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Abstract

Background: Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution.
In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning
methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role.

Methods: In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from
the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3),
Price Foundation Collaborative Group and the Children’s Hospital of Philadelphia (CHOP), and applied machine
learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver
operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects.

Results: Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector
Machines and Gradient Boosted Trees reached AUC’s of 0.691 and 0.623, respectively. Using different sample sizes, our
results suggest that larger datasets are required to optimize the machine learning models and achieve higher
AUC values.

Conclusions: To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level
data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk
evaluation process, eventually benefitting AN patients and families in the clinical setting.
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Background
Anorexia nervosa (AN) is a complex eating disorder with
psychiatric manifestations, including strong obsessive con-
cern about gaining weight, twisted self-depiction towards
body shape and eating, and extremely low food intake
resulting in below-average body mass index [1–3]. The es-
timated prevalence of AN in the general population is ~
1 % [4] and it is sex-biased, with an estimated female to
male ratio of 10:1 [1, 3] and many patients being young
women. Common comorbid psychiatric disorders include
major depression disorder and anxiety disorders [5–9].
Among all psychiatric disorders, AN has one of the high-
est mortality rates [10–16]. However, interventions for
AN have shown limited success and the hospitalization

for weight regain is time consuming and expensive
[17–19]. Altogether, AN incurs serious physical, psy-
chological, familial and social toll to the modern world.
Recent efforts have shown that genetics plays an import-

ant role in AN susceptibility with heritability estimates
from twin studies are as high as 84 % [20–26]. The inherit-
ance is complex and multiple genes/loci are potentially in-
volved, especially those in the dopamine pathway [27–29],
weight/BMI related genes [30–33] and cholesterol metab-
olism regulatory pathway genes [34]. Three Genome Wide
Association (GWA) studies [35–37] have been published
without identifying an AN associated marker at genome-
wide significance level of P value < 5E-8. Nevertheless,
several genome wide marginal results have been re-
ported, suggesting larger sample size and/or denser
genotyping or high throughput parallel sequencing may
be required to unveil the genetic underpinnings of AN.* Correspondence: guoy@email.chop.edu; hakonarson@email.chop.edu
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Recently, machine learning based risk prediction methods
using genotyping data have gained momentum in relation
with GWA studies in complex disease [38–46], making an
important contribution towards the promise of personal-
ized medicine [47–49]. Here, we have organized the largest
AN cohort so far [37], constructed machine learning
models using GWA microarray data [47, 50], and ap-
plied the model to testing data set to evaluate the
model’s performance by the area under the receiver op-
erating characteristic curve (AUC) [47, 51, 52]. AUC is
a value between 0.5 and 1 that assesses how well the
model can distinguish cases from unaffected controls,
with the higher number indicating better discriminative
power. To our knowledge, this is the first attempt to as-
sess AN disease risk using genetic information alone
and the results, together with further investigation into
AN genetics, would be anticipated to contribute to
early diagnosis and allow for preventive interventions
of AN in the future.

Methods
Ethics and consent
Local ethical approvals were granted for each participat-
ing study. For participants under the age of 16, written
informed consent from their parents were obtained; for
participants over the age of 16, written informed consent
from themselves were obtained. Full names and loca-
tions of the ethic committees can be found in the end of
the Additional file 1.

Participating studies, genotyping and phenotyping
We combined individual level genotypic and phenotypic
data from a total of 16 datasets in the Genetic Consortium
for Anorexia Nervosa (GCAN)/Wellcome Trust Case
Control Consortium 3 (WTCCC3), The Price Foundation
Collaborative Group [53–55] and Children’s Hospital of
Philadelphia (CHOP; Table 1). The final dataset encom-
passed 3940 cases and 9266 controls. Phenotyping details,
genotyping approaches and quality control are described
elsewhere previously [37]. In brief, all cases were female
older than 9 years and met DSM-IV [1] (the Diagnostic
and Statistical Manual of Mental Disorders, 4th Edition)
diagnostic criteria (amenorrhea criterion not required).
Genotyping was done using Illumina microarrays, followed
by quality control and imputation (as described previously
in ref. [37]). We also collated 5087 disease free controls
from Center for Applied Genomics at CHOP, which have
been successfully used in previous neurodevelopmental/
psychiatric GWA studies [56–59].

