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Abstract
Background Glioma cells have increased intake and metabolism of methionine, which can be monitored with 
11 C-L-methionine. However, a short half-life of 11 C (~ 20 min) limits its application in clinical practice. It is necessary 
to develop a methionine metabolism genes-based prediction model for a more convenient prediction of glioma 
survival.

Methods We evaluated the patterns of 29 methionine metabolism genes in glioma from the Cancer Genome 
Atlas (TCGA). A risk model was established using Lasso regression analysis and Cox regression. The reliability of the 
prognostic model was validated in derivation and validation cohorts (Chinese Glioma Genome Atlas; CGGA). GO, 
KEGG, GSEA and ESTIMATE analyses were performed for biological functions and immune characterization.

Results Our results showed that a majority of the methionine metabolism genes (25 genes) were involved in 
the overall survival of glioma (logrank p and Cox p < 0.05). A 7-methionine metabolism prognostic signature was 
significantly related to a poor clinical prognosis and overall survival of glioma patients (C-index = 0.83). Functional 
analysis revealed that the risk model was correlated with immune responses and with epithelial-mesenchymal 
transition. Furthermore, the nomogram integrating the signature of methionine metabolism genes manifested a 
strong prognostic ability in the training and validation groups.

Conclusions The current model had the potential to improve the understanding of methionine metabolism 
in gliomas and contributed to the development of precise treatment for glioma patients, showing a promising 
application in clinical practice.
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Background
Gliomas are one of the most lethal and frequent brain 
tumors [1], with an estimated 100,000 new cases being 
diagnosed annually [2]. Based on the fifth edition of the 
World Health Organization (WHO) classification of the 
central nervous system tumors [3], histological classifi-
cation and molecular biomarkers, such as grade I to IV, 
isocitrate dehydrogenase 1 and 2 (IDH1/IDH2)mutation 
and chromosome 1p/19q co-deletion status, have been 
used in diagnosis, treatment and prognostic evaluation 
of glioma [4]. However, both histological and molecular 
approach are less accurate on an individual basis. Fur-
thermore, therapies targeting these molecular markers 
have a limited overall benefit. There is an urgent need for 
discovering additional prognostic biomarkers beyond the 
WHO classification to better inform prognosis predic-
tion and treatment strategy.

Glioma cells have increased methionine (Met) con-
sumption and metabolism, which can be measured with 
11  C-L-methionine. Several studies demonstrated that 
the 11  C-methionine PET scan is highly sensitive and 
specific for detecting high-grade gliomas [5, 6]. Further-
more, lower Met absorption or a decrease in the Met 
metabolic tumor volume was associated with a better 
long-term prognosis, indicating that 11  C-methionine 
PET can be used as a prognostic indicator for glioma 
patients [7]. Although there is abundance of data avail-
able about the 11  C-methionine PET for assessing, 
identifying, and grading gliomas [8], no study about the 
prognostic value of methionine metabolism genes in gli-
oma patients has been reported.

This study investigated the methionine metabolism 
genes in gliomas applying bioinformatics techniques 
[9–12]. A prediction signature based on 7-methio-
nine metabolism genes was developed. Next, functional 
enrichment analysis was performed to investigate the 
underlying pathways. Additionally, we developed a 
nomogram combining clinic pathological characteristics 
with the Met metabolism prognostic signature, and dis-
covered that it performed exceptionally well in assess-
ing the 1-, 2-, 3-, 5- and 10- year survival rates of glioma 
patients. The currently developed system could improve 
our understanding of methionine metabolism in gliomas, 
allowing us to provide more precise and effective treat-
ment for glioma patients.

Methods
Data source and ethics approval
The RNA-seq data comprising a merged cohort of low-
grade glioma (LGG) and GBM containing 691 patients/
samples were obtained from TCGA databases (https://
tcgadata.nci.nih.gov) [13]. IDH mutation, 1p/19q, tran-
scriptional subtyping, and MGMT promoter methyla-
tion information were obtained from the supplementary 

data from a previous publication [14]. The CGGA mRNA 
expression data (mRNAseq_325, mRNAseq_693 and 
mRNA-array) and corresponding clinicopathological fea-
tures were collected from the CGGA database (https://
www.cgga.org.cn) [15].

