRG enriched GO terms are more simi-
lar to each other when compared with GO terms where
random genes enriched (Additional file 4).

The characteristics of CCRGs in PPIN
Degree of a gene in PPIN is characterized by the number
of its adjacent genes. It depicts the importance of the
gene in maintaining the connectivity of PPIN, and a
gene with high degree is called a hub. The average de-
gree of CCRGs was significantly smaller compared to
random genes in corresponding networks (Table 2). This
indicates that CCRGs tended to connect with many
other genes compared to random genes, suggesting that
CCRGs play key roles in maintaining the connectivity of
PPIN.
Betweenness centrality is a global centrality index that

quantifies the extent that a gene controls the informa-
tion flow between all pairs of genes in the network.
Table 3 shows that in all of the networks the mean
betweenness centrality of CCRGs is significantly larger
compared to random genes in the network. Genes with
high betweenness centrality controls most of the infor-
mation flow in the network, and represent the critical
points of the network. These genes are called the “bot-
tlenecks” of the network. This indicates that CCRGs play
key roles in controlling information flow of PPIN.

Performance of the proposed method to identify
drug-CRGs
Here, we used hypergeometric tests to evaluate the
extent to which predicted drug-CRGs appeared in the
drug-CCRGs. The significance of the over-representation
was calculated by the hypergeometric test:

P ¼
X
x≥n

Cx
NC

m�x
M�N

Cm
M

where M was the total number of all drug-candidate
CRGs; N was the number of predicted drug-CRGs using
our method; m was the number of drug-CCRGs; n was
the number of drug-CCRGs correctly predicted by our
method. In order to ensure the comparability of our
method and the method based on gene expression, we
keep number of predicted drug-CRG pairs obtained by
both methods equal with each other. Using different
thresholds for betweenness centrality, degree and PCC,
we obtained different numbers of drug-gene pairs. In
order to identify the greatest number of drug-CCRG
pairs, we set the PCC threshold to the fifth percentile



Table 3 Betweenness centrality of CCRG compared with
random genes

mean of CCRG mean of random
gene

fold** p value#

BIND 98654.40138 23213.11683 4.24994 <0.001

IntAct 149690.9051 36049.94851 4.15232 0.008

MINT 93562.07001 27842.49937 3.36058 0.015

HPRD 214315.4538 40236.19003 5.32644 <0.001

BioGRID 281377.0414 51171.666 5.49869 0.01

OPHID 252315.597 39821.59949 6.33615 <0.001
**fold is the result of mean betweenness centrality of CCRG divided by that of
random genes.
#1000 random gene sets was selection from network, each randomization
kept the number of selected genes same as that of real genes. Then for CCRG,
p value was calculated over 1000 randomization.

Chen et al. BMC Medical Genomics 2012, 5:43 Page 8 of 12
http://www.biomedcentral.com/1755-8794/5/43
(5%) of PCC for all drug-CCRG pairs. We compared
the performance of both methods under 20 sets of
thresholds for betweenness centrality and degree; the
results are shown in Table 4. The proposed method
identified a greater number of drug-CCRGs under all
of the thresholds. Moreover, drug-CCRGs were much
Table 4 Performance of our method to predict drug-CRGs und

Threshold of
degree*

Threshold of
betweenness
centrality

The proposed m

Number of
identified
CCRGs

e

0.01 0.01 6

0.02 0.02 8

0.03 0.03 10

0.04 0.04 11

0.05 0.05 11

0.06 0.06 11

0.07 0.07 13

0.08 0.08 13

0.09 0.09 13

0.1 0.1 13

0.11 0.11 13

0.12 0.12 14

0.13 0.13 14

0.14 0.14 14

0.15 0.15 14

0.16 0.16 14

0.17 0.17 14

0.18 0.18 14

0.19 0.19 14

0.2 0.2 15
*Degree threshold is set to one percentile (0.01) of degree for all the genes in HPRD
degree for all the genes in HPRD. Betweenness centrality threshold is set in the sam
#In order to ensure the comparability of our method and the method based on cor
CRGs obtained by both methods equal with each other.
more significantly enriched in the drug-CRGs predicted
by our method.
We next evaluated the performance of the proposed

method by ROC to determine whether CCRGs were dis-
tinguished from other genes. For the proposed method,
we ranked all of the genes in predicted drug-CRGs using
the Q statistic (See details in Methods) in order to inte-
grate various separate data sources. We integrated ranks
of degree and betweenness centrality to determine
whether CCRGs ranked at the top of the list. According
to Q statistics and whether genes were CCRGs, we plot-
ted the ROC curves. For traditional correlation method,
we ranked all drug-CRG pairs using absolute PCC of
gene expression and drug activity. According to PCC
and whether genes were CCRGs, we also plotted the
ROC curves.
Our findings indicated that our approach was almost

exclusively superior to the traditional method based on
gene expression. The mean area under ROC curve
(AUC) for our method is 65.2%, whereas that for the
traditional method AUC is 55.2%. In Figure 4, AUC was
0.5446 for the correlation coefficient method based on
er different thresholds

