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Abstract

Background: Numerous microarray-based prognostic gene expression signatures of primary neoplasms have
been published but often with little concurrence between studies, thus limiting their clinical utility. We describe a
methodology using logistic regression, which circumvents limitations of conventional Kaplan Meier analysis. We
applied this approach to a thrice-analyzed and published squamous cell carcinoma (SQCC) of the lung data set,
with the objective of identifying gene expressions predictive of early death versus long survival in early-stage
disease. A similar analysis was applied to a data set of triple negative breast carcinoma cases, which present similar
clinical challenges.

Methods: Important to our approach is the selection of homogenous patient groups for comparison. In the lung
study, we selected two groups (including only stages I and II), equal in size, of earliest deaths and longest survivors.
Genes varying at least four-fold were tested by logistic regression for accuracy of prediction (area under a ROC plot).
The gene list was refined by applying two sliding-window analyses and by validations using a leave–one-out
approach and model building with validation subsets. In the breast study, a similar logistic regression analysis was
used after selecting appropriate cases for comparison.

Results: A total of 8594 variable genes were tested for accuracy in predicting earliest deaths versus longest
survivors in SQCC. After applying the two sliding window and the leave-one-out analyses, 24 prognostic genes were
identified; most of them were B-cell related. When the same data set of stage I and II cases was analyzed using a
conventional Kaplan Meier (KM) approach, we identified fewer immune-related genes among the most statistically
significant hits; when stage III cases were included, most of the prognostic genes were missed. Interestingly, logistic
regression analysis of the breast cancer data set identified many immune-related genes predictive of clinical
outcome.

Conclusions: Stratification of cases based on clinical data, careful selection of two groups for comparison, and the
application of logistic regression analysis substantially improved predictive accuracy in comparison to conventional
KM approaches. B cell-related genes dominated the list of prognostic genes in early stage SQCC of the lung and
triple negative breast cancer.
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Background
When commercial microarrays encompassing most of
the human genome transcripts became available, much
attention was focused upon gene expression patterns of
primary tumors as indicators of likely disease progres-
sion. The presumption was that evidence of dysregula-
tion of certain genes within the excised primary tumor
could be used to improve the prognostic discrimination
of clinical and pathologic staging alone [1,2], by indicat-
ing the likelihood [3-6] that dissemination of the tumor
had already occured [7,8]. Although this strategy has
yielded limited success with certain malignancies, the
hope that microarray analysis would provide prognostic
data complementary to clinical staging has largely
remained unfulfilled [9-16]. This difficulty becomes quite
evident when gene lists from similar studies are com-
pared and show little if any overlap. By way of example,
to date 13 analyses of large expression data sets of squa-
mous cell carcinoma of the lung (SQCC) cases have
been published [11,17-28]. However, the deduced gene
profiles have very few genes in common [19], even when
the same data set was analyzed independently by three
different groups [18,20,22]. Similarly, Roepman, et al. [19],
compiled prognostic genes from eight analyses of NSCLC
and found only five of 327 genes in common. Three of the
consensus genes were from two independent reports of
the same data set [29,30].
Although a number of factors, from tissue acquisition to

compilation of clinical data, conspire to complicate the
task of identifying prognostic gene expressions (reviewed
in [31,32]), we focus here upon two vital considerations in
the analysis of microarray data sets: optimal use of clinical
data and rigorous, robust mathematical analysis. In this
report, we describe the application of the well-established
statistical approach, logistic regression, to the analysis of
large gene expression data sets which include correspond-
ing clinical data, such as survival or therapeutic response.
Typically, an expression data set is analyzed by (1) identi-
fying individual gene expression variations which demon-
strate the largest excursions within the data set; (2)
grouping the cases into quantiles based on sorted expres-
sion values of these genes; (3) comparing survival between
quantiles, using Cox proportional hazard models to strat-
ify clinical data and Kaplan Meier (KM) plots [33]; (4) ap-
plying statistical tests to deduce the success of the
quantiles in predicting survival; and (5) compiling a pre-
dictive “signature” or “metagene” and, often, constructing
a mathematical formula in which expression values of the
signature genes are weighted to optimize its predictive
success.
Our approach differs substantively from KM analysis,

and consequently circumvents several limitations of the
methodology just described [34]. First, two classes of pa-
tient cases - equal in size - are compared (in this report,
“earliest deaths” and “longest survivors”) to assess the
accuracy of gene expression predictors; this strategy
avoids relying upon KM survival plots, which are often
based upon incomplete or heavily right-censored clinical
data [35]. Second, after isolating a subset of genes which
are highly variable across the entire data set, and using
the groups just described, logistic regression is employed
to identify those genes offering statistically significant
predictive value, as judged by the area under the curve
(AUC) of a receiver operating characteristic (ROC) plot
and statistical examination of the logistic regression
model [36,37]. This initial list of prognostic genes is fur-
ther refined by first enlarging the two groups and then
executing two sliding window analyses of the larger
groups of early deaths and longest survivors. The final
list of independently prognostic genes is validated by
assigning training and testing subsets using a leave-one-
out [38] or similar approach.
Our approach evolved as we sought to identify genes

prognostic of early death or long survival in patients
with early-stage SQCC, using a large published data set
and accompanying clinical information [18]. In this re-
port we describe our analytic process using logistic re-
gression; we ultimately identified 24 genes which have
excellent prognostic discrimination. Application of a
conventional KM approach to the same data, however,
succeeded in identifying only a minority of the 24 genes
found by logistic regression. Interestingly, immune cell-
related genes, especially those associated with the B cell
lineage, dominated the 24-gene list, in agreement with a
substantial body of other experimental evidence, as re-
cently reviewed by Whiteside [39]. As further proof of
the utility of the logistic regression method for identify-
ing prognostic genes, we extended the same computa-
tional methods to a triple negative breast carcinoma
data set. Treatment of this disease presents similar clin-
ical challenges to SQCC [40]. Remarkably, the analysis
revealed a major role for B-cell and also for other
immune-related genes in disease recurrence after tumor
resection.