Single-cell sequencing data were collected from the 
GSE117891 [16] data set of the Gene Expression Omni-
bus database. As the current study was an analysis based 
on publicly available databases with pre-existing institu-
tional review board (IRB) approval, ethical statement and 
informed consent was therefore waived.

Assembling a set of methionine metabolism genes
Genes related to methionine metabolism were down-
loaded from the gene sets, including the WP_CYS-
TEINE_AND_METHIONINE_CATABOLISM and 
WP_METHIONINE_DE_NOVO_AND_SALVAGE_
PATHWAY gene sets, in the Molecular Signatures 
Database (MSigDB) version 2023.1. Hs. Methionine 
metabolism gene set containing 29 genes was finally 
obtained after removing overlapping genes and four low-
expressed genes showing an undetectable level of expres-
sion in more than 50% of samples in TCGA and CGGA 
database (BHMT, MAT1A, TAT, and SQOR).

Survival analysis
Survival distribution and significance was evaluated by 
Kaplan-Meier curves, log-rank test analysis, univari-
ate Cox regression and multivariate Cox model analyses 
with the survival and survminer packages in R software 
(version 4.2.2, http://www.r-project.org.The R package 
survivalROC was applied to establish time-dependent 
receiver operating characteristic (ROC) curve to assess 
the accuracy of the risk signatures in predicting the out-
comes for glioma patients. A risk plot was drawn using 
Pheatmap R package to show the distribution of survival 
status of samples in different risk groups.

Single-cell RNA-seq analysis
The processed scRNAseq UMI Count Matrix and meta-
data were obtained from GSE117891. The Seurat package 
was used to perform cell clustering (version 4.1.0). Stan-
dard preprocessing workflow of single-cell sequencing 
results was conducted according Seurat - Guided Clus-
tering Tutorial. CD68, FA2H, CD3E, and SOX2 are mark-
ers for macrophages, oligodendrocytes, T lymphocytes, 
and tumor cells, respectively [16]. The scRNAseq expres-
sion data visualization was realized using ggplot2 pack-
ages in R software.

Methionine metabolism gene signature construction and 
validation
The Methionine metabolism genes related to overall 
survival (logrank p and Cox p < 0.001) were analyzed by 
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least absolute shrinkage and selection operator (LASSO) 
regression using the glmnet R package in TCGA data-
base to narrow the range of prognosis-related genes. 
Subsequently, the Akaike information criterion (AIC) 
method of multivariate Cox regression analysis was 
conducted using the MASS package to build an opti-
mal methionine metabolism gene risk signature based 
on the results of multivariate Cox regression analy-
sis. The risk score was calculated using the formula: 
Riskscore=∑Ni=1(Coefi×Expi),where Expi is the expres-
sion value of the methionine metabolism genes and Coefi 
is the corresponding regression coefficient calculated 
by multivariate Cox regression analysis. TCGA data 
served as the training cohort, whereas CGGA325, CGGA 
mRNA array and CGGA693 data were as the validation 
cohorts.

Differentially expressed gene (DEG) and functional 
enrichment analysis
The mRNA count data from CGGA-325 database was 
used as the input data, and DEG analysis was conducted 
using the DEGseq R package. The Principal Compo-
nent Analysis (PCA) was applied to visualize variation 
between samples in DESeq2 package. The definition of 
DEGs was genes with false discovery rate (FDR) value < 
0.05 and Log2 (fold change (FC)) > 1. The Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and hallmark gene sets were used to annotate 
biological pathways employing the clusterProfiler R pack-
age [17].

Mutation and drug susceptibility analysis
The mutation annotation format (MAF) from the TCGA 
database was generated using R package “maftools”, and 
the somatic mutations of gliomas in low- and high-risk 
groups were plotted. The total number of missense, 
insertions/deletions, and frameshift variations found 
in the tumor sample were added, and the tumor muta-
tion burden (TMB) of each glioma’s patient in the TCGA 
cohort was also calculated. Drug sensitivity analysis was 
performed using R package “pRRophetic” [18].

ESTIMATE analysis
The immunological landscape was assessed by perform-
ing ESTIMATE analysis. The ESTIMATE R package 
examined the computation of ESTIMATE scores, immu-
nological scores, or stromal scores [19].

