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Abstract

Background: Improvements in both performance and cost for next-generation sequencing (NGS) have spurred its
rapid adoption for clinical applications. We designed and optimized a pan-cancer target-enrichment panel for 51
well-established oncogenes and tumor suppressors, in conjunction with a bioinformatic pipeline informed by
in-process controls and pre- and post-analytical quality control measures.

Methods: The evaluation of this workflow consisted of sequencing mixtures of intact DNA to establish analytical
sensitivity and precision, utilization of heuristics to identify systematic artifacts, titration studies of intact and FFPE
samples for input optimization, and incorporation of orthogonal sequencing strategies to increase both positive
predictive value and variant detection. We also used 128 FFPE samples to assess clinical accuracy and incorporated
the previously described quantitative functional index (QFI) for sample qualification as part of detailing complete
system performance.

Results: We observed a concordance correlation coefficient of 0.99 between the observed versus expected percent
variant at 250 ng input across 4 independent sequencing runs. A subset of the systematic variants were confirmed to
be barely detectable on an independent sequencing platform (Wilcox signed-rank test p-value <10™'), and the
incorporation of orthogonal sequencing strategies increased the harmonic mean of sensitivity and positive predictive
value of mutation detection by 41%. In one cohort of FFPE tumor samples, coverage and inter-platform concordance
were positively correlated with the QFI, emphasizing the need for pre-analytical sample quality control to reduce the
risk of false positives and negatives. In a separate cohort of FFPE samples, the 51-gene panel achieved 78% sensitivity
(95% Cl=56.3, 92.5) with 100% PPV (95% Cl = 81.5, 100.0) based on known mutations at 7.9% median abundance. By
sequencing specimens using an orthogonal NGS technology, sensitivity was improved to 87.0% (95% Cl =66.4,97.2)
while maintaining PPV.

Conclusions: The results highlight the value of process integration in a comprehensive targeted NGS system, enabling
both discovery and diagnostic applications, particularly when sequencing low-quality cancer specimens.
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Background

NGS has been instrumental in accelerating discovery in
cancer genomics via whole genome sequencing (WGS),
whole exome sequencing (WES), and high-depth tar-
geted amplicon sequencing (TAS). Researchers have
used NGS to help identify somatic mutations, understand
clonal evolution, and, most recently, advance personalized
medicine [1]. Studies of the genomic landscapes of com-
mon cancer have revealed that ~95% of non-synonymous
mutations are single base variants, rather than insertions
or deletions that affect one or several bases [2]. As such,
the detection of these single nucleotide variants (SNV) is a
primary objective of cancer-related sequencing studies.
Large multi-sample studies have resulted in breakthrough
discoveries of somatic mutations in the context of clonal
evolution, pathway analysis, and associations with gene ex-
pression patterns [3,4]. In cancer research, specificity for
somatic mutation detection is typically achieved by com-
paring tumor DNA sequence with a matching normal
tissue DNA sequence to differentiate germline and som-
atic genetic variants [5]. This strategy, however, is not
feasible for routine clinical testing. Although the utility
of NGS in cancer genomics is rapidly progressing, TAS in
formalin-fixed, paraffin embedded (FFPE) specimens has
received much less attention in the literature. Preservation
of tissue in the form of FFPE is a cost effective traditional
method that is widely used for archiving tissue speci-
mens, and provides a large source of archival materials
for cancer research.

For oncology diagnostics, TAS offers a number of ben-
efits compared to WGS or WES, including ultra-deep
(>1000X) coverage in gene regions linked to professional
clinical practice guidelines and targeted therapeutics in
clinical trials, increased sequencing depth and analytical
sensitivity for variant detection from tumor subclones,
improved sample throughput, reduced per sample costs,
faster turnaround time, and a lower probability of inci-
dental findings and variants of unknown significance [6].
Unlike WGS or WES, TAS strategies (such as the one
described here) can be devised specifically to accommo-
date FFPE DNA modifications and fragmentation, and
thus this approach offers low-abundance mutation de-
tection to address tumor heterogeneity [7-15], even from
low-quality FFPE DNA. As a result, TAS has increasingly
become the method of choice in clinical laboratories.

Research to date has underlined the potential utility of
NGS for individualized and targeted cancer therapy. The
past couple of years have seen a rising tide of studies in-
vestigating TAS applications on FFPE samples. At first,
preliminary studies were limited to 20 or fewer FFPE
samples [9,10,12,13]. As the technology burgeoned,
applications appeared with more samples [7,16], as well
as broader panels based on hybrid-capture technology
[8,17], however the depth of analytical characterization
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has been limited including specialized workflows to spe-
cific sequencing technologies [11]. Additional panels for
targeted NGS are the subject of growing clinical interest,
including recent reports describing the clinical laboratory
validation of capture hybridization panels that enrich FFPE
DNA [15,18] and a focused thyroid cancer TAS panel [19],
as well as a clinical research study using a limited-content
TAS panel aimed at very high sensitivity, variant identifica-
tion in plasma and FFPE specimens [14]. The existing
research, however, includes few examples of accurate, sensi-
tive and reliable mutation detection across a well-powered
set of FFPE clinical DNA samples, and none that make use
of a comprehensive PCR-based enrichment workflow with
associated controls, QC, and bioinformatic tools.

The goal of this study was to provide an analytical
framework to complement the development, evalu-
ation, and application of a comprehensive system for
targeted NGS. This system was specifically designed to
enable the identification of clinically actionable muta-
tions in FFPE DNA known to be relevant across many
different cancer pathologies. To achieve this objective,
we first designed mixtures of well-characterized cell
line DNA enriched for low-level variants, yet covering
a range of allele frequencies sufficient for establishing
assay linearity and accuracy. A unique method for
identifying systematic variants (SVs) — that is, artifacts
not of biological origin — was developed and used to
filter results. The platform was then used to analyze re-
sidual clinical FFPE specimens in order to refine vari-
ant detection strategies, particularly in samples with a
high background of FFPE DNA “noise,” such as false
positives presenting as G> A or C> T transitions (to be
concise, we will use GC > AT to represent G>A or C>T
transitions). The large-scale target enrichment and data
analysis platform was then evaluated with respect to: 1)
sample DNA qualification; 2) platform accuracy deter-
mination, with and without confirmation testing; and 3)
quantification of the upper limits of analytical validity.
The insights gleaned from the development and valid-
ation of this system extend the knowledge base of TAS
in FFPE DNA, and broaden the foundation for novel
biological discoveries and diagnostic detection using
this and similar methods. Finally, our approach extends
beyond the optimization of discrete steps in the TAS
workflow, such as the enrichment chemistry or back-
end bioinformatics, to implement and integrate controls
and in-process quality measures across pre-analytical,
analytical and post-analytical test phases. Although we
did not address such critical topics such as small indel
detection, we demonstrate that this holistic approach
improves the accuracy of variant detection, quantifica-
tion, and interpretation, and addresses the need for
standardized and validated methods for the routine use
of TAS in clinical oncology.
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Methods

Clinical specimens

Lymphocytes and tumor specimens were collected from
head and neck squamous cell carcinoma (HNSCC) pa-
tients at Johns Hopkins Medical Institutions. Tissue was
collected after patients were enrolled in a Johns Hopkins
Institutional Review Board Protocol, and informed con-
sent was obtained from all patients prior to enrollment
and collection of tissues. Appropriate informed consent
was obtained after institutional review board approval.
Prior to use, all specimens were stored in liquid nitro-
gen. Lymphocytes were digested using standard SDS/
proteinase K protocols and resulting DNA was purified
using standard phenol-chloroform extraction and etha-
nol precipitation. DNA was resuspended in LoTE buffer
(EDTA 2.5 mM and Tris—HCl 10 mM, pH 7.5), and
DNA concentration was quantified using the NanoDrop
ND-1000 spectrophotometer (Thermo Scientific). The
resulting lymphocyte DNA was sent to Asuragen for
targeted NGS analysis.

The 46 FFPE colorectal cancer DNA sample set was
comprised of DNA extracted from 26 individual tumor
specimens using the QIAamp DNA FFPE Tissue Kit
(Qiagen, Valencia, CA, USA). These 26 DNA samples
were used to create 24 DNA mixtures (KRAS codon 12/
13 mutant diluted with KRAS codon 12/13 wild-type) and
22 neat samples. The 46 colorectal samples, as well as the
underlying 26 individual samples, had all been previously
screened for KRAS codon 12/13 status through various,
repeated methods, including Sanger sequencing and the
allele-specific PCR assay (DxS/Qiagen; Manchester, UK)
(data not shown). The 26 tumor specimens were all
colon or rectal adenocarcinomas obtained from Asterand
(Detroit, ML, USA).