Methods
All data analyses including statistical calculations, graphical
displays, and probe annotations were produced using R
programming tools (http://www.R-project.org) and Bio-
Conductor libraries (http://www.bioconductor.org). For the
lung study, a previously published data set [18] of gene ex-
pression measurements of tissue samples of non-small-cell
lung cancer on Affymetrix HGU133A microarrays was ob-
tained from the GEO (gene expression omnibus data set) at
NCBI (http://www.ncbi.nlm.nih.gov/gds). “The samples
were collected from patients from the University of
Michigan Hospital between October 1991 and July 2002
with patient consent and Institutional Review Board
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approval” [18]. Additional clinical information was obtained
from the original authors’ submission, the soft file in entry
GSE4573, and from supplementary data in the published
paper. Matching of clinical cases to microarray samples was
aided by using Unix scripts. The GDS expression data had
been log transformed and normalized across the data sets
for each Affymetrix probe. Density plots of each array re-
vealed that the distribution of intensities was similar across
the set and thus could readily be compared. The probe data
set for each gene was averaged when multiple probes were
present. In order to identify genes that were predictors of
survival, gene subsets in which the interquartile difference
was 0.5 logs or 1.0 logs, and in which > 0.25 of the log
values were > 6.6 were chosen.
For the breast study, a total of 2874 HGU133A Affy-

metrix CEL files was obtained from GEO data sets
GSE31519, GSE11121, GSE2034, GSE2990, GSE3494,
GSE5327, GSE6532, and GSE7390, and the 98 of those
that were triple negative cases were selected. These CEL
files were processed using the rma function of the Bio-
Conductor affy library, and probes for the same gene
were averaged. Since the files originated from multiple
data sets, the data for each array were normalized to
standard scores centered on zero using the scale func-
tion. These standard scores were used in the analysis.
(However, similar results were obtained with the original
scores.) The clinical data for 578 breast cancer cases
were provided by the GSE31519 data set. These data
were used to select a set of 63 cases that were suitable
for logistic regression analysis of the early recurrence
and long term, event-free survival groups. To select cases
clinically similar to those used in the SQCC analysis, only
patients with breast cancers classified as triple-negative,
which carries a particularly poor prognosis [40], and who
had not received adjuvant chemotherapy, were included.
The SQCC cases were first sorted based on given sur-

vival times, then the group of 20 earliest death cases was
compared with the group of 20 longest survivors. In
later analyses, groups of 20 from among the 40 longest
survivors were compared to early death cases 1 through
20; conversely, groups of 20 from the 40 earliest deaths
were compared to the longest 20 survivors. For each of
the 80 comparisons, a logistic model for each of the
8,594 most variable genes was produced, and the accur-
acy of each model in predicting survival class was evalu-
ated. Accuracy is the area under a ROC curve of 1 –
specificity on the x axis and sensitivity on the y axis,
where sensitivity is the proportion of true positive cases
that are predicted correctly (sensitivity = TP/TP + FN
where TP is the number of early death cases predicted
correctly and FN is the number of long term survival
cases predicted incorrectly), and specificity is the
proportion of long survival cases predicted correctly
(specificity = TN/TN + FP where TN is the number of
long term survival cases predicted correctly and FP is
the number of early death cases predicted incorrectly). It
should be noted that the area under a ROC curve can be
calculated by a simple, intuitive method, as described by
Hosmer and Lemeshow [41]. Using this method, the ra-
tios of each value in one class (early death group) with
every value in the other class (longest survivor group)
are calculated to determine how often the value in one
class is less than or greater than the value in the other
class. If, for example, 320 of the 400 ratios are greater
than 1, the accuracy of that gene in predicting the cor-
rect class based on its expression values is 320/400 = 0.8.
This ratio is precisely the area under the ROC.
The significance of each gene model was further evalu-

ated using a chi squared ANOVA test of the logistic
model slope coefficient, as described [41]. In the leave-
one-out validation test, early death cases 5 through 24
were used to refine the gene selection; in our clinical ex-
perience, it is unlikely that at least the first four early
postoperative deaths were related to SQCC progression.

Results and discussion
The work flow of analyses described in this section is
outlined in Figure 1.

Data acquisition and case selection
Initially, we set as the aim of our statistical analyses the
identification of individual gene expression changes
prognostic of early death versus long survival in patients
with stage I or II squamous cell carcinoma (SQCC) of the
lung, a subset of patients in whom treatment choices are
especially difficult [42]. We used a previously published
data set (GDS2373, see Methods) of 130 primary SQCC
samples from 129 patients, including 107 stage I and II
cases and 23 stage III cases. Gene expression values were
derived from tissue samples collected at the time of surgi-
cal resection and were analyzed using the Agilent U133A
microarray platform [18]. The accompanying clinical data
were obtained as described in Methods. The three pub-
lished reports [18,20,21] of this data set included the 23
stage III cases. However, our analysis was limited to data
from the 107 stage I and II cases, a selection consonant
with the principle of using the clinical data in optimal
fashion to achieve the objective of the study; limiting the
cases to stages I and II provided a relatively homogenous
patient sample in which the most prominent variable was
survival.
Application of the logistic regression method required

two classes; we defined the two classes as those patients
who died relatively soon after surgical resection (“earliest
deaths”) and the ones who survived for a much longer
time (“longest survivors”). The clinical data provided in
the GEO author entry GSE4573 includes “duration of
survival” calculated from the date of operation to the