Logistic regression model
The entire dataset was randomly partitioned into three
equal parts using Fisher-Yates permutation [60], without
specifying case/control ratio. We then took a three step

procedure to conduct the logistic regression (LR) predic-
tion, including a) predictor pre-selection in the first subset
of data (i.e. fold1), b) model training with cross-validation
in the second subset (fold2) and c) model testing and as-
sessment in the third part (fold3). As information for
model training and testing were randomly drawn from the
same collection of data, any population stratification in
fold3 is already accounted for in the model during the
training process in fold2 [61].
In the pre-selection stage, a GWA study was con-

ducted in fold1 using PLINK [62] with conventional set-
tings of maximal per-SNP missingness of 1 %, maximal
per-individual missingness of 5 %, minimally allowed minor
allele frequency of 1 %, minimally allowed Hardy-Weinberg
equilibrium test P value of 1E-6. Then we retained SNPs
with genome-wide case-control association test P
value < 1E-3 to the next stage. Next we employed lasso
regularized LR model with ten-fold cross validation in
R package ‘glmnet’ [63] (http://cran.r-project.org/web/
packages/glmnet/index.html) in fold2 data. A grid of
lambda values (the regularization parameter in the
model to reduce overfitting) are computed for the lasso
penalty and AUC was measured to assess the perform-
ance. At the third stage, the model trained on fold2
data was then tested on fold3 data, and we calculated
its AUC.
The procedure was repeated ten times using ran-

domly shuffled datasets (Additional file 1: Table S1).
Different sample sizes with randomized reruns were
also examined to evaluate sample size effects to model
fitting.

Table 1 Sample sizes of participating studies

Country Cases Controls

Canada 54 –

Czech Republic 72 –

Finland 131 404

France 293 –

Germany 475 –

Greece 70 –

Italy-North 203 –

Italy-South 75 –

Netherlands 348 –

Norway 82 –

Poland 175 –

Spain 186 –

Sweden 39 –

UK 213 –

USA 491 –

USA-CHOP 1033 8862

Total 3940 9266
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Support Vector Machine and Gradient Boosted Trees
In order to compare different machine learning tech-
niques, Support Vector Machines (SVM) with RBF kernels
and default parameters (R package ‘e1071’; http://
cran.r-project.org/web/packages/e1071/index.html) and
Gradient Boosted Trees with default parameters (R
package ‘gbm’; http://cran.r-project.org/web/packages/
gbm/index.html) approaches were also used thereafter
to train models within fold2 and assess the perform-
ance within fold3.

Results
Logistic regression model applied to the dataset
After combining 16 datasets (Table 1), imputed genotyp-
ing data were collated for a total of 3 940 cases and 9 266
controls each at up to 317 481 SNPs. We performed
GWA scan in a subset of the cohort (the pre-selection
dataset or fold1), which contains 1289 AN cases and 3113

healthy controls (Additional file 1: Table S1). Considering
that currently no single marker has been found to be asso-
ciated with AN at the level of P value < 5E-8 in any GWA
study, we used SNPs with a less stringent threshold of P
value < 1E-3, instead of the entire SNP list, for subsequent
machine learning calculations. A total of 1486 SNPs were
retained according to this criterion after quality control
(Additional file 1: Table S1) and were utilized in LR model
training and cross-validation. In the second subset of data
with 1341 cases and 3061 controls (the model training
dataset or fold2) where we did ten-fold cross-validation,
the penalized LR with L1 penalty [63] (the lasso) generated
a model of 273 SNPs (Additional file 1: Table S1), with an
AUC of 0.673 and regularization penalty parameter
(lambda) of 0.00954 (Fig. 1). Subsequently we fitted this
model to the third subset of 1310 cases and 3092 controls
(the testing dataset or fold3), and the result indicated an
AUC of 0.693 (Additional file 1: Table S1, Fig. 1 and