The remaining colon cancer FFPE tissue specimens
come from stage II tumors that were acquired from
FolioBio (Columbus, OH). All specimens were residual
de-identified samples that were procured in accordance
with appropriate human subjects’ regulations using a
protocol that was approved by an institutional review
board. Moreover, Asuragen has filed a Federalwide As-
surance for the Protection of Human Subjects (FWA)
with the US Department of Health and Human Services.
Prior to nucleic acid isolation, a hemotoxylin and eosin
(H&E)-stained slide representing the FFPE tissue block
was prepared and reviewed by a board-certified anatomic
pathologist at Asuragen to assess specimen quality and
identify areas with a high proportion of cancer cells. Speci-
mens were macro-dissected to achieve at least 80% tumor
content. DNA was isolated from the enriched FFPE sec-
tions using the RecoverAll Total Nucleic Acid Isolation
Kit for FFPE (Life Technologies) according to the manu-
facturer’s instructions. DNA was quantified using the
Nanodrop 1000 (Thermo Scientific).
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A total of 72 FFPE thyroid samples were purchased from
Asterand (Asterand Plc., Detroit, MI, USA). The benign
samples included 9 follicular adenoma, 5 oncocytic FA, 10
hyperplastic nodules, 4 multinodular goiter, and 2 cases of
Hashimoto’s disease. The malignant samples included 18
papillary thyroid carcinoma of classical type, 3 oncocytic
PTC, 1 columnar PTC, 8 follicular variant of PTC, 10 fol-
licular thyroid carcinoma, 1 oncocytic FTC, and 1 medul-
lary thyroid cancer. For each sample, H&E slides were
prepared and reviewed by a pathologist at Asuragen to
confirm the histological diagnosis and establish tumor
content. All samples with less than 50% tumor were
marked for tumor enrichment by macrodissection. DNA
and total RNA were isolated using the RecoverAll Total
Nucleic Acid Isolation Kit for FFPE (Life Technologies).
DNA from each sample was interrogated for the presence
of distinct genetic alterations included in the miRInform™
Thyroid panel (Asuragen, Austin, TX); however, we
excluded translocations from the analysis.

Design of the 1052-amplicon panel

We designed and evaluated a 1052-target enrichment panel
to amplify 109,302 genomic positions across 51 genes for
use in NGS analysis (Table 1). PCR primer sets in the panel
were designed for targeted sequencing in 28 genes and ex-
ome sequencing of the remaining 23 genes. The genomic
coordinates of coding exons were submitted to RainDance
Technologies for design and synthesis of target-specific
PCR primers for amplification of 70—200 bp products. We
initially evaluated the panel by sequencing 16 fresh-frozen
samples to identify regions with poor sequencing coverage
(amplicons that yielded 100 or fewer reads across all 16 sam-
ples). Alternative PCR primer sets were designed to improve
sequencing in these poor sequencing-coverage regions. The
final TAS panel included a total of 1052 amplicons.

DNA sample preparation and sequencing

Intact genomic DNA from cell lines and frozen tissues
was sheared to an average size of ~4 kb using the Covaris
S220 focused-ultrasonicator (Covaris, Woburn, MA). The
sheared DNA and DNA from FFPE specimens were quan-
tified using the Nanodrop 1000 (Thermo Scientific, DE).
A fraction of the DNA (100 ng) was used to evaluate frag-
mented DNA size ranges using the E-gel system (Life
Technologies). Genomic DNA (250 ng, 500 ng or
2,000 ng) was merged with the 1052-amplicon panel using
the RDT 1000 instrument (RainDance Technologies,
MA). The merged droplets were amplified by PCR using
the following conditions: denaturation at 94°C for 2 min;
55 cycles of 94°C for 15 s, 54°C for 15 s, 68°C for 30 sec;
final extension at 68°C for 10 min, and 4°C hold. After
breaking the emulsion, the resulting PCR products were
purified using the MinElute kit (Qiagen) according to the
manufacturer’s instructions. A fraction of the target-
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Table 1 Codon and gene coverage of the 1052-amplicon

panel

Gene Transcript Codon

ABL1 ENST00000318560 85-505

AKT1 ENST00000349310 1-96, 146-189, 277-391, 455-481

AKT2 ENST00000392038 192-320

BRAF ENST00000288602 393-664

CDH1* ENST00000261769 1-883

CDK4 ENST00000257904 1-73,228-273

CDKN2A* ENST00000446177 1-153

CEBPA* ENST00000498907 1-359

CREBBP ENST00000262367 1-29, 853-929, 1328-1465,
1725-1761, 2196-2299

CTNNB1* ENST00000396185 1-782

EGFR* ENST00000275493 1-1211

ERBB2 ENST00000269571 147-215

FES ENST00000328850 72-223

FGFR1* ENST00000447712 1-823

FGFR3 ENST00000340107 206-760

FLT3 ENST00000241453 437-685, 807-885

FOXL2 ENST00000330315 91-158

GATA1 ENST00000376670 1-200

GNAT ENST00000078429 202-245

GNAQ ENST00000286548 159-245

HIFTA* ENST00000337138 1-827

HRAS* ENST00000397594 1-150

IDH1 ENST00000345146 41-174, 284-331

IDH2 ENST00000330062 125-178

IKBKB ENST00000520810 311-375, 580-662

JAK2 ENST00000381652 443-711, 858-903

KIT* ENST00000288135 1-977

KRAS* ENST00000256078 1-150

MENT* ENST00000377326 1-611

MET ENST00000318493 981-1330

MPL ENST00000372470 180-230, 440-522

NF2* ENST00000361166 1-579

NOTCH1* ENST00000277541 21-2556

NPM1 ENST00000393820 47-118

NRAS ENST00000369535 1-97

PAX5 ENST00000358127 71-137, 304-367

PDGFRA ENST00000257290 552-960, 1041-1090

PIK3CA ENST00000263967 21-106, 301-353, 418-582,
672-729, 889-1069

PIK3R1* ENST00000521657 1-725

PTCH1* ENST00000331920 1-1448

PTEN* ENST00000371953 1-404

PTPN11 ENST00000351677 46-111, 483-533
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Table 1 Codon and gene coverage of the 1052-amplicon
panel (Continued)

RB1* ENST00000267163 1-491, 500-929
RET ENST00000355710 627-694, 870-934
SMAD4* ENST00000342988 1-302, 319-553
SMARCB1* ENST00000263121 1-386

SMO* ENST00000249373 1-788

SRC* ENST00000445403 1-537

STK11* ENST00000326873 1-434

TP53% ENST00000269305 1-394

VHL ENST00000256474 1-52,104-214

The table shows the list of genes, transcripts and codons targeted by the
1052-amplicon panel. In sum, the panel covers over 10,000 mutations
annotated in v64 of the COSMIC database, including single nucleotide
variants (SNVs) and small indels up to 2 bp. The transcript models used for
codon identification are based on Ensembl Genomes release 17 (GRCh37).
*All codons are covered in the genes marked with an asterisk.

enriched DNA was then evaluated for size and quantity
using a Bioanalyzer Lab-on-a-chip DNA 12000 (Agilent
Technologies) and Nanodrop spectrophotometer (Thermo
Scientific), respectively. Next, a tagging PCR reaction was
performed to append unique barcode sequences to each
sample and to add adapters needed for sequencing on the
GAIIx/HiSeq platforms (Illumina). Barcodes were chosen
from a set of 48 standard barcode sequences obtained
from Illumina. Purified target-enriched DNA (10 ng) from
the initial PCR was amplified in the tagging PCR with the
following thermal cycling conditions: 94°C for 2 min,
10 cycles of 94°C for 30 s, 56°C for 30 s, 68°C for 1 min;
68°C for 10 min, and 4°C hold. Tagged PCR products were
pooled and purified using the MinElute PCR purification
kit (Qiagen) according to the manufacturer’s instructions.
The products were quantified using the KAPA Library
Quant kit (KAPA Biosystems, South Africa) as per manu-
facturer’s instructions. All samples were normalized to 8.6
nM, and pools of 8 to 15 samples per lane for the GAIIx
and 32 samples per lane for the HiSeq were prepared.
Flow cell preparation and data acquisition were completed
using Illumina’s recommended protocols. Paired-end se-
quencing runs (2x151) were performed using the Illumina
GAIIx and HiSeq platforms.

AmpliSeq cancer panel and PGM sequencing

For comparative studies, a subset of our samples was
also enriched for specific target sequences using the Ion
AmpliSeq Cancer Panel 1.0 (Life Technologies) accord-
ing to the manufacturer’s protocol. Briefly, 10 ng of cell
line or FFPE DNA samples were pre-amplified in 19 cy-
cles of PCR (98°C for 15 s and 60°C for 4 min) and the
products were purified using magnetic bead purification
(Agencourt AMPure XP, Beckman Coulter). The purified
PCR fragments were 5 phosphorylated and ligated to
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the adaptor needed for emulsion PCR using the Ion Tor-
rent system (Life Technologies). The AMPure-purified
ligation products were nick translated at 72°C for 1 min
and amplified using 10 cycles of PCR (98°C for 15 s, 60°C
for 4 min). The amplified library products were purified
using magnetic bead purification (Agencourt AMPure XP,
Beckman Coulter) and quantified using a Bioanalyzer and
High Sensitivity DNA chip (Agilent Technologies). Ap-
proximately 44 million copies of library DNA were used
for emulsion PCR on the Ion One Touch Instrument (Life
Technologies), and 50% of enriched products were loaded
onto Ion 316 chips for sequencing on the Ion PGM system
(Life Technologies).