Figure 1 Work flow of the logistic regression and ancillary analyses described in the Results and Discussion. The numerals in black
circles refer to the specific Figures related to that portion of the work flow.
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date of death or to the date of the last follow-up visit, if
the patient was not known to have died. In the latter cir-
cumstance, the “duration of survival” represents the
minimal survival time; actual survival for each of these
cases is perforce longer, perhaps much longer. The plot
in Figure 2 displays the fraction surviving as a function
Figure 2 The survival curve of stage I and II cases from the GDS2373
survival (see text) provided by the authors of the GEO data set. Also shown
and the longest 20 or 40 survivors.
of the stated duration of survival [18]. Plotting survival
by combined stage reinforces the homogeneity of the
stage I and II cases. Also indicated in Figure 2 is the ini-
tial selection of two 20-patient groups of early deaths or
long term survivors. Three criteria figured into the des-
ignation of the two groups: (1) a group size of 20 was
data set. The curve is based on clinical stage data and durations of
are the four groups used in our analyses, the earliest 20 or 40 deaths



Figure 3 A sorted plot of accuracies in predicting early death
or long survival. Using a logistic regression model of the stage I
and II cases, each of the 8594 genes which varied at least four-fold
across the entire GDS2373 data set was evaluated for accuracy in
survival prediction. The accuracy is derived from the area under the
ROC curve for each gene when comparing the earliest death group
of 20 cases and the longest survivor group of 20 cases, which are
shown in Figure 2.
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chosen as suitable for comparisons involving only a sin-
gle variable [41], namely survival; (2) equal sized groups
are important to avoid model bias which occurs when
one group is larger than the other [41]; and (3) all cases
in the early death group were known to have died before
two years and all of the longest survivors were alive at
six years, even though four subsequently died. Thus, the
compositions of the two groups of 20 cases were not af-
fected by right-censoring. Also shown in Figure 2 are two
larger groups of 40 cases each that were the basis for the
sliding window analyses, used below; although a number
of cases in the groups of 40 were right-censored, results
consistent with these cases falling within the assigned sur-
vival groups were found.
Once assigned to a group, each case was considered

comparable to all other cases in their group, without re-
gard to the precise duration of survival. Doing so, which
is possible because of the clinical homogeneity of the
patient population under analysis, overcomes a major
limitation of Kaplan Meier analysis, its dependency upon
accurate survival data [43]. In many studies, the survival
data are right-censored to varying degrees because of in-
frequent assessments and limited follow-ups. The logis-
tic regression approach is less affected by incomplete or
heavily right-censored survival data than KM analysis.
An additional difficulty with analyses dependent upon
durations of survival is that in the elderly population
typical of SQCC, patient deaths not infrequently result
from co-morbidities [44], such as infection, heart dis-
ease, stroke, emphysema and diabetes, rather than from
cancer. Duration of survival, as in the KM method, is
therefore an inadequate proxy for disease progression.
Comparing groups of early deaths and long survivors
minimizes errors introduced by limitations in the avail-
able survival data and by deaths not directly attributable
to cancer progression. Similarly, in our method, the two
groups were not defined by arbitrary time intervals, e.g.,
deaths within two years or survival greater than five
years [45]; instead an equal number of cases was selected
from either extreme of the survival spectrum.

Initial prognostic gene selection by logistic regression
Because the 12,704 gene expression values in data set
GDS2373 are listed by gene and array ID, mapping of
case ID to array ID (provided in file GSE4573) allowed
the expression values for each case to be retrieved. First,
in order to identify the most variable genes and reduce
the influence of less variable ones, we applied a filter to
the expression data to cull the gene list to the 8,594
genes which varied at least four-fold across the entire
data set. Then, each of the 8,594 genes was subjected to
logistic regression analysis to identify those genes which
most accurately differentiated the early death group
from the long survivor group. As a measure of accuracy
of a particular gene, the area under the receiver operat-
ing characteristic (ROC) curve was calculated, see
Methods. The curve in Figure 3 depicts all 8,594 genes
sorted by their accuracies in predicting survival class. An
accuracy value of 0.8 or greater is considered an excel-
lent discriminatory model [41]; 40 genes fell within that
range. The majority of the 40 genes appeared to be im-
mune cell-related.
Refinement of the prognostic gene list by sliding window
analysis
Our list of genes predictive of survival was improved by
two additional analyses. The first and simpler approach
was to increase the number of comparisons per gene by
creating 20 windows of early death cases by advancing
the early death window one case at a time while holding
the group of 20 longest survivors constant. The 45 genes
most often found to achieve an accuracy of >0.8 as the
early death window was advanced are shown in Figure 4.
It was quite apparent that the same genes are often
found regardless of the choice of the early death group,
and that immune system genes remained strongly repre-
sented. The entire list of 99 genes is given in Additional
file 1: Table S1. It should be noted that as the early death
window advanced, greater numbers of right-censored
cases were included. However, these cases also sup-
ported the same gene list.