Development and evaluation of a nomogram based on the 
gene signature
A nomogram was developed using the “rms” R package 
to facilitate the prediction of 1-, 2-, 3-, 5- and 10- year 
overall survival (OS) chance in glioma patients. Calibrate 

curves and C-Index values were further used to show the 
accuracy of the survival prediction from the nomogram.

Statistical analysis
Unpaired Student’s t test was used to determine the sta-
tistical significance for variables with two normally dis-
tributed comparison groups. Wilcoxon test was used 
to calculate the statistical significance between the two 
groups for variables with nonnormal distributions. One-
way ANOVA test was applied as parametric methods 
to compare more than two groups, whereas Kruskal-
Wallis test was employed as nonparametric approaches. 
Between two groups, linear relationship determina-
tion using Pearson’s or Spearman’s correlation analysis 
was applied. For all statistical studies, R and SPSS soft-
ware was used. P < 0.05 was considered as statistically 
significant.

Results
Methionine metabolism gene expression is associated with 
clinical outcomes of gliomas
To understand the clinical significance of Met metab-
olism genes, a total of 29 genes, including 10 genes 
involved in methionine de novo and salvage pathways 
and 19 genes related to methionine and cysteine catabo-
lism (Fig.  1A), were identified from MSigDB. The prog-
nostic value of these genes in the TCGA dataset was 
investigated using Kaplan-Meier and Cox proportional 
hazard model analysis. After splitting patients into high 
and low groups down the median, 25 genes were found 
to be significantly associated to glioma patients’ overall 
survival (logrank p and Cox p < 0.05, Fig. 1B, C). We then 
investigated the expression distribution of these genes 
using a single-cell RNA transcriptome (GSE117891). 
Dotplot revealed that most Met metabolism genes were 
generally expressed after identifying cell types by the 
known unique signature genes (Fig. S1A-E). These results 
indicated the potential role of Met metabolism genes in 
gliomas prognosis.

Establishment of a Met metabolism genes signature for 
gliomas
To develop a convenient prediction model for gliomas, a 
set of 23 Met metabolism-related genes (logrank p and 
Cox p < 0.001, Fig. 1B, C) were subjected to the LASSO 
regression analysis (Fig.  2A, B). The Akaike’s Informa-
tion Criterion method of multivariate Cox regression 
analysis was performed on the genes returned from the 
Lasso regression analysis (12 genes) to develop an opti-
mal model (Concordance index, C-index = 0.83, Fig. 2C), 
which included seven genes, namely, GCLC, IL4I1, SMS, 
MSRB2, MTAP, MPST, and ADI1 with a cox regres-
sion coefficient of -0.3024212, 0.3596390, 0.5178925, 
-0.5721255, -0.1594767, -0.1611646 and 0.6415830, 
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Fig. 1 Met metabolism genes expression is associated with clinical outcomes of gliomas. (A) Schematic of methionine metabolism pathways. 
MTA, 5′-methylthioadenosine; L-Met, L-methionine; SAM, S-adenosylmethionine; SAH, S-Adenosylhomocysteine; HCY, Homocysteine; Cys, Cysteine; Gln, 
Glutamine. (B, C) Clinical outcomes of glioma patients with low and high expression of methionine metabolism genes. Univariate clinical prognostic 
parameter analysis in TCGA databases. Abbreviations: CI, confidence interval; HR, hazard ratio (B); Kaplan-Meier survival analysis was performed in TCGA 
databases between low (blue) and high (red) expression levels (C). Survival differences were compared based on the division of the expression of me-
thionine metabolism genes across the median into high and low
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Fig. 2 The development and evaluation of a prognostic model of the Met metabolism gene risk signature for gliomas. (A) LASSO coefficient 
profiles of the 23 genes in the TCGA data set. (B) Selection of the optimal parameter (lambda) in the Lasso model. (C) Seven genes were chosen for es-
tablishing a prognosis signature. (D) Kaplan–Meier survival analysis of high-risk groups (red) and low-risk groups (blue). (E) Analysis of risk score, survival 
status, and survival time between two risk groups, as well as the expression distribution of the Seven Met metabolism gene signature in the TCGA dataset. 
(F) Time-dependent ROC curves demonstrated the AUC value of prognostic model
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respectively. Then, the survival risk score for each patient 
in the TCGA dataset was calculated based on the expres-
sion level of the seven candidate genes and their related 
coefficients. According to the median risk score, the 
patients were classified into high- and low-risk groups, 
with the high-risk group showing significantly lower sur-
vival rates than the low-risk group (P < 0.0001, Fig. 2D, 
E). A remarkably lower expression was in GCLC, MSRB2, 
MTAP and MPST in the high-risk groups was noted, 
whereas IL4I1, SMS, and ADI1 expression was signifi-
cantly higher (Fig.  2E). The protein expression levels 
of the seven genes were also collected from the Human 
Protein Atlas (HPA) (https://www.proteinatlas.org/). The 
expression levels of risk factors IL4I1, SMS, and ADI1 
in high-grade gliomas were higher than those in lower‐
grade gliomas, while the protein expression levels of pro-
tective factor GCLC, MSRB2, MTAP and MPST were 
exactly the opposite (Fig. S2).