Reference DNA mixtures for evaluating platform linearity

and accuracy

We designed a set of reference DNA mixtures from cell
lines with known genetic variants that could be used to
quantitate platform precision, linearity and accuracy.
Using the genotypes made available by the 1000 Genomes
Project [20], we selected a set of diverse cell lines from the
group of 1192 samples available at ATCC/Coriell as
follows. The search was seeded with the NA12878 cell
line, and samples were added one-by-one to maximize loci
diversity across the genomic regions queried by our 1052-
amplicon library. A locus was considered diverse if the
genotype was not represented in the set of samples already
selected. This procedure inherently selected samples from
diverse ethnicities: NA12878, NA18933, NA19084,
NA19455, NA19773, and NA21418. The selection process
relied on annotations from the 1000 Genomes Project, but
the variant annotations were incomplete; thus, all 6 sam-
ples were individually sequenced at high depth to unam-
biguously identify variants and establish true genotypes
(>3000 reads, with 97% of the bases within 5 fold of me-
dian sequencing depth). Figure 1A shows the mixing coef-
ficients and order of samples used to provide good
statistical power for evaluation of low-level variant detec-
tion (Figure 1B). The sequencing data for these samples is
available from the Sequence Read Archive (SRA) as Biopro-
ject PRINA257348. Although we didn’t perform indel ana-
lysis in this study, a similar process can be used for
evaluating indel callers, however, more mixtures will likely
be necessary to derive a comparable number of abberations.

Sample qualification using the quantitative

functional index

In general, QFI estimations were performed as previ-
ously described [21]. DNA extracted from FFPE samples
is often degraded and further compromised with chemical
modifications such as cross-linking, deamination and ad-
ducts. A novel, real-time PCR based assay, referred to as
quantitative functional index (QFI) was used to assess the
proportion of amplifiable templates in these degraded
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samples [21]. DNA samples were quantified using a Nano-
Drop spectrophotometer (Thermo Scientific) and normal-
ized to 5 ng/pL in deionized water. Samples were then
assessed using qPCR on a 7900HT Fast Real-Time PCR
System (Life Technologies). Quantification of amplifiable
DNA was assessed by amplifying a 180 bp region in the
ferritin, heavy polypeptide 1 (FTHI) gene. The assay was
chosen for two reasons; 1) the amplicon length of the in-
terrogating gene, FTHI (180 bp), was similar to the me-
dian length (171 bp) of the library generated using the
1052-amplicon panel, and, 2) the FTHI gene lacks wide-
spread gene amplifications or deletions across a spectrum
of common and uncommon cancers [21]. For example, an
analysis of copy number changes through the cBioPortal
for Cancer Genomics revealed an overall deletion/amplifi-
cation rate of <1% for all sample types tested for the FTHI
gene [22,23]. qPCR was carried out in 11 pL reactions
with 1X TagMan Gene Expression Master Mix (Life Tech-
nologies), 1X FTHI primer/probe mix (Hs01694011_s1;
Life Technologies) and 5 ng gDNA. The PCR cycling con-
ditions were 95°C for 10 min, 50 cycles of 95°C for 15 s and
60°C for 1 min. A high-quality genomic DNA, NA04025
(Coriell Cell Repositories, Camden, NJ, USA), was used
to generate a calibration curve using a 5-fold titration
series, from 50 ng to 16 pg. PCR-competent copy num-
ber was then calculated from the calibration curve and
reported as QFL

Bioinformatics

General workflow

The raw sequence read data generated from the GAIIx
were demultiplexed and preprocessed using Illumina’s
CASAVA software package (1.7) to produce sample-specific
FASTQ files. Additional processing was similar to previ-
ously published studies [24]. Briefly, the sequencing adap-
tors and target-specific primers were trimmed. We further
trimmed the reads to retain only high-quality data (Q20 or
higher). Paired-end alignments were performed using the
BWA aligner (0.5.9-r16) [25] against the human genome
(hg19). In the case of data generated from the PGM, TMAP
(tmap.2.X) (https://github.com/iontorrent/TMAP) was
used as to align sequences to the human genome. In either
case, alignments were post-processed using a GATK (1.3-
21)-based workflow to add read-group information, per-
form local realignments, recalibrate Q scores, and estimate
base alignment scores (BAQ scores) as described previ-
ously [24,26,27]. Note that default GATK genotyper
parameters were used except PCR duplicates were not
removed and subsampling was turned off (in the context
of TAS all reads corresponding to an amplicon will have
the same start and stop position). Other bioinformatics
analyses, including database annotation and variant call-
ing, were based on previously published research [24].
An overview of the analysis workflow is captured in
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Figure 1 Reference DNA mixtures are an analytical resource for evaluating platform linearity and accuracy. A) The table shows the
mixing coefficients of each cell line DNA sample (rows) used to create the specified reference DNA mixtures (columns). An optimization
procedure was used to select the most diverse samples based on genetic-variant annotation across the 1052-amplicon panel, and the mixing
coefficients were set to enrich for variants at <20 percent variant. B) The cumulative distribution function of the percentage of variants (y-axis)
captured by the reference DNA mixtures as a function of the expected percent variant (x-axis). The dark box shows that 1/3 of the variants in the
mixtures are expected to be present at <8% and the lighter box shows that 50% of the variants are expected to be present at <16% variant.
C) The mean percent variant (y-axis) as a function of the expected percent variant (x-axis) for the 195 expected variant sites across 4 separate
sequencing runs using 250 ng DNA input. Each point is the mean and a red vertical line spans the range of the mean + standard deviation.
A small jitter (less than 1%) was added to the expected percent variant (x-axis) in order to minimize over plotting.

Additional file 1: Figure S7. All analyses were performed  allele (genetic variant) with penetrance p, that adheres to

using the R programming language. the Hardy-Weinberg principle, the relative genotype
frequencies within the sample population are predicted
Identification of systematic variants to be wild type, heterozygous variant, and homozygous

Library preparation and sequencing on the Illumina plat- ~ variant (1-p)%, 2p(1-p) and p°, respectively. The corre-
form are known to introduce systematic variants (SVs) sponding standard deviation (SD) of the variant pene-
[28] that tend to inflate the false positive rate (FPR) of trance is SD(p) = \/p(1-p)/2. Simulations (n = 100,000)
predicted variants [10,17]. To identify SVs in sequence  were performed by creating samples from a multinomial
data generated with TAS using the 1052-amplicon panel, distribution over a range of penetrance estimates to pro-
DNA from a set of 29 disease-free lymphocyte samples  duce the expected number of observations of each geno-
was sequenced. In this sample set, the annotated SNPs  type. A sampling was then made of the percent variant
tended to have a standard deviation as a function of the estimates corresponding to the appropriate genotypes in
mean that followed Hardy-Weinberg equilibrium. As a  order to estimate the mean and SD of the penetrance.
result, variants that violated Hardy-Weinberg equilib- Variants with the following criteria were defined as SVs:
rium were categorized as SVs. For a given non-reference  no annotation in dbSNP or COSMIC, exceeded 3 SD of
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variant penetrance, present with a minimum of 2% vari-
ant in at least 1 sample.

Adaptive thresholds for variant calling

The most convenient variable we modulated to balance
sensitivity and PPV was the variant score threshold,
which could be decreased to improve sensitivity or in-
creased to improve PPV. Once a threshold is set, positions
in the panel with scores above the threshold are deemed
predicted variants, whereas those below the threshold are
not. However, FFPE samples require separate thresholds
for GC> AT transitions and all other substituions so
thresholds were determined in a two-dimensional space or
grid. In this study, a threshold setting strategy (grid search)
based on three constraints was established:

1. Calls per kilobase: Variant prediction (both somatic
and germline) would occur at 0.36 to 1.5 variants
per kb, a rate dominated by germline variation (~1
variant per kilobase [29-31]) as opposed to somatic
mutations (~1-10 mutations per megabase [4]).

2. Percent annotated: At least 75% of variants would be
annotated by publicly available resources [20] such
as dbSNP [32] and COSMIC [33,34]. We assumed
that the percentage of annotated variants to be a
surrogate for positive predictive value (PPV).

3. Ti/Tv: We would expect variants to occur with a
ratio of transitions to transversions (Ti/Tv) in the
expected range of 1.58 to 4.53 [35].

The three metrics identified above were computed at
evenly spaced intervals over a grid of variant score thresh-
olds, and the set of thresholds that satisfy all constraints
was identified. In order to select a single threshold pair, we
selected the threshold that was closest to the default fresh-
frozen threshold of (6,6). Conveniently, this strategy is inde-
pendent of the methodology used to calculate score variants,
and can work for any method producing a continuous value.
We know from previous studies [13,36] and the current
study, that GC> AT transitions are inflated due to the
fixation process. Therefore, the constrained optimization
was run as a grid search, with GC > AT thresholds estimated
independently of other substitutions.