Figure 4 Genes that predict early death or long survival with an accuracy of 0.8 or better. Sequential sets of 20 early death cases (1 – 20,
2 – 21,…21 – 40) were compared to a constant set of the 20 longest survivors (cases 88 – 107). The Y-axis denotes each sequential window; each
row of dots indicates the genes which were found to be predictive for that window. Shown on the X-axis are the 45 genes most frequently
identified of the 99 genes found to be predictive in one or more windows.

Figure 5 The revolving sliding window method for selection of 40 consecutive sets of 20 cases each. Shown here is the revolving sliding
window for early deaths (the same approach was used with the 40 longest survivals). The first window selected is from case 1 to case 20, then
from case 2 to 21, etc., until there are no longer 20 sequential cases available without going beyond the 40th case shown in Figure 2. At that
point, the first earliest death case is used to complete the window of 20 and so on, using sequential cases. The 40 revolving sliding windows of early
deaths or long survivors was compared to the opposing fixed group of 20 cases, also indicated in Figure 2. In total, 80 comparisons were made.
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A drawback of the sliding window analysis just de-
scribed is that cases clustered around the midpoint of the
sliding window range are overrepresented whereas those
at either end of the 40 case group were sampled less fre-
quently (once for cases 1 and 40, twice for cases 2 and 39,
et cetera). To circumvent uneven sampling, yet maintain
the order of survival as much as possible, a revolving slid-
ing window approach was applied, see Figure 5; in the col-
lection of 40 windows so compiled, each case is sampled
exactly 20 times. Each of the 40 early death windows so
obtained was compared with a single, constant window
of the 20 longest survivors. A list of genes that most
often achieved an accuracy of >0.8 as the window was
advanced was obtained. A barplot of the genes sorted by
score of at least 10 out of a possible 40 windows is
shown in Figure 6a. Then the process was reversed,
comparing 40 revolving sliding windows compiled from
the 40 longest survivor cases with a constant window of
the 20 earliest deaths. A barplot of the list of genes sorted
by score is given in Figure 6b. In both analyses, the con-
stant window did not include right-censored cases of any
significance, whereas the revolving sliding windows con-
tained varying admixtures of right-censored cases. Com-
bining the two revolving window analyses created a total
Figure 6 Genes predicting early death versus long survival with the r
represent the number of windows in which an accuracy (area under a ROC
most frequently exceeding the 0.8 threshold are shown in order of numbe
the total number of comparisons. (a) As shown in Figure 5, 40 sequential w
of 40 (Figure 2) and compared to a constant set of the 20 longest term su
achieved a score > 10 of 40 are shown. (b) Revolving sliding windows of 2
survivors were compared to a constant set of 20 early deaths (Figure 2). Ag
Summation of the results from panels A and B. Because a total of 80 comp
most accurate genes (CD79A and CD27) achieved scores approaching 50.
of 80 opportunities for a given gene to obtain a ROC ac-
curacy score > 0.8. A ranking of genes sorted by the num-
ber of times this score was achieved is depicted in
Figure 6c; shown are the 24 genes which scored accurate
hits in at least twenty of the 80 windows. Brief functional
descriptions of the 24 genes are provided in Additional
file 2: Table S2. By the revolving sliding window analysis,
the most accurate prognostic genes were CD27 and
CD79A which have scores approaching 50 out of the pos-
sible score of 80 (Figure 6c); however, every gene on the
list provides excellent accuracy. The entire consensus list
of 59 genes from this analysis is given in Additional file 3:
Table S3.
Just as was found in the initial analysis, the majority of

the 24 genes are immune system-related, especially
reflecting B cell activity (Additional file 2: Table S2). Be-
cause the original tissue samples analyzed for the
GDS2373 data set were limited to ones having a tumor
cell population greater than 70% (Supplementary Informa-
tion, [29]), it is unlikely that stromal cells surrounding the
tumor biased the expression data. A second possibility
which must be entertained is that the SQCC neoplastic
cells themselves might express genes ordinarily assumed
to be of immune cell origin, for example IgG [46,47]. We
evolving sliding window method. The scores shown on the Y-axis
plot) greater than 0.8 was achieved by logistic regression. The genes
rs of occurrences out of the maximum possible score of 80, which is
indows of 20 cases each were compiled from the early death group

rvivors; thus, the maximum possible score was 40. Only genes which
0 long term survival cases each among the group of 40 longest
ain, the 40 comparisons allowed a maximum score of 40. (c)
arisons were made, the maximum possible score was 80. The two
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favor a third hypothesis: namely, that lymphocytes, espe-
cially B cells, had infiltrated the tumors to varying degrees,
a well-documented phenomenon in solid tumors, as
reviewed by Fridman, et al. [48].
In order to gain additional insights into the use of logis-

tic regression models for predictive gene identification, a
plot of the expression values for the best prognostic gene,
CD79A, as a function of duration of survival, is shown in
Figure 7. The expression values for the two 20-patient
groups (Figure 2) are joined as short scatter plots. The
considerable variability of CD79A expression values sug-
gests that the data are not suitable for analysis by any
method which assumes a normally distributed variation.
One reason for choosing the logistic regression approach
is that normality of the data distribution is not required.
Despite the variability in expression of CD79A, more than
80% of the values in the early death group are less than
those in the longest survivor group. Also shown in Figure 7
is a moving linear regression line (LOWESS fit, locally
weighted scatterplot smoothing [49]), which indicates that
expression values increase with survival time. This obser-
vation adds further credence to the choice of CD79A as a
prognostic gene. Finally, the expression values for certain
cases, indicated by filled triangles, were in poor agreement
with the CD79A gene model; these outliers consistently
defied prediction [45] by most of the gene models, as illus-
trated below.