ethod Method based on gene expression

nrichement
significance

Number of
identified
CCRGs#

enrichement
significance

1.20E-08 5 5.34E-06

0.00 6 1.05E-05

0.00 7 5.76E-06

0.00 7 2.87E-05

0.00 7 1.20E-04

0.00 8 4.56E-05

0.00 8 1.17E-04

0.00 8 2.61E-04

7.46E-08 8 5.47E-04

2.01E-08 8 8.87E-04

1.08E-08 9 3.05E-04

6.10E-08 9 5.71E-04

0.00 11 5.07E-05

3.60E-07 11 7.91E-05

7.63E-07 11 1.30E-04

1.79E-06 11 2.40E-04

2.80E-06 11 3.26E-04

5.26E-06 11 5.14E-04

7.77E-06 11 6.89E-04

3.25E-06 11 1.13E-03

. And 0.02 represents that we set the degree threshold as two percentile of
e way as degree threshold.
relation of gene expression and drug activity, we kept the number of drug-



Figure 4 The ROC curve was created by plotting the sensitivity
against specificity. Sensitivity is the fraction of number of true
positive assessment versus that of all positive assessment
(Sensitivity = TP/ (TP + FN)). Specificity is the fraction of number of
true negative assessment versus that of all negative assessment
(Specificity = TN/ (TN+ FP)). The red line “corrOnly” represents the
traditional method to identify CRGs only based on the correlation
between gene expression and drug activity. The blue line
“combined filter” represents the proposed method to identify CRGs
by integrating information from CCRG enriched GO terms and
network features of PPIN. The ROC curve was used to evaluate the
performance of both methods. For the proposed method, we rank
all the genes in HPRD protein interaction network by Q statistics
(see details in the Methods section of the manuscript). According to
Q statistics and whether the genes are CCRGs, we plotted the ROC
curves for our method. While for the traditional correlation method,
we ranked all drug-CRG pairs using absolute PCC. According to PCC
and whether genes were CCRGs, we also plotted the ROC curves.
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gene expression whereas the AUC achieved up to 0.7087
for our method. Detailed performance comparison
under all the 20 thresholds, see Additional file 5.
Identification of CRGs by integrating CCRGs’ properties in
GO and PPIN
Based on gene expression, GO categories, and network
characteristics, we identified CRGs for drugs. Combined
filtering method is superior compared with the method
using only Pearson’s correlation coefficients based on
gene expression. We used this combined filtering
method to identify CRGs for all of the drugs, whose ac-
tivities were screened in NCI 60 cell lines. Consequently,
we obtained 53 genes that were not only associated with
chemosensitivity related GO categories but also played
key roles in maintaining connectivity and controlling the
information flow of PPIN. Among the 53 CRGs, 32 were
previously reported as chemosensitivity related genes.
The full gene list is in Additional file 6.
Our findings are supported by previous studies. Genes

with high correlation coefficients are identified as CRGs.
For example, EGFR is negatively correlated with activity
of Tamoxifen, and the Pearson’s correlation coefficient
(PCC) is – 0.39. This suggests that expression of EGFR
can predict the resistance to Tamoxifen, which is con-
sistent with a previous study in which EGFR product
resulted in decreased susceptibility to Tamoxifen [47].
At the same time, BRCA1 is positively correlated with
activity of Tamoxifen (PCC= 0.25); this indicates that
BRCA1 expression can predict sensitivity of Tamoxifen,
which is in concordance with a previous study in which
the overexpression of BRCA1 results in increased sus-
ceptibility to Tamoxifen[48]. We also identified candi-
date CRGs with low PCC. For example, although AKT1
is weakly correlated with sensitivity of Doxorubicin
(PCC= 0.13), it has been reported to result in increased
susceptibility to Doxorubicin [49]. EGFR product affects
the susceptibility to Fluorouracil (PCC=– 0.2) [50], RB1
affects the susceptibility to Fluorouracil (PCC=– 0.09)
[51], RELA product affects the susceptibility to Doxo-
rubicin (PCC=– 0.05) [52], STAT3 affects the suscepti-
bility to Fluorouracil (PCC=– 0.18) [53], and TP53
product affects the susceptibility to Fluorouracil (PCC=
0.04) [54]. These results indicate that these genes exhibit
the potential to predict chemosensitivity of drugs before
initiating therapy, which could potentially aid clinical
decisions and allow for more individualized treatment
strategies for patients.