Time-dependent ROC curves were used to assess the 
sensitivity and specificity of the prognostic prediction 
by the Met metabolism risk signature. The area under 
the ROC curves (AUCs) for predicting 1-, 3-, and 5-year 
survival times were 0.88, 0.89, and 0.80, respectively 
(Fig.  2F). IDH wild-type (IDH wt), IDH mutant sam-
ples with codeletion of chromosomal arms 1p19q (IDH 
mutant-codel) and samples with euploid 1p/19q (IDH 
mutant-non-codel) have been proposed as classifica-
tions for glioma regardless of grade and histology. The 
prognostic value of Met metabolism risk signature in the 
TCGA dataset was investigated using Kaplan-Meier in 
the above subgroups of glioma patients. Results showed 
that the Met metabolism risk signature had a good pre-
dictive ability in IDH wt, IDH mutant-codel and IDH 
mutant-non-codel (p < 0.0001, p = 0.0068 and p = 0.025, 
respectively, Fig. S3A-C). To further examine the sensi-
tivity and specificity of the Met metabolism risk signa-
ture in prognostic prediction in the above subgroups of 
glioma patients, time-dependent ROC curves were plot-
ted. For IDH wt patients, the AUCs for 1-, 3-and 5-year 
OS were 0.68, 0.75 and 0.75, respectively (Fig. S3A). The 
AUCs for predicting 1-, 3- and 5-year OS of patients with 
IDH mutant-codel were 0.95, 0.66 and 0.86, respectively 
(Fig. S3B). The AUCs for predicting 1-, 3- and 5-year OS 
of patients with IDH mutant-non-codel were 0.73, 0.65 
and 0.54, respectively (Fig. S3C). These results indicated 
that the model had a high accuracy in predicting overall 
survival of patients with gliomas.

Validation of prognostic model by external datasets
To further evaluate the precision and dependability of 
the prognostic model, the predictive role of the risk 
score was verified using different glioma databases. In 
the CGGA325 database, the AUCs for 1-, 3-and 5-year 
OS were 0.77, 0.85 and 0.84, respectively (Fig.  3A). The 

AUCs for predicting 1-, 3- and 5-year OS in the CGGA 
(mRNA array) data set were 0.74, 0.84 and 0.80, respec-
tively (Fig. 3B). The AUCs for predicting 1-, 3- and 5-year 
OS in the CGGA693 database data set were 0.73, 0.77 
and 0.78, respectively (Fig. 3C). Additionally, the survival 
status and the expression distribution of the gene signa-
ture between the two risk groups were comparable to 
those in the TCGA database in these three external data-
sets (Fig. 3D-I). These results indicated that the prognos-
tic model developed based on the Met metabolism genes 
profile had a great prediction value.

Clinical and pathologic traits and the hallmark of the Met 
metabolism genes
The relationship between the Met metabolism genes sig-
nature and clinical-pathologic factors was investigated 
based on the analysis of the risk scores from two inde-
pendent RNA-seq databases. Complete 1p/19q co-dele-
tion, MGMT promoter methylation and IDH1 mutation 
which are associated with favorable outcomes in gliomas 
were more obvious in the low-risk group as risk scores 
increased (all p < 0.001, Spearman correlation, Fig.  4A, 
B). In particular, IDH1 mutations were present in 92% of 
TCGA cases in the low-risk group (Supplementary Fig. 
S4), while in the TCGA and CGGA325 datasets there was 
a positive correlation between riskscores and age at diag-
nosis, WHO grades (Spearman correlation, Fig.  4A, B). 
Different groups of these samples were subjected to com-
parative analysis. GBM (grade IV) showed significantly 
higher risk scores in the TCGA and CGGA325 databases 
than glioma (grades II and III) (Fig. 4C, G). Furthermore, 
in both datasets, the samples with IDH-wildtype, 1p/19q 
non-codeletion, or MGMT promoter unmethylation had 
significantly higher risk scores (Fig. 4D-J). These findings 
showed a strong correlation between the malignant phe-
notype of gliomas and the Met metabolism gene profile.