Validation of the 24 prognostic genes
In order to validate the prognostic genes identified by the
revolving sliding window analysis, the data set was divided
into model training and validation sets. A significant
handicap when using small data sets for statistical model-
ing is the problem of over-fitting, which occurs when a
Figure 7 Scatter plot of individual expression values of gene CD79A p
shown; the survival data, including right-censored cases, are as given in GS
circles) or right censored survival based on last clinical visit, shown as filled
groups of 20 cases (early deaths and long term survivors) which were used
Lowess fit to all data points. Cases that were often not correctly predicted
triangles). The durations of survival for these poorly predicted cases were a
model is validated using the same cases that were used to
produce the model [10]. There are several ways to avoid
this problem. One approach is to show that the originally
derived model is predictive for survival in a second, en-
tirely separate but comparable data set; the difficulties as-
sociated with finding and utilizing another suitable data
set, discussed by others [50], were also experienced by us.
A second approach is to divide the data into a model
training set and a model validation set. We chose a vari-
ation of the latter, the “leave-one-out” method. For this
analysis, constant windows of 20 early death cases (pa-
tients 5-24, cases 1 – 4 were censored, see Figure 8, le-
gend) and 20 long survival cases (88-107) were selected,
one of the 40 cases was left out, and the remaining 39
cases were used to predict the group in which the forti-
eth case resided; the process is repeated for each of the
40 cases.
The results of the leave-one-out analysis are shown in

Figure 8. First, we ascertained that the most accurate
genes correctly predicted 80 - 85% of early deaths and
long survivals; however, even the two least accurate
models (MXI1 and INPPL1) nonetheless predicted 65%
of the cases correctly. Second, ANOVA chi-square tests
were applied to each of the 24 logistic regression gene
models and the range of probabilities for each was deter-
mined. These varied from 10-4 - 10-3 for MXI1 to 10-8 -
10-6 for CD79A (Additional file 2: Table S2), indicating,
for example, an especially high level of confidence in the
logistic model slope coefficient [41] for the latter gene.
Models for the 17 genes in the upper portion of Figure 8
were likewise strongly supported by this analysis.
Finally, when the 24 prognostic genes were clustered

based on their case-by-case predictions as shown on the
left side of Figure 8, it was evident that five of the early
lotted against durations of survival. Only stage I and II cases are
E4573. Shown are data points that are based on time of death (filled
squares. The data points interconnected by lines are from the two
for the validation test shown in Figure 8. The smooth curve portrays a
by the leave-one-out validation test in Figure 8 are also indicated (filled
ll based on known time of death, except for the longest surviving case.



Figure 8 Leave-one-out validation test of the 24 genes which best predict survival class. Using the 20 early death and 20 long term
survival cases indicated by the scatter plots in Figure 7, one case was left out and the remaining 39 cases were used to produce a logistic
regression model which was then used to predict the left-out case; the process was continued sequentially for all 40 cases. Columns labeled “ed”
are early death cases and columns labeled “al” are long term survival cases. Cases predicted correctly are shown in grey, incorrectly in black. The
genes have been clustered based on similar class predictions.
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death cases and two of the longest survivor cases were
incorrectly predicted by most of the gene models. In a
similar context, Zhao, et al. [45] have discussed the diffi-
culty of predicting clinical outcomes from gene expression
data in patients with rapidly progressive disease. Some of
the uniformity of predictions – both accurate and errone-
ous - might be the consequence of disproportionate repre-
sentation of certain cell types among the tissue samples
[51] or might arise more directly from close functional re-
lationships among the genes, hence an increased likeli-
hood of coordinate gene expression. In support of the
latter possibility, the cases which failed prediction by the
CD79A model (indicated by closed circles in Figure 7)
were consistent outliers; the same cases were incorrectly
predicted by most gene models (Figure 8). Pearson correl-
ation coefficients of the expression values for CD79A ver-
sus the other 23 genes were greater than 0.7 for 16 and
greater than 0.8 for 10 genes, Additional file 4: Table S4.
The gene expressions which did not correlate as well with
CD79A are the lower six in Figure 8. Well-coordinated
genes cannot be considered independent predictors of
outcome. Nonetheless, the fact that so many immune-
related genes were identified by each of our independent
analyses supports their biological and functional relevance
to survival. Hence, our data suggest that the strongest
genetic signal for long-term patient survival in early-stage
squamous cell carcinoma of the lung is an expression pat-
tern reflective of increased number and/or activity of im-
mune cells within the primary tumor.
As a more critical test of validation of the survival models,

cases in the same early death and long survival groups (cases
5-24 and 88-107) were each divided into two groups of ten,
using a set of every other case in each of the 4 groups. For
example, test early cases 1,3,5,7,9,11,13,15,17,19 were used to
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predict the even numbered early cases, and this process
was then reversed. A similar grouping and comparison
was performed for the long survival cases - thus provid-
ing a total of four comparisons - and the accuracy of
these predictions was determined. For two of the best
predictive genes in the leave-one-out analysis, CD79A
and CD27, their average accuracies in the four-group
comparisons were 0.76 and 0.78, respectively, thus fur-
ther validating the prognostic value of these 2 genes.
One alternative to these approaches is to randomly

and repeatedly select groups of 20 patients from the 40-
case earliest death and longest survival groups in a boot-
strap or resampling type of analysis, and collect a list of
most predictive genes. The bootstrap method may be
more appropriate if patient survival is not as accurately
specified as in the GDS2373 data set or if there are other
clinical variables that may be a factor in choosing pre-
dictive genes. Additional resampling approaches have
been discussed by others [52,53].