Results and discussion

In this study, we designed and assessed a targeted cancer
TAS panel covering 51 genes (Table 1) and an integrated
bioinformatic analysis system for detecting and quantify-
ing mutations. Using calibrated mixtures of cell line and
residual clinical FFPE DNA we evaluated and optimized
the analytical and clinical performance of the system.
Figure 2 shows the sample analysis workflow including:
1) functional DNA sample quantification and quality
control using real-time PCR; 2) target enrichment using
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massively parallel picodroplet PCR; 3) NGS using mul-
tiple instruments, including the Illumina GAIIx and
HiSeq, and Personal Genome Machine (PGM) for con-
firmation studies; and 4) bioinformatics processing in-
cluding read preprocessing, alignment, variant calling
and result visualization (see also reference [24]). The
TAS enrichment panel is sufficiently broad to enable
novel cancer-associated variant discovery while also pro-
viding the sequencing depth required to detect low-
abundance mutations raising implications for clinical
decision-making using targeted therapeutics (see Table 2
for an overview of the samples and objectives for the
current study). The TAS panel and integrated workflow
were designed and optimized to address all key phases of
test performance, including pre-analytical (e.g., use of
quantitative functional index PCR (QFI"-PCR, hereafter re-
ferred to as QFI) [21] for sample qualification and risk miti-
gation), analytical (e.g., accuracy, precision, sensitivity and
specificity using intact cell line DNA and lower quality
DNA from FFPE samples), and post-analytical (e.g., develop-
ment of robust bioinformatic pipelines and reporting across
analytical and clinical samples, including processing of 128
distinct FFPE samples across 3 sample cohorts and encom-
passing a concordance analysis among multiple mutation-
detection technologies such as liquid bead array and qPCR).

Assessing analytical performance using cell mixtures

To evaluate the baseline analytical performance of the
1052-amplicon panel and tune and assess appropriate data
analysis methods, we created 6 reference DNA sample mix-
tures from high quality cell line DNA with known genetic
variant frequencies. Coincident with recent studies [15,37],
we used information available from the 1000 Genomes Pro-
ject to formulate DNA mixtures that produced 195 ex-
pected genetic variants for each. Experiments that included
all six mixtures were performed to assess the linearity and
detection accuracy of 6*195 = 1170 variants. Input amounts
were 2 g (the original specification for the RDT-1000 pico-
droplet PCR library prep) for the 6 reference DNA mix-
tures. Two of the 6 DNA mixtures, CM0042 and CM0045,
were also tested at 500 ng and 250 ng input.

Figure 1A shows the mixture coefficients for the refer-
ence samples and Figure 1B shows the resulting cumulative
distribution function of the expected percent variant (e.g.,
minor allele frequency or SNP fraction). The NGS loading
strategy was designed to provide a sequencing depth
of ~2000 reads per base on an Illumina Genome Analyzer
[Ix instrument running 8 samples per lane, with 20-30
million reads generated per lane. The 1052-amplicon panel
interrogates 109,302 genomic positions corresponding to
327,906 possible single-nucleotide variant hypotheses (3
possible transitions or transversions for each position).
Unless otherwise stated, all subsequent analyses were per-
formed in the context of a hypothesis that represents one
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Figure 2 Technology overview of NGS using the 1052-amplicon targeted sequencing panel. Sample qualification is performed using a
real-time PCR assay to determine the percent “functional” DNA copies in FFPE samples using the Quantitative Functional Index (QFI). The library
preparation is based on RainDance technologies picodroplet PCR to amplify target sequences with subsequent sequencing on an lllumina
platform (GAllx or HiSeq). The bioinformatics workflow trims adaptors and filters out low-quality reads, then includes genomic alignments, variant
calling and result reporting (See Materials and Methods for more details and Additional file 1: Figure S6 for the result visualization).

of three possible base substitutions at any given position
in the panel.

To estimate baseline analytical performance at the
amplicon level, we first summarized median amplicon
sequencing coverage across the 6 reference mixtures at
2 pg input. At this DNA input, 92% of the amplicons were
covered within 5-fold of the median depth (2,663 reads),
and 89% were represented within 2-fold of the median.
These values are consistent with high coverage uniformity,
which is required for any clinically-oriented cancer panel.
Interestingly, when considering the amplicons that had a
median sequencing depth greater than 100 reads, sequen-
cing depth was more linearly associated with sequence
entropy (Spearman rank correlation (SRC) of 0.53) than
amplicon length (SRC=-0.29) or %GC (SRC=-0.46)
(Additional file 1: Figure S1). Consistent with previously
reported research [11], we observed a negative association
between sequencing depth and amplicon length. Like
others [9,12], we also observed a lower sequencing depth
in amplicons with high and low %GC. We surmise that
this result is due to low sequence diversity in those ampli-
cons. For the genomic positions enriched using this panel,
76% and 97% were sequenced to depths within 2-fold and

5-fold of the sample median, respectively, with 84% of
positions sequenced to a depth >2000 reads, which was
the targeted sequencing depth.

To understand the gene panel’s performance across a
range of potential allele frequencies, we excluded all
positions except the 195 expected variants per mixture.
We evaluated the panel’s accuracy and linearity with dif-
ferent quantities of input DNA using the concordance
correlation coefficient (CCC) between the observed and
expected percent variant per sample (Additional file 1:
Figure S2). The CCC metric takes into account both accur-
acy and precision [38,39]. Filtering out positions with <100
reads and <0.1 of the sample median depth of coverage, we
found that all CCC values from TAS with DNA input-mass
amounts >250 ng exceeded 0.99 (0.99 without filtering),
whereas CCC estimates dropped to 0.98 (0.97 without
filtering) at 250 ng input DNA. Finally, we also evaluated
the stability of linearity and accuracy in the context of run-
to-run variability (Figure 1C). One mixture, CM0045, was
sequenced with 250 ng DNA input on 4 separate runs
(4 different days) and the CCC estimate between mean
percent variant and expected percent variant was 0.99
(0.99 without filtering). Nine of the 195 expected variants
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Workflow Optimization Evaluate analytical performance Reference DNA mixtures with 6 (Samples), Intact 250-2000 GAllx PGM AmpliSeq

And Platform Evaluation  of the panel known genotypes (based on 6 (Mixtures)

Determine the impact of DNA 1000 Genomes Project)
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Catalog systematic variants based Intact disease free 29 Intact 500 GAllx N/A

on Hardy-Weinberg equilibrium. lymphocyte samples
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The first phase of this study was focused on the1052-amplicon panel design, analytical performance testing, and bioinformatics workflow optimization. It was conducted using DNA from intact cell lines with known
allele frequencies for analytical and variant detection analysis, and FFPE samples for evaluating platform behavior with low DNA quality samples. The second phase focused on clinical application using FFPE samples
from different patient cohorts. Note that amplifiable FFPE samples were quantified using QFI. If an alternative (confirmation) platform was used on a given cohort, both platforms are listed in the last column.
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failed to produce reads across all 4 runs, with 2—-5 variant
dropouts per run. This lapse only occurred for mixtures
sequenced with a DNA input of 250 ng. The depth of
coverage filtering removed approximately 0%, 1% and 2%
of the 195 known variants for TAS data from runs with
2000 ng, 500 ng and 250 ng input DNA, respectively.

To quantify the precision of low-level variant calls, we
examined variants known to be present at 2% based on the
cell mixture coefficients (179 measurements spread across
93 expected variants with all mixtures and inputs). When
2000 ng of input DNA was used for the TAS (all 6 mix-
tures), the median of the median-estimates for percent
variants was 1.99%, while results of 2.31% and 2.39% were
seen with lower amounts of input DNA, 500 ng (2 mix-
tures) and 250 ng (2 mixtures), respectively. The median of
the interquartile ranges was 0.74%, 1.32% and 1.52% for
2000 ng, 500 ng and 250 ng DNA input, respectively.

Identifying platform specific systematic variants

Systematic variants (SVs) — artifacts that are not of bio-
logical origin and likely attributed to library preparation
or sequencing — are false positives that are observed in
multiple samples. To identify SVs, we sequenced intact
lymphocyte DNA from 29 subjects with head & neck
squamous cell carcinoma. Figure 3A shows a plot of the
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genotype standard deviation as a function of the mean
as modeled by the Hardy-Weinberg equilibrium (HW)
[40]. This analysis revealed 274 variants consistent with
HW within the 99.8% confidence interval (3 standard
deviations), of which 203 (75%) were annotated in
dbSNP v132. The number of potential substitutions that
fell outside the 99.8% confidence intervals and had a
minimum 2% percent variant in at least 1 sample was
2,838. Of these, only 77 (2.7%) were annotated in dbSNP
v132 and were therefore excluded from the SV listing.
Because the sequencing panel included 109,302 positions
(327,906 testable hypotheses), the 2,838-77 =2,761 SVs
comprised just 2.4% of the genomic positions covered by
the panel, and 0.8% of the testable hypotheses, but a
large potential to have a negative influence on PPV.