Discussion
The high-resolution profiling at the mRNA level and
high-throughput drug sensitivity data of NCI 60 allow
for comprehensively mapping of mRNA profiles for mo-
lecular pharmacologic and drug discovery [55]. There
are previously reported high-throughput studies on CRG
identification for drugs; however, most of these studies
are based on gene expression. Some studies reported
genes with expression levels highly correlated with drug
activity as CRGs, chemosensitivity genes with low PCC
were excluded. Aside from correlation analysis, some
researchers have developed other computational meth-
ods based on gene expression. However, individual genes
were studied in isolation rather than in the context of
their functional interactions. In fact, genes are not func-
tionally independent; they work in synergy to perform
biological function.
In our proposed method, we utilized high-throughput

gene expression profiles to predict CRGs by integrating
drug-gene correlations, gene function annotation, and
network information. We systematically characterized
CCRGs in the context of functional genomic data; we
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then prioritized CRGs based on these CCRG characteris-
tics. Firstly, we conducted an extensive literature survey
and manually curated a compendium of CCRGs.
According to GO analysis on three ontologies, most of
the CCRG enriched GO terms were related to chemo-
sensitivity. Moreover, these GO terms were more similar
to each other compared to randomly selected genes.
CCRGs also play key roles in protein-protein interaction
network (PPIN). They control the information flow of
PPIN and maintain connectivity of PPIN. The initial
drug-candidate CRG network was pruned according to
these characteristics; consequently we obtained a data-
base of predicted drug-CRGs for all drugs whose activity
profiles were screened in NCI 60 cell lines. The results
demonstrated that our method can not only identify
CRGs whose expression is strongly correlated with drug
activity, but also can identify CRGs whose expression is
weakly correlated with drug activity. These results are
powerfully supported by previous studies. From the pre-
dicted drug-CRGs, the researchers can easily access
genes and drugs of interest, thus facilitating further
studies. Functional genomic information, such as GO
categories and protein interaction networks, aid the
identification of CRGs unable to be identified by meth-
ods based only on similarity between gene expressions
and drug activity.
The present analysis has the following limitations:

(a) the drug-CCRGs we curated are limited to NCI
60 data. (b) the data presented here give an incomplete
biological picture of the relationship between drug and
CRG. Further validation of drug-CRG relationships is
necessary prior to clinical application. (c) the conclu-
sions were extrapolated from in vitro to in vivo. Trans-
formed cell lines might further evolve in vitro and might
not reflect the tumor from which they were originally
isolated. (d) finally, the relationships established between
drug activities and gene expression levels are correlative,
not causal.
Conclusions
In summary, we provide an integrated method of identi-
fying CRGs that combines gene expression, drug activity
data and functional information for genes such as GO
categories and PPIN. We documented 150 pairs of drug-
CCRG from 492 published papers. CCRG enriched GO
terms were generally related to chemosensitivity. These
GO terms exhibited higher similarity compared to GO
terms enriched by randomly selected genes. Moreover,
CCRGs play key roles in maintaining connectivity and
controlling information flow of PPIN. Thus, we pruned
the initial drug-candidate CRG network based on CCRG
GO categories and network characteristics. As a result,
we obtained a database of predicted drug-CRGs. It
includes 53 CRGs, 32 of which have been previously
reported to be chemosensitivity related genes.
The CRGs identified will potentially allow for greater

treatment efficacy and fewer unnecessary side effects.
For patients predicted not to respond to certain agent,
alternative agents or combined agents could be consid-
ered. Candidate second-line anticancer drugs for com-
bination therapy may be selected based on the database
of predicted drug-CRGs. Moreover, the CRGs may serve
as candidate drug targets for the development of new
drugs. With additional validated drug-CCRG pairs, our
proposed method could potentially provide valuable
resources for pharmacogenomics research and contrib-
ute to the framework for individualized medicine.
Additional files

Additional file 1: Table S4. Detailed description of drug-CCRG pairs.

Additional file 2: Figure S1. The comparison of drug-CCRG PCC with
random PCC for each of the 62 drug-CCRG pairs. Each subfigure of this
figure shows the location of Pearson's correlation coefficient (PCC) of a
drug-CCRG pair in all the drug-gene pairs. The red line represents the
PCC of a drug-CCRG pair, while the blue curves shows the distribution of
PCC of all the drug-gene pairs. The x-axis shows the PCC of drug-gene
pair. The y-axis shows the probability density value of PCC.

Additional file 3: Table S1. A full list of CCRG enriched GO terms.

Additional file 4: Table S2. CCRG enriched GO terms have higher
similarity than that of random genes.

Additional file 5: Figure S2. Detailed performance comparison under
all the 20 thresholds. Figure A to Figure T shows the comparison result of
two methods to identify CCRGs under 20 sets of thresholds. A is the
result under the following threshold: degree_threshold: percentile 1
(0.01), betweenness centrality_threshold: percentile 1(0.01). B is the result
under the threshold: degree_threshold: percentile 2 (0.02), betweenness
centrality_threshold: percentile 2 (0.02). And the corollary, Figure T is the
result under the threshold: degree_threshold: percentile 20 (0.20),
betweenness centrality_threshold: percentile 20 (0.20). The text over each
figure is the area under curve (AUC). Take Figure A for example, 0.7087 vs
0.5446 represents that AUC of our method is 0.7087, and 0.5446 is AUC
of traditional method based on gene expression. The AUC is colored
according to curve color.

Additional file 6: Table S3. The full list of predicted chemosensitivity
related genes.
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