Functional annotation and chemotherapeutic sensitivity 
prediction of the Met metabolism gene signature
The biological functions and pathways associated with 
the risk score were explored through conducting differ-
ential gene analysis between high and low-risk groups, 
followed by functional enrichment and gene set enrich-
ment (GSEA) analysis using the GO and KEGG. The 
PCA revealed transcriptomic differences between 
high- and low-risk groups in both databases, indicating 
that the two groups had distinct biological character-
istics (Fig. S5A, B). The top gene sets (Hallmarker, GO 
biological processes, or KEGG) were associated with 
immune and inflammatory responses and extracellular 
matrix interactions, such as leukocyte mediated immu-
nity, leukocyte migration, and epithelial mesenchymal 
transition (Fig.  5A-F). To further investigate the char-
acteristics of the immune microenvironment in glioma 

https://www.proteinatlas.org/
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of the high- and low‐risk groups, we performed ESTI-
MATE analysis to profile the immune characteristics in 
two glioma databases. The immune and stromal ESTI-
MATE scores were significantly higher in the high-risk 
group (Fig. 5G, H). Furthermore, we confirmed that the 

high-risk group had a higher tumor mutation burden (p 
< 0.001, Fig.  5I), indicating greater tumor heterogeneity 
and chemotherapy resistance. The ‘pRRophetic’ R pack-
age was then employed to predict the sensitivity of che-
motherapeutic and targeted inhibitors in both databases 

Fig. 3 Prognostic model evaluation and validation in validation sets. (A-C) Time-dependent ROC curves for the signature of seven methionine me-
tabolism genes in the cohorts (A) CGGA-325, (B) CGGA-mRNA array, and (C) CGGA-693. (D–F) KM curve of the prognosis signature in the (D) CGGA-325, 
(E) CGGA- mRNA array and (F) CGGA-693 cohorts (log‐rank test). (G-I) The riskscore, survival status and expression distribution of a signature based on 
seven methionine metabolism genes for glioma patients in the cohorts (G) CGGA-325, (H) CGGA-mRNA array, and (I) CGGA-693
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Fig. 4 The relationship between the Met metabolism genes signature and clinical characteristics. (A) The landscape of Met metabolism gene 
signature-related clinic pathological features of gliomas in the TCGA database. (B) The landscape of Met metabolism gene signature‐related clinic patho-
logical features of gliomas in the CGGA database. (C-F) The risk scores were significantly higher in gliomas with grade IV GBM, IDH wild-type, 1p/19q 
non-codeletion, or MGMT promoter unmethylation in the TCGA databases. (G-J) The risk scores were significantly higher in gliomas with grade IV GBM, 
IDH wild-type, 1p/19q non-codeletion, or MGMT promoter unmethylation in the CGGA databases; P < 0.0001; C,G:one-way ANOVA and Tukey’s test; D-F, 
H-J: unpaired t test. IDH, isocitrate dehydrogenase; WHO, world health organization

 



Page 9 of 13Zhou et al. BMC Medical Genomics          (2023) 16:317 

Fig. 5 Functional annotation of Met metabolism gene signature. Gene set enrichment analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) functional enrichment analysis based on the differential genes between high and low-risk groups in TCGA (A, C, D) and 
CGGA325 (B, E, F). The gene sets with the highest enrichment scores were displayed. GO-BP: GO biological process analysis. (G, H) ESTIMATE/immune/
stromal scores were significantly up-regulated in the high-risk groups in the TCGA and CGGA databases. ***, P < 0.001; Wilcoxon test. (I) TMB (tumor muta-
tion burden) increased in the high-risk group, ***, P < 0.001; Wilcoxon test
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for high- and low-risk groups. The top 12 compounds 
with the greatest negative correlations with the riskscore 
were selected (Fig. S5 C, D). Bortezomib, Cyclopamine, 
Docetaxel, and A-770,041 were among the top 12 in both 
databases, indicating a promising therapeutic activity for 
treating high-risk glioma patients.