Fig. 1 Logistic regression model with ten-fold validation. By harnessing L1 penalty (the lasso), we further removed irrelevant SNPs in fold2 after
the preselection step in fold1. Smaller lambda (the penalty parameter) values correspond to fewer SNPs removed, and numbers on the top of the
plot indicate how many SNPs survived with respect to specific lambdas as X-axis (natural logarithm scale). We estimated the mean and standard
error (SE) for AUCs across 100 different lambda values, and reported the largest lambda such that AUC is within 1 SE of the optimum (the left vertical
dashed line shows the lambda with maximum of AUC, while the right vertical dashed line shows the lambda with AUC being within 1 SE of that maximum).
The optimal 10-fold cross-validated AUCs on fold 2 data was 0.673 with regularization parameter lambda of 0.00954
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Additional file 2: Figure S1). We randomly shuffled the
entire dataset nine more times and the results were similar
for all runs (Additional file 1: Table S1). By using a 0.5 cut-
off to the linearly calculated classifier output, we also cal-
culated sensitivity and specificity in fold3, with values of
11 % and 97 %, respectively.

Sample size effects to the model
We evaluated effects of sample sizes to the LR model per-
formance. First, different percentages of fold2 samples
were used for model training and the same fold3 dataset
was fitted to measure the AUC values. We found a clear
trend that AUC increases as the training population grows
(Fig. 2 and Additional file 1: Table S2), which is consistent
with the case of Inflammatory Bowel Disease (IBD) [44].
Results of ten randomized reruns showed significant dif-
ferences between AUC’s of smaller training sample sizes
and that of the original 100 % dataset (P values < 4.2E-3;
Additional file 1: Table S2). We also experimented adding
more samples from fold3 to fold2, in order to assess the
behavior of the AUC trend in the situation of expanded

training datasets. As shown in Fig. 3, AUC continues to
increase along with the training dataset, especially when
the training sample size is above 1.5 times of the original
(P values < = 0.036; Additional file 1: Table S3), despite lar-
ger variation from ten randomized reruns.

Comparison with other machine learning methods
We also explored two other widely used machine learn-
ing methods, Support Vector Machines (SVM) and Gra-
dient Boosted Trees (GBT), and implemented them on
our dataset following ten randomized repeats. While
SVM provided similar performance in terms of AUC (P
value = 0.099; Additional file 1: Table S1), GBT was sig-
nificantly inferior to the LR method we used (P value =
6.9E-10; Additional file 1: Table S1).

Discussion
We assessed AN disease risk using genome-wide SNP
data by machine learning approaches on the largest AN
cohort yet studied, representing one of the first applica-
tions of this kind in a complex psychiatric disorder [64,

Fig. 2 Relationship between smaller fold2 sample size (from 10 % to 90 % of the original) and AUC in fold3. 10 % of fold2 corresponds to 129
cases and 312 controls. Error bars with one standard deviation of 10 reruns are shown. Blue horizontal dashed line indicates AUC of fold3 when
100 % of the fold2 data were employed to train the LR model
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65]. Our strategy follows a recent paper [66] with the
basic idea that when data dimensionality is much larger
than sample size, it is suggested to first do dimension
reduction using a fast and simple method (e.g. univari-
ate test), followed by some well-developed lower di-
mensional methods (e.g. lasso, Dantzig selector etc.).
This can yield more accurate estimation as shown by
our recent study [44]. After partitioning the cohort into
three equal folds, we pre-selected SNPs in fold1 by fil-
tering out those with genome-wide genetic association
test P value > = 1E-3, trained the model in fold2 using
LR with L1 penalty and cross-validation, and fit the
model in fold3, achieving a discriminative measure
AUC of 0.693. We used AUC mainly because this is a
case-control study which makes it hard, if possible, to
measure calibration accuracy. More discussion can be
found in ref. [67] regarding model accuracy. With more
experiments on sample size adjustment, we discovered
that the AUC for AN risk prediction was similarly sam-
ple size sensitive as other complex disorders like IBD
[44], suggesting that larger sample sizes are needed to

improve the machine learning models. We also assessed
the posterior probability generated with the LR model
in fold3, and the sensitivity and specificity were 11 %
and 97 %, respectively.
Our previous disease risk prediction efforts for type 1