Logistic regression versus Kaplan Meier analysis
The list of 24 prognostic genes identified by logistic re-
gression was also compared to a list of genes obtained
from the same data set using the more conventional ap-
proach of KM plots of expression quantiles. Initially, the
8594 most variable genes were tested as predictors of
survival for the 107 stage I and II cases using right-
censored survival for each case and the chi square statis-
tic as a test of equality between four quantiles. Fourteen
of the 24 genes found by the logistic regression method
were also present in the list of the 40 best scoring genes
(P < 10−3) by KM analysis (Additional file 5: Table S5)
and five (IGLJ3, IGKC, IGHD, GM2A, DTNB) were in
the top ten. The functions of the remaining genes found
by KM analysis did not appear to be related to the im-
mune system.
To more closely compare the two methods, a similar

KM analysis was also performed using the same 40 cases
that were used for the logistic regression analysis shown
in Figure 8. Nine of the top 24 genes found by the logis-
tic regression method (IGHM, GM2A, DTNB, INPPL1,
CD27, TNFRSF1, LAX1, IGKV4-1, IGHD) were in the
list of 24 best scoring genes (P < 10−4) by this modified
KM analysis, whereas the remaining 15 were not apparently
related to the immune system. Four of these genes were
the highest scoring ones (P < 10−5, genes GM2A, INPPL1,
CD27, and IGHD) by KM analysis. Thus, the KM method
used with all 107 stage 1 and 2 cases, or with a reduced set
of 40 early death and long term survival cases, also revealed
that a set of immune genes are strongly predictive for sur-
vival. Finding similar sets of immune-related genes by the
KM and logistic regression methods, which use different
computational approaches provides additional confirmation
that these genes are reliable predictors. This result also
extends the validation analysis of the logistic regression
models performed in Figure 8. The two methods contrast
in that the KM method predicts a survival curve based
on the quantile rank of a gene expression value, whereas
the logistic regression method predicts a survival class
(early death within two years or long survival greater
than six years) for a given gene expression value.
That the GDS2373 clinical data included a preponder-

ance of accurate survival times with long follow-ups un-
doubtedly contributed to the sensitivity of the KM
method in this instance. Ordinarily, patient survival data
is derived from a censoring analysis in which the survival
time of each patient must be estimated and often, many
of the cases have limited follow-ups spaced at longer in-
tervals. As the intervals between censoring assessments
increase and their numbers decline, the sensitivity of the
KM method decreases [54]. In contrast, the logistic re-
gression method described here only requires of the sur-
vival data that two approximately equal-sized groups can
be chosen from opposing extremes of the survival
spectrum; these groups can be identified with a relatively
small number of assessments of patient survival.
One theoretical limitation of the logistic regression

method, however, is that by choosing groups at the sur-
vival extremes, not all cases in the data set are included
in the analysis. In fact, 80 (75%) of the 107 available
stage I and II cases were used in our analysis. Moreover,
the intermediate survival cases, which are heavily right
censored and may thus degrade the analysis, are of
lesser significance for predicting survival class and need
not be used. The experimental objective articulated in
the original analysis of this data set by Raponi, et al.,
[18] was to identify gene profiles that influenced the
duration of survival, whereas our logistic regression
method was designed to identify genes predictive of a
survival class. The latter objective simplifies the experi-
mental design and allows less frequent assessments of
survival; thus for clinical studies it may be more prac-
tical and less expensive.
In all three of the previously reported studies [18,20,21]

of the GDS2373 data set, stage III cases were included in
the KM survival analyses. Of the 112 genes identified as
prognostic in the three studies, only four appear on our
24 gene list. Consequently, we repeated our KM analysis
with all 130 cases, including the 23 stage III cases. Only
two (INPPL1 and GM2A, which are perhaps not immune-
related, Additional file 2: Table S2) of the 24 genes found
by the logistic regression method were present among the
40 top scoring genes (4*10−5 > P < 1.4*10−3) found by KM
analysis. Many of the remaining 38 (data not shown) were
tumor-related genes commonly identified in such studies
(e.g., KRT7, VEGFA). An obvious but important conclusion
is that immune system genes are identifiable by conven-
tional KM analysis only when the expression data are
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limited to stage I and II cases. As a further comparison to
KM methodology, the logistic regression analysis was
repeated but this time including the stage III cases in
the data set. Doing so changed the compositions of the
20-case early death and long survival groups with the
consequence that immune system genes were less
prevalent in the most predictive gene set (data not
shown). These differences are not unexpected as the
more advanced stage III tumors almost certainly have
undergone additional genetic changes [2], which in turn
influence their expression profiles, likely overwhelming
the immune cell contributions to the gene expression
pool. Also, rapid proliferation and attendant necrosis of
cells within stage III primary tumors may alter lympho-
cyte to tumor cell ratios [55], again decreasing relative B
cell gene expressions.
Although our KM analysis did identify some immune-

related genes as prognostic, the logistic regression ap-
proach proved superior in that it identified a larger num-
ber of highly correlated B cell genes in the stage I and II
cases of the GDS2373 data set. Importantly, with logistic
regression, one can increase the number of comparisons
for each gene model by using sliding and revolving win-
dows of early death and long survival cases, providing
additional evidence in support of the prognostic gene list.
Our results with logistic regression (and, for that matter,
with KM analysis) also demonstrate the essentiality of
stratifying the available clinical data commensurate with
the study objective in order for the prognostic gene pro-
files obtained to be of potential clinical value [10]. These
results also underscore the importance of using clinical
data appropriately to achieve a more informative statistical
analysis [10]. As mentioned earlier, stage I and II cases
present difficult therapeutic decisions [42]. Somewhat less
than half of the patients will ultimately die of disease pro-
gression [56] and therefore should be treated aggressively;
however, if every patient is so treated, the majority will
suffer the adverse consequences of therapy unnecessarily.
Thus, for stages I and II accurate prognostic information
complementary to staging will improve therapeutic deci-
sion making [42,57].