The development and validation of a nomogram for 
glioma prediction
We then use multivariate Cox regression analysis to 
investigate whether the Met metabolism risk signature 
can predict prognosis independently. The Met metabo-
lism risk signature was found to be a significant predic-
tor of survival after adjusting for clinical factors that 
were significantly detrimental to survival in a univari-
able Cox model, including WHO grade, age at diagnosis, 
IDH status, 1p/19q status, and MGMT promoter status 
(Fig. S6). To further improve the clinical applicability of 
the prognostic prediction model, we developed a nomo-
gram including the Met metabolism risk signature, WHO 
grade, age, IDH mutation status, 1p19q codeletion status, 
and MGMT promoter methylation status in the TCGA 
data set (Fig.  6A). In training and validation databases, 
the observed and optimism-corrected lines were well 
aligned in the calibration curve, indicating a high predic-
tive accuracy (Fig. 6B, C). This nomogram model showed 
a C-index of 0.875, which was higher than the C-index 

of any other clinical prognostic factors, such as WHO 
grade, age, IDH mutation status, 1p19q codeletion status, 
and MGMT promoter methylation status, showing a high 
predictive accuracy (Fig. 6D).

Discussion
Methionine addiction is a general hallmark of cancer 
[20]. Study found that methionine restriction inhibits 
glioma growth because gliomas have significantly higher 
methionine uptake and metabolic rate [21]. 11 C-methi-
onine positron emission tomography is predictive of 
glioma prognosis [6]. However, comprehensive investiga-
tion into the predictive value of Met metabolism genes 
for glioma patients has not been conducted. The pres-
ent study investigated the expression of Met metabo-
lism genes in gliomas and their associations with OS. A 
prognostic model incorporating seven Met metabolism 
genes was developed and subsequently tested in external 
cohorts. Finally, a nomogram integrating the prognosis 
model with clinic pathological factors was developed for 
a convenient prediction of OS for glioma patients.

Previous studies have found that 11  C-methionine 
PET has a high sensitivity and specificity in indicating 
prognosis of glioma patients [5]. However, short half-
life of 11  C (~ 20  min) is one of the main challenges of 
11  C-methionine PET, as such a short half-life of 11  C 
limits 11 C-methionine PET studies to centers that could 

Fig. 6 The development and validation of a prediction nomogram for glioma (A) Nomogram used independent prognostic factors to predict 
overall survival in glioma patients. (B, C) The calibration plots for predicting1-, 2-, 3-, 5- ,10- years OS in training and validation groups. (D) Comparison of 
C-index between prediction model, riskscore, and clinical prognostic factors used to predict overall survival
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synthesize it. 18 F-FET PET with a longer half-life is used 
to assess gliomas in many countries [5]. The prognostic 
signature developed based on seven Met metabolism 
genes in this study performed well in predicting glio-
mas. The C-index of our Met metabolism risk signature 
was 0.83, which is higher than routine clinical examina-
tion items for glioma. The C-index [22–24] is a widely 
used metric for assessing the efficacy of a predictive or 
prognostic statistical model. The more closely a model’s 
C-index approaches 1, the more accurately it can classify 
results. IDH wt, IDH mutant-codeland samples with IDH 
mutant-non-codel have been proposed as classifications 
for glioma regardless of grade and histology. The Met 
metabolism risk signature was found to be highly predic-
tive in IDH wt, IDH mutant-codel, and IDH mutant-non-
codel subgroups of glioma patients. Furthermore, we 
established a nomogram for gliomas incorporating the 
Met metabolism prognostic signature and routine clini-
cal examination items, with adequate discrimination and 
calibration. Nomograms are useful and accessible tools 
for physicians to predict survival, plan individualized 
treatment, and determine the interval of follow-up [25]. 
Hence, our model could facilitate methionine metabo-
lism in the diagnosis of glioma and is highly promising in 
clinical promotion.