To validate the method used to identify SVs, we se-
quenced a subset of the SVs identified using an orthog-
onal sequence enrichment method (AmpliSeq® Cancer
Panel, Life Technologies) and an independent sample set
(the 6 previously defined reference mixtures, which were
not used in the identification of the SVs) (Figure 3B).
We chose an independent sample set for SV validation
to ensure that any assumptions regarding SVs derived
on the lymphocyte samples could translate to an entirely
different set of samples. This split-test design ensures
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Figure 3 Identification of systematic variants. A) The graph shows the behavior of genetic variants following a parabola (green line with a
green ribbon for 99.8% Cl based on 100,000 simulations) as motivated by Hardy-Weinberg equilibrium. The confidence intervals mostly capture
known variants (green circles), but also some unannotated variants (blue circles). In stark contrast, potential variants identified as Systematic
Variants (SVs, red Xs) behave differently as the standard deviation of the percent variant as a function of the mean violates Hardy-Weinberg
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equilibrium. B) A subset of SVs were confirmed on an independent sample set (reference DNA mixtures described in Figure 1), sequenced using an
alternate NGS platform (lon PGM, Life Technologies) and TAS panel (AmpliSeq Cancer Panel, Life Technologies). The points show the concordance of
the known variants (green circles) on both platforms and SVs identified from 29 intact samples (red X's). The SVs were predominately plotted along the
x-axis (near y-intercept = 0) suggesting they are artifacts specific to the 1052-amplicon panel.
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that bias is minimized and SVs are not specific to a given
set of samples. The AmpliSeq panel covers 13,560 bases
(excluding primer sequences) of which 8,727 (64%)
overlap with our 1052-amplicon panel. Before additional
processing, we removed all positions with sequencing
depths not within 10-fold of the median from the ana-
lysis, so that our SV performance findings were not
based on percent variant estimates with insufficient
sequencing depth. After filtering, sequencing data were
available for 99 unique SVs in the 6 reference mixtures,
resulting in 508 measurements. The median percent vari-
ant of the 508 SVs using the 1052-amplicon panel was
0.52%, with an interquartile range (IQR) of 1.32%, but a
median of 0.00% with an IQR of 0.18% was observed
based upon NGS following AmpliSeq enrichment. Overall,
we found that 82% of the SVs exhibited a lower percent
variant estimate after AmpliSeq enrichment compared to
results after enrichment with the 1052-amplicon panel
(Wilcox signed-rank test p-value <107*¢). Of course, these
low-level SVs would ordinarily be filtered out by variant
calling utilities, but this experiment demonstrated that the
relatively higher background for these positions are panel-
and library preparation—specific.

SVs were also considered in the larger context of vari-
ant calling algorithms. Using the same 6 reference-DNA
mixtures, the average precision was calculated for the
Poisson caller [24], UnifiedGenotyper [26,27] and VarS-
can [41], with and without sequencing depth and SV
filtering (Additional file 1: Figure S3). According to
mixed-effect modeling with SV filtering, variant callers
and sequencing-depth filtering as random effects and
cell mixtures as fixed effects, 10% of the variation in
average precision can be attributed to SV filtering, while
17% is attributed to sequencing-depth filtering and 57%
to the variant caller. The remaining 16% variation can be
attributed to error from the mixed-effect model. Since
variant callers explain the greatest amount of variation
in the average precision, mutation detection will greatly
benefit from future development in related algorithms.
The fact that 17% of the variation can be explained by
simple coverage filtering is important as it is a very sim-
ple procedure to perform with a significant impact on
the results. SV explain 10% of the variation, and this is a
substantial yet relatively less important variable for
future research development. In aggregate, the relative
impact on mutation detection is increasingly SV analysis,
coverage filtering and variant prediction algorithms.

Position filtering offers an opportunity to relieve the
false positive rate at the risk of reducing sensitivity. Al-
though some studies detail specific criteria for filtering
[11], it is usually unclear whether or not all predicted
variants in a panel are reported, irrespective of whether
annotation exists in publicly available resources such as
dbSNP or COSMIC. We repeated the average precision
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estimates for variant detection by excluding all unanno-
tated sites according to dbSNP or COSMIC (Additional
file 1: Figure S3). This filtering procedure excludes over
98% of all possible variants enriched using the 1052-
amplicon panel, but it substantially improves the pre-
dictive power of all tested callers. Speculatively, the
improvement in performance is akin to the power of
replication as a site is annotated in public databases because
it was previously identified as a variant in the literature. Al-
though excluding unannotated sites can reduce sensitivity
particularly for novel variants, it can be justified in the con-
text of clinical reporting where actionable and interpretable
results are important for patient management.

Using independent sequencing technologies to improve
sensitivity and positive predictive value

SVs are largely technology-specific artefacts (particularly
driven by the library prep and panel) that limit a panel’s
sensitivity as variant caller thresholds must be increased
to mitigate the false positive rate (FPR). This concept is
more critical for novel variant and mutation discovery
where filtering out unannotated sites is unacceptable or
a normal-tumor comparison is not feasible. We reasoned
that variant confirmation using an alternative technology
could reduce false positives. As a proof-of-concept, we
evaluated the potential for the 1052-amplicon panel to
identify variants in the 6 reference mixtures, with and
without sequential testing using an alternative sequen-
cing strategy, namely AmpliSeq Cancer Panel (Life Tech-
nologies) enrichment followed by sequencing on a PGM.
Because the 1052-amplicon panel content is much more
expansive than the AmpliSeq panel, we considered only
genomic positions common to both platforms. As a
baseline, we used simple percent variant to call variants
and excluded sites with insufficient sequencing coverage
on either platform (<100 reads and <0.1 median depth
of coverage). The f-measure, the harmonic mean of
sensitivity and PPV, was used as the performance metric.
This metric is appropriate when one is interested
predominately in the performance of a single class espe-
cially those with a low prevalence [42]; in this case, most
genomic positions are wild-type and approximately 1000-
fold fewer positions are SNPs or mutations (positives).
Sequencing the same reference DNA samples on different
platforms revealed SVs specific to both platforms relative
to expected positives (Figure 4A). Note that the SVs
identified previously were included for this analysis. The f-
measure was maximized at 0.67 on the 1052-amplicon
panel at a 6% threshold, where variant percentages above
6% are predicted positives and variants below 6% are
predicted negatives (Figure 4B and C). However, when the
percent variant threshold was allowed to vary independ-
ently between the 1052-amplicon and AmpliSeq panels
such that a positive is predicted if the percent variant
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Figure 4 Independent sequencing of reference DNA mixtures exposes true variants and platform-specific false positives. A) The percent
variant of the 6 reference DNA mixtures as measured from sequencing using the 1052-amplicon (x-axis) and the AmpliSeq (y-axis) panels. The
expected variants are green circles and all others are identified with a red X. Variants detected with both workflows fall close to the y =x line,
while platform specific false positives (FP) are plotted along the x =0 axis (AmpliSeq false positives) and y =0 axis (1052-amplicon panel false
positives). B) A heatmap of the f-measures (the harmonic mean of sensitivity and PPV) from the two panels for variant calling using different
thresholds for percent variant. Each point in the heatmap is colored by the f-measure with green positions having the highest performance.
Positions with an f-measure <0.5 are colored gray to prevent color saturation for higher values. The variant calling performance of the 1052-amplicon
panel alone is maximized at 6% (label C), but performance can be significantly improved by relaxing threshold constraints for variant calling and
considering information from both panels or workflows (label D). In this figure, the systematic variants are not removed from either platform so that
the analysis can further illustrate the complementary behavior of each platform. The AmpliSeq panel alone would have performance maximized at
position 27.5% (label E). C) The 2x2 table showing maximum variant calling performance for samples sequenced after target enrichment with the
1052-amplicon panel. D) The 2x2 table showing maximum performance for samples sequenced after target enrichment with both the AmpliSeq and
1052-amplicon panels. E) The 2x2 table showing maximum performance for samples sequenced after target enrichment with the AmpliSeq panel only. )

exceeds the thresholds for both panels, the f-measure was
maximized using a 2% threshold for both panels (Figure 4B
and D). This outcome was not the result of superior
performance of the AmpliSeq panel compared to the
1052-amplicon panel. Indeed, the f-measure for the
AmpliSeq panel was maximized at 0.55 at a 27.5% thresh-
old, a value that is appreciably lower than that of the
1052-amplicon panel (Figure 4E). Instead, it reflects the
independence of SV’s inherent to each TAS methodology.

As expected, TAS platform performance was directly
affected by excluding the previously derived SVs: the opti-
mal f-measure for the 1052-amplicon panel climbed from
0.67 at 6% to 0.79 (note that the SVs were derived from an
independent data set). Including a variant confirmation
step in the workflow (here, the the AmpliSeq panel)
increased PPV by identifying additional platform-specific
false positives that were not previously identified, while
simultaneously increasing sensitivity (that is, the detection
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sensitivity) by allowing variant calling thresholds on 1052-
amplicon panel results to be decreased. To be clear, the
analytical sensitivity of each platform is still the same and
the maximal analytical sensitivity achieved from both plat-
forms will be limited by the least sensitive platform. But
realistically, the analytical sensitivity of each platform is
increasingly realized because the FPR was mitigated by the
orthogonal platform. Although running independent
sequencing workflows in a discovery context is not always
feasible, these results show that initial variant calling
thresholds can be relaxed if variants will be confirmed
using an alternate method. This approach greatly increases
the PPV of detected variants while exploiting the intrinsic
analytical sensitivity of the system.