diabetes (T1D) [39] and IBD [44] showed higher AUC as
well as sensitivity/specificity values, which is consistent
with, and can be explained by the fact that through suc-
cessful GWA studies, genetic markers with significant
association (e.g., P value < 5E-8) have been identified for
both T1D and IBD, allowing for high performance ma-
chine learning models to discriminate cases from un-
affected controls based on genotypic information. With
regard to T1D [68], more than 40 genomic regions have
been reported to be associated with the disease, and the
human HLA genes are on the top of the list with P
values < 4E-136. For IBD [69], more than 160 disease as-
sociated loci have been identified and markers in the
IL23R region have P values < 1E-160. For both T1D and
IBD, large sample sizes with approximately 10,000 pa-
tients in each case and significant contribution from the

Fig. 3 Relationship between training dataset with more samples and AUC in the model testing dataset, when moving samples from fold3 to
fold2. 10 % of fold2 corresponds to 129 cases and 312 controls. Error bars with one standard deviation of 10 reruns are shown. Blue horizontal
dashed line indicates AUC of fold3 when 100 % of the fold2 data were employed to train the LR model
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MHC region, are responsible for these successes and
consequent superior disease risk prediction. Therefore
with data from more AN samples in addition to the
current 3940, it is highly likely that we will see better
results for both the GWA effort and machine learning
based risk prediction. Research into schizophrenia
genetics provides a similar example in which large
datasets led to the breakthrough of 128 independent
genome-wide association signals [70] following identi-
fication of marginal hits with a few thousand cases in
early stages [71].
In this report, we compared multiple machine learn-

ing methods LR, SVM and GBM. Results suggested that
LR and SVM are similar in terms of AUC values, while
GBM showed lower performance. From a practical per-
spective, the LR results are promising and LR models
are easier to interpret and construct than SVM, al-
though the current result requires improvement if
genotype based AN risk prediction is to be used clinic-
ally. GBT is good at capturing interacting effects and
may not be optimal when true models are linear. We
have many SNPs typed thus it is likely interacting SNPs,
if any, may already be interrogated well by a single
SNP. In addition, here the number of SNPs is much lar-
ger than the sample size; a simple linear model may be
more robust to over-fitting than assuming complex tree
structures. We also tried to use random forests (RF) as
well, but due to high time complexity and slow conver-
gence this methods was excluded from the analysis.
Further investigation is required to assess the perform-
ance of RF. Moreover, we can compare these methods
with different parameter combinations and settings
when a larger cohort of AN samples are available.
We shuffled LR model 10 times and got variable

number of SNPs as predictors, with the observation
that three SNPs are always in the shuffles (rs9982741,
rs6092077 and rs2230513), and two SNPs (rs10250561
and rs16835204) are in 9 of the 10 shuffles. Those SNPs
have the highest p values (from 4.39E-6 to 3.05E-4) in
the fold1 GWA study. In light of AN’s high heritability
[20–26] and current lack of genome-wide significant
markers [35–37], we anticipate that collating, pheno-
typing, genotyping and possibly sequencing more AN
cases will reveal more strongly associated SNPs (thus
serving as representative predictors), and greatly im-
prove the performance of the machine learning models
with higher specificity and sensitivity, which could be
highly useful in a clinical setting. More complicated
models including copy number variation, rare variants
and even environmental factors will also lead to better
performance. This and the discovery of significantly as-
sociated genomic loci or other biomarkers, will bring
us closer to the goal of individualized medicine through
early diagnosis and intervention for AN.

Conclusion
Using machine learning techniques, here we present the
first AN risk prediction study based on genome wide
genotype data. Our results indicated higher performances
of LR and SVM as opposed to GBT, with the greatest dis-
criminative value AUC being 0.693 for the linear model.
In addition, we showed that larger sample sizes can im-
prove the machine learning risk prediction outcome, ur-
ging expanded AN case collection through international
collaboration. With more genomic and other data in a
greater sample pool, our study and the motheds we used
will serve as the first step toward genomic screening of
AN risk in a clinical setting.

Availability of supporting data
Anorexia nervosa case summary statistics can be found
at the PGC website (https://www.med.unc.edu/pgc/
downloads).
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