Application of the logistic regression method for
predicting clinical outcome in a triple negative breast
carcinoma (TNB) data set
An immune cell signature has also been found to be pre-
dictive for clinical outcome in triple negative breast car-
cinoma [58]. In the published study, clustering of genes
with respect to time of first event (recurrence of the
tumor) against gene expression values revealed a group
of genes that included immune-related genes. The me-
dian gene value of this set was then used in Cox propor-
tional hazard models with clinical variables and KM
plots to reveal an influence of immune cell expression
on outcome. Because of the clinical similarities of TNB
and SQCC with respect to rate and timing of recurrence
in early stage cases, we also applied our logistic regres-
sion approach to a TNB subset of their data set.
For our logistic regression analysis we selected a group

of 63 triple negative breast cancer cases (see Additional
file 6: Table S6 for the list of CEL files) from the supple-
mentary data of the original report. The cases selected
had complete clinical data, and were early stage lesions
classified as T1, N0 malignancies (and tumor grades 1, 2
or 3). All patients included in the long term survival
group were event-free at the time of the last follow-up
visit. Of the 63 TNB cases, 31 had first events (recur-
rence of the tumor) within 18 months and 32 were
event-free ten years after tumor removal. From 63 triple
negative breast cancer cases, a group of 20 cases with
the earliest recurrence of the tumor and a second group
of 20 cases that had not experienced tumor recurrence
for the longest duration were selected. Each gene in the
normalized data set was then subjected to a logistic re-
gression analysis and the area under the ROC curve
(AUC) determined. Less variable genes were not filtered
out as was done for the SQCC data in order to capture
the full extent of involvement of the selected genes.
AUC values for a set of immune related genes within the
data set were then determined. A total of 203 immune-
related genes represented on the HGU133A microarray
were found using the search terms “immuno”, “lymph”,
“B-cell”, and “T-cell”, and by adding 20 of the 24 genes
found in the lung study. The list of genes and the AUC
values are given in Additional file 7: Table S7. Three of
the genes had AUC values > 0.8, 19 genes greater than
0.75, and 45 genes greater than 0.7. The two top-scoring
immune genes were BANK1 (AUC = 0.86) and BLNK
(AUC = 0.8), which encode a B-cell scaffold protein and
a B-cell linker, respectively. A significant difference of
the distribution of AUC values between all genes and
the sample of 203 immune related genes was also found
(P < 0.0016, by Kolmogorov-Smirnov test). There were
just three non-immune related genes with AUC values
greater than the most predictive immune gene (AUC >
0.86); this list is provided in Additional file 8: Table S8.
To obtain further evidence these results are independ-

ent of the cases chosen, a modified revolving window
approach was performed on the breast data similar to
that used in the analysis shown in Figure 6. A set of 30
consecutive windows of length 20 was generated in each
group of patients. Nine hundred comparisons were then
made and the distribution of AUC values obtained. A
density distribution of these values for one of the best
predictive genes, ILV1-44, original AUC = 0.78, is shown
in Figure 9. The plot reveals the variation in the data set
and also illustrates that the distribution of scores is signifi-
cantly greater for the ILV1-44 (immune) gene model than
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in the entire gene set (P < 2.2*10−16 by Kolmogorov-
Smirnov test). A similar test was applied to the genes with
the highest AUC values (AUC > 0.7) and the P values were
highly significant for all except gene BLNK. The values for
many of the additional immune genes set are highly corre-
lated (Pearson correlation coefficient > 0.65) with those of
IGLV1-44 and their AUC distributions are also expected
to be significantly above normal. These correlation values
are given in the supplementary data (Additional file 9:
Table S9). These results indicate that the logistic regres-
sion method can also detect an immune signature in the
triple negative breast carcinoma data set. Immune-related
genes, however, were not all found at the top of the list as
was found in the lung data set, although they do rank
highly in the overall distribution of AUC scores; only a
relatively small number of genes are better predictors of
recurrence outcome. The lung and breast diseases are dif-
ferent and one can reasonably expect that different genes
will influence clinical outcome. Moreover, the clinical end-
points in these two studies, survival and disease recur-
rence, are different. Remarkably, clinical outcome in the
early stages of both diseases is particularly influenced by B
cell gene expression, suggesting a biologic role for im-
mune B cells in both of these cancers.
Figure 9 Distribution of AUC values for gene ILV1-44 produced
by the revolving sliding window method compared to all
genes in the TNB data set. A set of 30 windows of length 20 were
produced by the revolving window method for the first 30 and last
30 cases in the breast cancer data set, representing earliest events
versus longest recurrence-free survival, respectively. Each of the 900
possible combinations were analysed to produce an accuracy score
(AUC). Shown is the distribution of scores for one of the most
predictive genes, ILV1-44, in comparison to the distribution curve for
all other genes. The plot is representative of the AUC analysis for the
other immune genes found to be predictive in the TNB study.
The role of B cells in early-stage SQCC of the lung and
triple negative breast cancer
Numerous reports have analyzed immune cell, especially
T cell, responses to malignancies (reviewed by Whiteside
[39] and Prado-Garcia, et al. [59]). Recently however, at-
tention has been drawn to B-cell gene expressions, as indi-
cative or suggestive of improved survival, in various solid
tumors [60], including NSCLC, as reviewed by Suzuki
et al., [61]; adenocarcinoma [61], small cell [62], and large
cell [63] carcinomas of the lung; breast cancer [64,65]; and
colorectal carcinoma [60]. Prognostic B cell gene expres-
sions in patients with solid tumors have also been docu-
mented in analyses of regional lymph nodes [66] and
peripheral blood mononuclear cells [67,68]. The role of
immune cell-related genes, especially those of B cell ori-
gin, as prognostic of SQCC survival, has likewise been
suggested previously. Roepman, et al., in a 72-gene classi-
fier derived by Cox proportional hazards models from a
172 NSCLC patient data set (of which 53% were SQCC
cases), identified a number of immune-related genes,
about 20% of their 72 gene list [19]. As in our analysis, the
patients in their study were limited to stages I and II and
did not receive adjuvant therapy.
Similarly, we have identified numerous immune-related