Evaluating panel performance with FFPE DNA samples
Reference intact DNA mixtures are informative standards
for establishing lower limits of detection while also esti-
mating the linearity and accuracy of the panel. However,
for most oncology applications, the ability to analyze FFPE
samples is crucial. DNA from two FFPE samples and one
intact cell line (NA12878) were sequenced to estimate the
effects of input DNA on the behavior of heterozygous var-
iants and background distribution (positions that match
the reference genome) in the TAS system. Heterozygous
variants averaging approximately 50% percent variant were
identified from 2000 ng FFPE DNA input and tracked in a
titration study with as little as 250 ng DNA input
(Figure 5A). Whereas the standard deviation of the hetero-
zygous variants called increased from 3.0 to 5.5 with
decreasing quantities of intact cell line DNA (86% increase
from 2000 ng to 250 ng input), the effect was far more
dramatic for the two FFPE DNA samples, increasing from
5.1 to 15.6 and 4.4 to 12.4 (a 205% and 185% increase
from 2000 ng to 250 ng input). Not surprisingly, the abso-
lute magnitude of the standard deviations was also much
larger for the FFPE samples. The standard deviations were
slightly improved when heterozygous variant calling was
limited to positions with >500 reads of coverage (data not
shown). As expected, the variability of the heterozygous
variants was not dependent on whether the substitution is
a GC> AT transition; this was in contrast to behavior of
the background distributions.

Similarly, the background percent variant increased
with decreasing quantities of input DNA. The 99th per-
centile of the variant background was 2.6% and 2.7% for
the two FFPE samples at 2000 ng, but increased to 8.4%
for both FFPE samples at 250 ng input. The background
percent variant was also consistently elevated between
library preps for GC > AT transitions when we compared
the 99th percentiles of results from 8 FFPE samples
sequenced using either the 1052-amplicon panel or an
independent 35-amplicon panel [24] (Figure 5B). When
considering only common regions with at least 100 reads
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and sequencing depth >0.1 of the sample median depth
of coverage, we observed that the median percent vari-
ant of GC > AT transitions at the 99th percentile across
8 FFPE samples was 8.8% for the 1052-amplicon panel
and 1.4% for the 35-amplicon panel. Sequencing data
from samples enriched using the smaller 35-amplicon
panel comprise a lower background percent variant than
from the broader panel, but the amplicons were shorter,
the sequencing depth was an order of magnitude greater
(10,000X-30,000X sequencing depth), and the input
requirements were distinct. This result suggests that the
background calling of transition mutations can be vari-
able between target enrichment methods and DNA
input quantity, but will be consistently higher than other
types of substitutions within a given panel, library prep,
and platform.

Optimizing variant calling for FFPE
Since GC > AT transitions have a higher background than
other substitutions in FFPE samples, variant calling must
account for this noise profile. The simplest strategy is to set
independent thresholds for GC > AT and all other hypoth-
eses at the risk of a loss of sensitivity or PPV or both. We
implemented a more flexible approach based on sample-
and hypothesis-specific cutoffs whereby the thresholds
were set to match SNP rediscovery rates stratified by GC >
AT status (see Materials and Methods). This strategy was
founded on the expectation that most variants are previ-
ously identified (and annotated) and predominately germ-
line as opposed to somatic. Indeed, this approach is
supported by previous research, which found that mutation
rates in lung adenocarcinoma [43] and colorectal cancer
[44], two of the most mutated cancer genomes, are on the
order of 1-10 somatic mutations per megabase compared
to ~1 event per kilobase for germline variants [45]. We im-
posed an additional constraint based on our observations
that higher background can be expected for GC > AT tran-
sitions than for other base substitutions. First, we tested
our variant calling strategy on the sequencing data from
the FFPE DNA titration described above (Table 3). As
expected, the thresholds for predicting a variant increased
as the input DNA amount decreased, with a concomitant
increase in background, particularly for GC> AT transi-
tions. A subset of the variant calls was intersected with
confirmed variants from a 35-amplicon panel to estimate
performance in an approximate 3 kb region of overlap.
The sensitivity and PPV remained at 100% until the input
was reduced to 250 ng, at which point 3 false positives
were called between the two FFPE samples (2 of the 3 false
positives were C > T transitions). At that point, PPV was
reduced to 80% and 71% for the two FFPE samples while
maintaining 100% sensitivity.

A surrogate estimate for PPV is the percent of the
called variants annotated by either dbSNP or COSMIC;
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Figure 5 The effects of input DNA quality and quantity on variant detection background distributions. A) The figure shows variant calling
background for the indicated mass amounts of intact cell line or comprised quality, FFPE sample DNA. The standard deviation of the
heterozygous variants increases only slightly with reduced DNA input quantities with intact DNA (left panel), but increases dramatically when the
quantity of lower quality, FFPE DNA is reduced (right panel). The 99th percentile of the background percent variant (red and blue lines) is more
consistent for cell line DNA than for FFPE DNA with the rise in the background being largely driven by the GC > AT transitions. B) The median
99th percentile of the background for all possible substitutions (with G > A and C> T collapsed into GC > AT) from TAS analysis using 250 ng
DNA from 8 FFPE samples using the 1052-amplicon panel (x-axis) compared to after target enrichment using an independent 35-amplicon panel
(y-axis). As expected, GC > AT transitions contribute higher background than other possible substitutions.
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Table 3 Concordance between the 1052-amplicon and 35-amplicon panels as a function of input DNA mass and

adaptive thresholds

FFPE sample Input DNA mass (ng) Platform concordance Variant calling with the 1052-Amplicon panel
Variant caller threshold  Percent annotated Ti/Tv ratio Variants/kb
FN FP TP GC> AT Other

1 2000 00 0(0) 5(5) 6 (6) 6 (6) 88% (88%) 272 (2.72) 089 (0.89)
1000 0(0) 0(0) 5(5) 7(6) 6 (6) 79% (63%) 348 (4.74) 098 (1.26)
500 0 (0) 0 (4) 5(5) 85 (6) 7 (6) 80% (18%) 235(12.72) 093 (5.10)
250 00 2 (10) 5(5) 85 (6) 75 (6) 82% (11%) 218 (17.34) 085 (11.19)

2 2000 0(0) 0(0) 44 6 (6) 6 (6) 80% (80%) 283 (283) 088(0.88)
1000 0(0) 0@ 4 (4) 7.5 (6) 6 (6) 84% (56%) 267 (4.79) 0.84 (1.32)
500 00 0(®) 4 (4) 8 (6) 7(6) 83% (16%) 296 (15.03) 083 (547)
250 0 (0) 109 44 8 (6) 8 (6) 77% (10%) 340 (1743) 084 (10.17)

The indicated mass amounts of two FFPE samples were sequenced after target enrichment with the 1052-amplicon panel. For comparison, 2000 ng DNA from
each sample was also sequenced using an alternative 35-amplicon TAS panel. The true variants were defined based on sequencing results from the 35-amplicon
panel: false negatives (FN) are variants missed by the 1052-amplicon panel; false positives (FP) are variants not detected by the 35-amplicon panel; and true
positives (TP) are variants called by both panels. In general, the variant calling thresholds adaptively increase to adjust to the higher backgrounds of variants
detected with the lower input DNA mass amounts. The thresholds are set independently for GC > AT hypotheses versus all other hypotheses; they are based on
the log of the variant caller score. The adaptive threshold strategy satisfies multiple criteria spanning all positions of the 1052-amplicon panel with respect to:
maintaining a high percent of annotated variants (a surrogate for PPV when the true genotype is unknown); acceptable transition to transversion ratio; and
acceptable number of variants called per kb. The parenthetical numbers are the results from maintaining a constant (non-adaptive) threshold. Note that the
non-adaptive thresholds remain constant to show the drop in percent annotated and the increased call rate. If the thresholds were held constant at, say, 8, then

the call rate would decrease suggesting a drop in sensitivity (data not shown).

these estimates remained stable or dropped slightly at the
lowest amount of input DNA. The results suggested that
the thresholds climbed as expected to mitigate false posi-
tives (particularly for GC > AT transitions), thus balancing
high sensitivity and PPV. If variant caller thresholding did
not adapt to the increasing background from low input or
low quality samples, then the PPV would drop significantly
due to the increase in the false positive rate (Table 3). The
opposite is also true. That is, if the thresholds for low qual-
ity samples were applied to high quality samples, the sensi-
tivity and false positive rate would drop.

A previous study showed the false positive rate in vari-
ant calls was not found to be higher from FFPE compared
to frozen samples [37], but those results were generated
using a genotype-calling application rather than low-level
variant detection. Interestingly, the study also found
elevated GC > AT transitions compared to other substitu-
tions. In our observations, the high background became a
dominating factor for lower-level variant detection based
on the behavior of the tail (such as the 99th percentile) of
the background distribution. With relatively low-quality
DNA samples and low amounts of available DNA, it was
important to maximize sequencing depth to mitigate false
positives (as suggested by Kerick et al. [12] for sequencing
studies <100X coverage), although the pool of amplifiable
DNA is finite in such samples.

Using the QFI as a pre-analytical tool for risk mitigation
and sample prioritization

Too often, there is a negative correlation between the
clinical relevance of samples and their suitability for

NGS. In many cases, precious samples tied to critical clin-
ical endpoints are low in DNA abundance and/or quality,
and are not standardized with regard to collection and nu-
cleic acid isolation methods. For this reason, we recently
developed a preanalytical sample qualification assay (QFI)
that quantifies the absolute number of templates available
for amplification in a DNA sample and predicts sample
performance in downstream NGS assays [21].