Methionine is an important amino acid that regulates 
glioma development and fuels a number of metabolic 
pathways. Our study discovered that the majority of 
Met metabolism genes were related to patients’ OS in 
the TCGA database (logrank p and Cox p < 0.05). These 
results indicated the potential role of Met metabolism 
genes in gliomas and the possibility of developing a prog-
nostic model using these Met metabolism genes. The 
current Met metabolism prognostic model composed of 
seven genes (GCLC, IL4I1, SMS, MSRB2, MTAP, MPST, 
and ADI1), which could be classified into methionine 
de novo and salvage pathway (IL4I1, SMS, MTAP, and 
ADI1) and methionine and cysteine catabolism (GCLC, 
MSRB2, and MPST). IL4I1 encoding a secreted L-amino 
acid oxidase protein is mainly implicated in immune 
regulatory functions that have been attributed to the 
depletion of amino acids or the formation of H2O2 [26]. 
Moreover, IL4I1 could also promote glioma cell migra-
tion and metastasis [27]. SMS (spermine synthase) cata-
lyzes the production of spermine from spermidine and is 
frequently upregulated in cancers, resulting in elevated 
polyamine level required for malignant transformation 
and tumor progression [28]. 5’-methylthioadenosine 
phosphorylase (MTAP) encodes a metabolic enzyme 
required for the metabolism of polyamines and purines, 
which leads to DNA synthesis. Homozygous deletion of 
MTAP in glioblastoma represents a potentially targetable 
vulnerability [29]. Although ADI1 (acireductone dioxy-
genase 1) as an enzyme in the methionine de novo and 

salvage pathway has been considered as a tumor suppres-
sor in prostate cancer or hepatocellular carcinoma [30], 
our study found that higher ADI1 gene expression was 
associated with poor overall survival of glioma patients. 
Three additional genes involved in methionine and cys-
teine catabolism are linked to antioxidant activity. The 
mitochondrial protein methionine sulfoxide reductase 
B2 (MSRB2) protects cells against oxidative stress [31]. 
Similarly, the action of 3-mercaptopyruvate sulfurtrans-
ferase (MPST), a key enzyme that regulates endogenous 
H2S biosynthesis, is involved in protecting protein cys-
teine residues from harmful hyperoxidation [32]. GCLC 
(glutamate cysteine ligase) participates in the synthesis 
of glutathione from cysteine. High level of expression 
of these three genes was correlated with favorable over-
all survival. Antioxidants have been shown to be able to 
inhibit cancer initiation through promoting DNA repair 
and suppressing cancer progression [33]. On the other 
hand, some researches indicated that antioxidants could 
impair chemotherapeutic effects [34], in turn, this can 
also render the treatments less effective. In our study, 
GSS (glutathione synthetase) and GCLC had similar 
functions in synthesising glutathione, but they play oppo-
site roles in promoting and inhibiting glioma progres-
sion. Therefore, more research is required to determine if 
antioxidants were harmful or beneficial for the treatment 
of gliomas.

Recent studies showed that Methionine could regulate 
the immune system [35]. Consistently, the Met metabo-
lism genes signature was found to be associated with an 
enrichment of immune-related processes and pathways. 
Additionally, the signature of Met metabolism genes was 
typically correlated with TMB. Multiple studies have vali-
dated an association between TMB level and the efficacy 
of immunotherapy [36], suggesting that an effective Met 
metabolism risk signature could contribute to a better 
immunotherapy outcome. Nevertheless, gene mutation 
sites distribution showed that 92% of TCGA cases in low-
risk group carried IDH1 mutation, suggesting a potential 
relationship between the Met metabolism risk signature 
and IDH mutation.

Conclusions
In summary, our study developed a prognostic prediction 
model for glioma patients using seven Met metabolism 
genes. The model was closely associated with outcome 
status in both the derivation and validation cohorts, pro-
viding novel insights into the prediction of gliomas prog-
nosis. Moreover, the prognostic Methionine metabolism 
genes were also related to the immune response and 
metastasis, which contributed to the development of 
more effective treatment strategies for glioma patients. 
Although this model has demonstrated the potential in 
improving understanding of methionine metabolism in 
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gliomas and helps provide more optimal and promoting 
precise treatment for glioma patients, further validation 
in independent cohorts was equally important for clinical 
application.
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