genes as prognostic in triple-negative breast cancer. Al-
though not a novel finding per se, the clarity of the obser-
vations suggests that as with SQCC of the lung, TNB
cancers should be scrutinized further to better define the
role of immune cells in preventing recurrence.
Genome sequencing of tumors has led to the realization

that mutations in a relatively small number of driver genes
promote tumor development by influencing only a few
key signaling pathways, which in turn affect cell survival,
cell fate or genome maintenance [2]. Nearly all solid tu-
mors in adults carry, in addition to driver mutations, ap-
preciable numbers of mutations which do not confer a
growth advantage; non-small-cell-lung-cancers are es-
pecially rich in these passenger mutations because of
exposure to carcinogens [2] before and during tumor
cell development. Many of the mutations, of driver and
passenger genes alike, can be presumed to influence the
gene expression profile of each lung cancer cell, adding
to the difficulty of finding common gene profiles; the
signal of cancer-related changes must be found against a
large, variable background of noise. This background may
explain the difficulty in obtained reproducible profiles of
genes affecting survival when tissues from different studies
are used.
The present study does not, in fact, report conserved

tumor cell profiles but rather expression patterns that sug-
gests the presence - among malignant cells of the primary
tumor - of immune cells constituting a highly conserved
defense system against neoplastic cells. The importance of
this defense system is underscored by our observation that
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immune cell, especially B cell, expressions are greater in
nearly all of the SQCC long survivors, compared to the
early deaths, of the stage I and II cases in this study.
Kawano, et al. [69] and Rena, et al. [70] have reported that
up to 25% of stage I NSCLC patients in their studies were
found to have isolated tumor cells or micrometastases
when regional lymph nodes (RLN) removed contempor-
aneously with tumor resection were carefully examined by
immunohistochemistry. However, survival rates were no
different in the patients with RLN micrometastases, sug-
gesting that host immune defense responses play a deter-
minant role in the early phase of the disease [66]. The
presence of this defense system has been reported previ-
ously but has probably more often escaped detection in
gene expression analyses, in large part because of inappro-
priate use of clinical data and the application of less satis-
factory analytical methods [10].
Based upon our application of the logistic regression

strategy to the GDS2373 data set, as well as the corrob-
orating observations cited above, we suggest that B cell
function within the primary tumor may be an important
prognostic indicator for stage I and II cases of SQCC.
This conclusion warrants further study, for example, by
analyzing comparable tumor samples for B cell gene ac-
tivity using immunohistochemical methods or RT-PCR,
in conjunction with accurate, non-censored survival
data. Given the apparent activity of B cells in early-stage
SQCC, NSCLC, and other solid tumors, one critical role
for these cells might be recognition of tumor-specific an-
tigens. Then, recruitment of T cells to tumor sites and/
or occult metastatic foci and the destruction of tumor
cells by humoral antibodies and lymphocytes could
interface to dictate survival. It has been suggested that
over-expressed genes, and specifically their protein and
carbohydrate products, by neoplastic cells could be the
source of such recognition [71]. Further analysis of ex-
pression data, supported by immunochemistry, may re-
sult in identification of additional candidate tumor-
specific antigens [65,72-74].

Conclusions
The many large gene expression data sets available in
the public domain afford invaluable opportunities for
analysing and understanding the effects of genetic and
epigenetic effects on cellular phenotypes dictating out-
comes in patients with malignancies. In this report we
describe a logistic regression methodology for data set
analysis which circumvents the principal shortcoming
of conventional Kaplan Meier approaches, its reliance
upon accurate survival data. Comparing classes of cases
allows inaccurate, incomplete survival data to be used
effectively. No less important is the careful stratification
of cases based on clinical data and the choice of classes
for comparison.
Our logistic regression analysis of a previously thrice-
analysed SQCC data set revealed a number of B cell
immune-related genes, all highly correlated in expres-
sion. This represents a novel finding in SQCC, although
similar gene lists have been reported for other solid tu-
mors. Indeed, we have also identified the predictive
value of B-cell gene expressions in TNB. We propose
that B cell activity within primary SQCC tumors is an
important indicator of prolonged survival and, as such,
merits further examination and experimentation. Under-
standing the role of B cells in determining outcomes in
patients with SQCC may lead to improvements in diag-
nosis and therapy of this aggressive carcinoma.
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