To further assess the value of the QFI within the 1052-
amplicon NGS workflow, quantify the risk in sequencing
low quality samples, and challenge the analytical perform-
ance of the 1052-amplicon panel, we evaluated a challen-
ging set of 72 clinical thyroid FFPE biopsies with block
ages ranging from 1 to 19 years (median age = 15 years).
Of the 72 samples, only 18 (25%) met the passing QFI
threshold of >3% amplifiable templates. The remaining
samples either had no detectable QFI (n=26) or a QFI
that was measurable below 3% (n=28). These samples
were sequenced using the 1052-amplicon panel and
results were compared to those obtained using a liquid
bead-based assay (Signature® KRAS; Asuragen, Inc.) with a
validated analytical sensitivity of 1% [46] (see Figure 6).
The comparison focused on call concordance at 15
sites across the BRAF, HRAS, KRAS and NRAS genes,
corresponding to the most common mutations in thy-
roid cancer.

As expected, QFI scores were associated with sequen-
cing uniformity and depth using the 1052-amplicon
panel (Additional file 1: Figure S4). Genetic variants
detected in the 18 samples with a QFI score >3% dem-
onstrated strong concordance with those seen with the
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Figure 6 Interplatform variant dection concordance stratified by QFI. DNA from 72 thyroid cancer FFPE samples was used to test the
concordance of variant calling results between 1052-amplicon panel and a liquid bead array system (Luminex). The samples with the highest
quality DNA (QFI >3%) showed the strongest concordance, >99% between the two variant detection platforms. The concordance rate decreases
with reduced QFI. The size of the markers is based on Luminex status (large markers are mutants, small markers are wild type). The color of the
markers is based on the classification status of the 1052-amplicon panel with data from the Luminex platform defined as truth: green is for true
positives (TP); gray is for true negatives (TN); orange is for false positives (FP); red is for false negatives (FN); and black is for low sequencing
coverage by the 1052-amplicon panel (Low Coverage). The specific predictions from the 1052-amplicon panel are defined as wild type (circles),
mutant (triangle) and low coverage (square). The number of rows in the agreement maps corresponds to the number of samples in the study
except when a sample had no coverage at any of the 15 specified hypotheses. For example, the left most panel has 18 rows corresponding to all
18 samples that were sequenced (with a total of 15 hypotheses *18 samples = 270 entries) so the 4x2 table above the agreement map sums to
270. However, the right most panel only has 14 rows representing 26 samples. That is, 12 samples had no coverage associated with the 15
hypotheses and are not shown, but the corresponding 4x2 table still sums to 15 hypotheses *26 samples = 390 entries. Incidentally, none of the
samples that had zero coverage by the 1052-amplicon panel workflow had positive calls using the Luminex method.
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Signature® mutation assays; both methods correctly iden-
tified 6/6 (100%) variants. Five of the mutations were
associated with BRAF, the most prevalent mutation in
thyroid cancer, and 1 mutation was in NRAS. Sequen-
cing depth for one sample with a QFI of 3.9%, however,
was lower than expected (<100 reads) for BRAF. For the
remaining 28 samples with measurable QFI estimates,
concordance between the platforms was apparent but
diminishing. Variant detection sensitivity of the 1052-
amplicon panel was 78%, with 7/9 variants identified,
but 64/420 (15%) and 32/420 (5%) of the hypotheses of
interest had low (<100 reads) and no coverage, respect-
ively. The two false negatives were associated with
BRAF; percent variant estimates from TAS were near
baseline for both variants. Importantly, the two variants
associated with HRAS would not have been identified in
this study if the samples with a measurable QFI less than
3% had been excluded. These samples represented a gray
area in terms of suitability for analysis; relevant muta-
tions could be confidently identified, but there was a
significant risk of coverage loss (20% (96/420)) of the
genomic positions of interest had low or no coverage)
and inaccurate variant calling (2 false negatives and 1
false positive). The low QFI could be treated as an indi-
cator that DNA input should be increased—a strategy
that has been shown to rescue low-quality DNA samples
[21]. Despite the variant call inaccuracies, 5 of 7 de-
tected variants in samples with QFI <3% were in the
BRAF gene, suggesting that sequencing coverage loss
would not preclude the sample utility in a biomarker
discovery context.

The last stratum of this sample cohort was associated
with an undetectable QFI, indicating that less than 1
amplifiable copy per 150 input templates was present [21].
The sensitivity of mutation detection from this group
could not be accurately assessed since only two mutations
were known (one was reported by TAS). Many of the
variant genomic positions had low (118/390 = 30%) or no
(208/390 = 53%) coverage.

Since QFI measures the proportion of DNA template
accessible for amplification, we investigated whether the
detection rate of genetic variants was a function of QFL
Of the 72 thyroid samples for which we obtained both
TAS and Signature® assay data, 18 were classical papillary
thyroid carcinomas (PTCs), which have a high prevalence
of BRAF mutants [47]. We observed an insignificant asso-
ciation when stratifying BRAF status as determined by
TAS (mutant versus wildtype) by QFI (p-value = 0.09 by
Fisher’s test). However, if we expanded the sample set to
all 30 PTCs (Table 4), BRAF detection rates from both
TAS and the Signature® assay were significantly associated
with QFI (p-value = 0.005 and p-value = 0.03 by Fisher’s
test, respectively). That is, platform concordance was
strong, but both platforms detected fewer variants in the
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Table 4 Association between BRAF detection rate and QFI
status for PTC samples

All PTC samples, N = 30

Luminex

1052-amplicon
BRAF WT BRAF mutant BRAF WT BRAF mutant

QFI =0% 9 1 10 0
0% <QFl<=3% 6 7 8 5
QFI> 3% 2 5 2 5
Fisher-test 0.03 0.005

p-value

When considering the 30 PTC sample subset of the 72 sample Thyroid set, both
the Luminex and the 1052-amplicon panel showed a significant association
between BRAF detection and QFI status.

lowest-quality (QFI) samples. The implication is that
any assay for variant detection based on PCR will likely
suffer a drop in sensitivity with low-quality samples
[21]. Furthermore, this should be carefully considered
when evaluating platform agreement (consistency) and
variant detection (accuracy).

The association between high background and reduced
input of PCR-competent DNA can, to some extent, be
explained by QFL. As the QFI decreased, the variant back-
ground increased and greater variability in the detection
of heterozygous variants was observed (Additional file 1:
Figure S5); this result is conceptually similar to the find-
ings from the FFPE-DNA titration study (Figure 5). How-
ever, only homozygous variants could be reliably detected
for samples with undetectable QFI, because the underlying
template diversity was so low that the probability of sam-
pling the true template distribution significantly decreased.
This created an artificially low background distribution,
poor quantitation, and loss of sensitivity for all variants
except homozygous variants.

We speculate that previous studies that observed
consistent results from FFPE and fresh frozen samples
[13] may have involved FFPE samples with relatively high
functional quality, which, as a result, behave more like
intact DNA samples. Clearly, the QFI can provide specific
guidance for sample inclusion and exclusion for clinical
studies. Organizations such as Genome in a Bottle (http://
www.genomeinabottle.org/) and the International Cancer
Genome Consortium (http://www.icgc.org/) provide spe-
cific recommendations about controls, standards, and stat-
istical analysis, but currently do not address FFPE
samples. The implications from our work suggest using
QFI for sample qualification. We have also shown that
variant detection can be quantitatively affected by FFPE
sample quality. As a result, assumptions about mutational
prevalence and any subsequent power analysis for detec-
tion must be qualified. Ultimately, the QFI offers quantita-
tive insights into the trade-offs between sensitivity and
PPV and can be integrated into a comprehensive NGS
workflow to optimize call performance and provide
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increased flexibility to address the specific goals of the
TAS application, such as clinical research or patient
testing.

Sequencing clinical FFPE colorectal samples
Evaluation of a discrete cohort of colorectal cancer
(CRC) specimens was undertaken to provide a more holis-
tic perspective of the challenges we addressed one-by-one
during development of the 1052-amplicon TAS panel. To
that end, we procured 26 FFPE CRC samples to create 24
DNA mixtures and 22 neat samples (see Materials and
Methods). Of the 46 FFPE samples, 26 had KRAS codon
12/13 mutations to identify to characterize performance
of the entire workflow: sample qualification, target enrich-
ment, sequencing, variant calling and variant confirmation.
Note that all 46 samples were sequenced using the 1052-
amplicon panel. The performance of the targeted NGS
workflow was evaluated in terms of the detection sensitivity
and PPV of the expected KRAS variants. DNA samples
(250 ng) were evaluated to determine suitability for target
enrichment and sequencing using QFL As per previous
guidelines [21], samples with a QFI <3% were rejected from
analysis, leaving 43 samples (43/46 =93% pass rate). Of
these, 2 samples did not yield reliable variant calling
thresholds, ie., their thresholds could not be set in a
sample-specific manner in order to satisfy the constraints
for percent annotated, transition/transversion (Ti/Tv) ratio,
and calls per kilobase (41/43 =95% passed threshold ana-
lysis) (see Materials and Methods). In the end, 41 out of 46
samples (89%) passed both QFI and analysis qualifications:
18 of the 22 neat samples and 23 out of the 24 mixtures.

The variant caller thresholds for the 18 neat samples
are shown per sample, stratified by hypothesis group, in
Figure 7A. To maintain consistency with SNP rediscov-
ery rates, the variant caller thresholds for GC > AT were
higher than those for the other substitutions, as were the
thresholds for the noisy samples presenting lower QFIs.
This strategy mitigated the risk of a high false-positive call
rate from low-quality samples, as seen in previous studies
[21]. A significantly positive association (p-value = 0.03 by
SRC) was observed between the number of variants called
per kilobase and the QFI score for the 18 neat samples
(Figure 7B). The call frequency can be explained by exam-
ination of the other two metrics shown in Figure 7B. In
order to keep these two metrics, Ti/Tv ratio and percent
annotated variants in dbSNP or COSMIC, acceptably con-
strained for lower quality, lower QFI samples, the number
of variant calls must decrease; otherwise the percentage of
annotated variants (a surrogate for PPV) would plunge.
This analysis was driven by the demand to maintain rea-
sonable SNP rediscovery rates.

Using all 41 qualified FFPE CRC samples, we next ex-
amined the implications of this variant calling strategy
by evaluating the sensitivity and PPV of variant
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detection in two clinically actionable KRAS codons (even
though the thresholds for variant calling set for the en-
tire 109 kb panel are not locus-specific) (Figure 7C and
D). The known variant frequencies ranged from 0.1% to
25.8% (median = 7.9%) as measured using the 1052-
amplicon panel, with sensitivity and PPV of 18/23 = 78%
(95% CI=56.3, 92.5) and 18/18 =100% (95% CI =81.5,
100.0), respectively. The 5 false negatives (FNs) in this
experiment had variant frequencies of 0.1% to 5.5% (me-
dian = 2.8%). Of the 18 predicted variants, 16 were
confirmed with the previously established 2% threshold
(based on the analysis in the previous section) in an
alternate confirmation test using singleplex target
enrichment and sequencing on the PGM. Hence, the net
sensitivity was 16/23=69.5% (95 CI=47.1%, 86.8%),
while maintaining 16/16 =100% PPV (95 CI=79.4%,
100.0%). However, the thresholds for the 1052-amplicon
panel were derived without anticipation of variant con-
firmation using an independent method. Our previous
results strongly suggest that improved performance can
be achieved if confirmation testing is integrated within a
comprehensive analysis strategy. Thus, variant calling
thresholds could be relaxed, here by 20%, and the con-
firmation threshold could be decreased to 1%, in which
case sensitivity would increase to 20/23 = 87.0% (95% CI =
66.4,97.2) with 20/20 =100% PPV (95% CI =83.2,100.0).
The consequence of relaxed constraints was that the
median percent variants annotated of the 41 samples
decreased from 79% (IQR=8.2%) to 68% (IQR =8.6%)
with a concomitant rise in the number of variants called
per kb. These analyses demonstrate the balance and trade-
off for sensitivity and PPV with and without the context of
threshold relaxation coupled with confirmation testing.

Conclusions

In this study, we used intact cell line DNA samples, and
low- and high-quality FFPE samples in contexts ranging
from controlled analytical studies to clinically relevant and
well-characterized oncology sample cohorts to evaluate
the performance of a TAS system that encompassed sam-
ple qualification and quantitative QC, a 1052-amplicon
pan-cancer enrichment panel, and a comprehensive bio-
informatics pipeline and reporting strategy. Our specific
approach utilized defined analytical methods (i.e., custom
cell mixtures to address accuracy, linearity and precision),
multi-tier bioinformatics analyses and tools (i.e., system-
atic variant identification, variant caller performance and
an HTML interface for visualizing and navigating results),
distinct sequencing strategies (orthogonal platform com-
parison, sequential testing effects on accuracy) and clinic-
ally relevant evaluations and applications (sequencing,
analysis and interpretation of two large independent FFPE
cohorts). With a DNA input of 250 ng, the linearity was
0.99 based on the CCC and 4 independent sequencing
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Figure 7 Variant calling summary for FFPE CRC samples. A) Violin plots of the variant calling thresholds (x-axis) for each sample stratified by
hypothesis group: GC > AT transitions (blue right panel) versus all other substitutions (left red panel). The thresholds are higher for samples with
reduced QFI estimates (y-axis) and for GC > AT hypotheses. The width in the plots correspond to the density of points in the region. B) Violin
plots of metrics associated with SNP rediscovery. The transition to transversion (Ti/Tv) ratios, variants called per kilobase, and the percentage of
variants annotated by dbSNP or COSMIC are shown in the panels from left to right. All metrics are independent of QFI based on univariate

each of the KRAS alleles as measured by the single amplicon confirmation platform (y-axis) as a function of the percent variant found using TAS with
the 1052-amplicon panel (x-axis). In this plot, the predicted and confirmed variants were called using relaxed thresholds for the 1052-amplicon panel
method results with confirmation at 1% by the single-amplicon assay sequenced on the PGM (horizontal orange dashed line). D) 2x2 tables showing
classification performance of KRAS variant prediction from TAS with the 1052-amplicon panel stratified by default threshold analysis (upper 2x2 table) or
incorporation of confirmation testing and relaxed thresholds (lower 2x2 table). There are 41 samples considered for analysis spread across 4 KRAS alleles
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runs showed an interquartile range of 1.52% for variants
at 2%. By incorporating results from an orthogonal
sequencing platform, we not only confirmed predicted
SVs (Wilcox signed-rank test p-value <107'¢), but we also
demonstrated the increase the f-measure of TAS up to
51%. We reiterated the utility of the QFI with two inde-
penedent FFPE cohorts to show that coverage and inter-
platform concordance are positively correlated with the
pre-sequencing QFI metric. We extrapolated the concept

of increased performance through confirmation testing
from cell lines to FFPE to increase sensitivity from 78%
to 87% while maintaining 100% PPV. The results under-
score the value of an integrated clinical workflow for
targeted NGS.

More recently, increased focus has turned to simultan-
eous identification of multiple types of aberrations such
as copy number variation (CNV) in addition to indel
and SNV detection [15]. Importantly, the concepts for
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SNV detection presented here can also be extended to indel
detection with the caveat that more mixtures and samples
will be necessary to achieve a comparable number of aberra-
tions. CNV analysis has had more visibility using hybrid-
capture based workflows compared to PCR based workflows
[15]. We are currently improving the bioinformatic analysis
and experimental workflows to better represent the range of
aberrations and analytes available for measurement.

Finally, we note that the increasing commoditization of
WGS and WES provides alternatives to TAS for clinical
resequencing applications. In particular, WGS offers the
most comprehensive content, established and straightfor-
ward workflows, and well-characterized pipelines and tools
for use with high-quality DNA to capture the full range of
sequence variation, including copy number changes, struc-
tural rearrangements, and indels. With our limited under-
standing of the clinical interpretation of genome-wide
variation in oncology, however, the strengths of WGS can
also be a liability. WGS reveals millions of variants in each
patient sample, including large numbers of alterations that
may require tedious review to determine their clinical sig-
nificance, if any. For this reason, WGS of tumor-normal
pairs is often advisable, but this approach further escalates
the costs compared to TAS and is still may be confounded
by “driver” vs. “passenger” mutations. Even as the costs of
WGS decline, TAS still offers a number of advantages, in-
cluding sample throughput and sequencing depth to detect
low-abundance, clinically actionable variants in challenging
specimens such as FFPE. To this point, the number of
cancer-related variants with compelling evidence to guide
patient management (and reimbursement) based on avail-
able therapies and interventions is actually quite modest,
and most clinical laboratories favor panels that target 20—
50 genes. As a result, a [llumina MiSeq or an Ion Torrent
PGM or Proton sequencer are appropriately scaled to their
needs. A number of other advantages for TAS compared to
WGS or WES for clinical diagnostics have been detailed
elsewhere [48]. Last, we note that orthogonal sequencing to
improve call accuracy—an approach that we highlight here
using TAS—has also been reported for WGS [49]. Yet,
again, many of the benefits of TAS are expected to persist
compared to WGS due to the ~3-6 orders of magnitude re-
duction in content (while still retaining the most clinically
relevant sequences) and associated reduction in bioinfor-
matic and interpretative complexity. Fundamentally, TAS is
better suited to report well-characterized mutations that
are known to be actionable as a first-line test, without the
limitations of low-coverage WGS that can overlook these
mutations in heterogenous tumor specimens. In situations
where TAS fails to report clinically meaningful molecular
information, WES or WGS may be viable options by “cast-
ing a broader net” in some cases.

In summary, our results highlight the value of a compre-
hensive diagnostic approach to target amplicon sequencing
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that integrates preanalytical, analytical, and postanalytical
quality measures and analyses, and offers reliable detection
of clinically relevant mutations from challenging tumor
specimens. We suggest that the emergence of TAS as the
method of choice for the “first wave” of cancer diagnostic
NGS assays requires similar strategies for process integra-
tion to combat erroneous interpretations, expand options
for the accurate assessment of low-quality tumor biopsies,
and ensure reliability in routine patient testing and in indi-
vidualizing therapy choices.

Additional file

Additional file 1: Figures S1-S7. This is a Microsoft word document
containing images and legends that describe selected findings from the
research that were deemed less important to the overall communication
than the figures included in the main body of the manuscript.
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