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Abstract 

Background Alzheimer’s disease (AD) is a progressive neurodegenerative disease that can cause dementia. We aim 
to screen out the hub genes involved in AD based on microarray datasets.

Methods Gene expression profiles GSE5281 and GSE28146 were retrieved from Gene Expression Omnibus database 
to acquire differentially expressed genes (DEGs). Gene Ontology and pathway enrichment were conducted using 
DAVID online tool. The STRING database and Cytoscape tools were employed to analyze protein-protein interactions 
and identify hub genes. The predictive value of hub genes was assessed by principal component analysis and receiver 
operating characteristic curves. AD mice model was constructed, and histology was then observed by hematoxylin-
eosin staining. Gene expression levels were finally determined by real-time quantitative PCR.

Results We obtained 197 overlapping DEGs from GSE5281 and GSE28146 datasets. After constructing protein-pro-
tein interaction network, three highly interconnected clusters were identified and 6 hub genes (RBL1, BUB1, HDAC7, 
KAT5, SIRT2, and ITGB1) were selected. The hub genes could be used as basis to predict AD. Histological abnormali-
ties of brain were observed, suggesting successful AD model was constructed. Compared with the control group, 
the mRNA expression levels of RBL1, BUB1, HDAC7, KAT5 and SIRT2 were significantly increased, while the mRNA 
expression level of ITGB1 was significantly decreased in AD groups.

Conclusion RBL1, BUB1, HDAC7, KAT5, SIRT2 and ITGB1 are promising gene signatures for diagnosis and therapy of AD.
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Introduction
Alzheimer’s disease (AD), also known as senile demen-
tia, is a common neurodegenerative disease that causes 
cognitive decline and dementia [1, 2]. During the past 
20 years, the number of reported deaths induced by AD 
has been hugely increased [3]. There are over 50 million 
people globally with AD and the number of people with 
AD will exceed 100 million in 2050 [4]. The main cause of 
AD is the accumulation of beta-amyloid protein and mis-
folded microtubule-associated tau protein molecules in 
AD patients, damage nerves and other brain cells, which 
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can lead to neuronal cell death and brain injury [5, 6]. 
Additionally, immune activation and astrocytic and glial 
cell-mediated neuroinflammation have been implicated 
in the pathogenesis of AD [7–9]. Only two medication 
classes—cholinesterase inhibitors and N-methylD-aspar-
tate antagonists—are currently licensed for the treatment 
of AD [10]. Finding new therapeutic targets is urgently 
needed due to the limited treatments for AD.

Microarray analysis and gene sequencing have been 
widely applied to explore the potential biomarkers or 
therapeutic targets of AD. After using 3 microarray data-
sets to screen mitogen-related hub genes in peripheral 
blood mononuclear cells of AD patients, 53 differentially 
expressed genes (DEGs) of AD are identified, which may 
serve as possible biomarkers for the diagnosis of AD [11]. 
LncRNA RP11-59 J16.2 may be a molecular target for 
AD, according to microarray analysis of blood from AD 
patients and healthy controls to determine LncRNA and 
mRNA expression profiles [12]. After applying bioinfor-
matics tools to analyze microarray profiling, nine blood-
related differentially expressed miRNAs are identified, 
with potential as diagnostic biomarkers at an early stage 
[13]. Therefore, it is an important approach to explore 
and identify novel biomarkers and therapeutic targets 
associated with AD by screening for gene and molecu-
lar network changes related to the onset and progression 
of AD. However, the gene signature of AD has not been 
deeply explored.

In this study, we determined 6 hub genes of AD based 
on GSE5281 and GSE28146 datasets. And the expression 
of hub genes was further confirmed by constructing AD 
mouse model. The purpose of this investigation is to offer 
new knowledge on the molecular causes and gene bio-
markers of AD.

Materials and methods
Expression profile datasets
The gene expression profiles we used were obtained 
from Gene Expression Omnibus (GEO) database https:// 
www. ncbi. nih. gov/ geo/). Datasets related to “Alzhei-
mer’s disease” were retrieved, and two microarray data-
sets (GSE5281 and GSE28146) that met the criteria were 
selected.

DEGs selection
The microarray data of the two datasets retrieved from 
the GEO database were conducted using the GEO2R 
(www. ncbi. nlm. nih. gov/ geo/ geo2r). DEGs were screened 
out according to a significance threshold with BH < 0.05 
(BH: P value corrected by Benjamini-Hochberg multi-
ple test) and |logFC| ≥ 1.5 (AD vs. Control). Heatmaps 
and volcano plots were plotted to visualize the identi-
fied DEGs. The samples of datasets were standardized 

and normalized using boxplots for data correction. Venn 
diagrams were created using Draw Venn Diagram tool 
(http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/) 
to display the common DEGs between GSE5281 and 
GSE28146 datasets.

Functional and pathway enrichment analysis
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) database was applied to carry 
out Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis. Then, 
the GO and KEGG enrichment results were performed 
using R language. The most significantly enriched top 6 
GO terms with the minimum adjusted p-values of each 
category and the top 8 significantly enriched pathways 
with the minimum adjusted p-value were selected for 
display, and enrichment analysis bar charts and bubble 
charts were created.

Protein–protein interaction (PPI) network construction 
and hub gene identification
The STRING (https:// www. string- db. org/) online data-
base was employed to predict the PPI of DEGs. The sig-
nificance level was set at a confidence interaction score 
of 0.4. Subsequently, the PPI network was displayed using 
Cytoscape software (www. cytos cape. org/). MCODE 
(Molecular Complex Detection) was employed to iden-
tify key modules from the PPI network of DEGs. The 
degree of each protein node was determined using the 
Cytoscape plugin CytoHubba Version 0.1 to filter out hub 
genes based on the connectivity.

Hub gene analysis
A GO enrichment chord diagram was drawn to reveal 
the differences of hub genes in biological functions using 
R package ggplot2. The expression levels of hub genes in 
GSE28146 dataset were used as variables for principal 
component analysis (PCA). Two principal component 
variables, PC1 and PC2A were obtained after processing 
R language. The expression ridge plot was drawn using 
R language. Gene expression profile interactive analy-
sis (http:// gepia. cancer- pku. cn/) was applied to create a 
receiver operating characteristic (ROC) curve to assess 
the diagnostic accuracy of the hub genes according to the 
area under the curve (AUC).

AD mouse model construction
ICR male mice (SPF Biotechnology Co.,Ltd., Beijing, 
China) at the age of 6–8 weeks, weighing 19–21 g, were 
separated into control group and model group (6 mice 
per group). After 1 week of adaptive feeding, the mice 
were intraperitoneally injected with 0.1 mL scopolamine 
at a daily dose of 1.5 mg/kg for 15 d to establish the model 
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of AD. Mice were euthanized by intraperitoneal injection 
of 0.3% sodium pentobarbital (30 mg/kg body weight) 
and the brain tissue was extracted for subsequent assay.

Each mouse received unlimited food and was housed 
in a pathogen-free environment. The ethics committee 
gave the approval to the methods for caring for and using 
animals, and all relevant institutional and governmental 
guidelines for the ethical use of animals were followed.

Real‑time fluorescence quantitative PCR (RT‑qPCR)
Total RNA was extracted from brain tissues using the 
TRIZOL reagent (Invitrogen, Carlsbad, CA, USA). A 
UV spectrophotometer was employed to measure the 
absorbance values at 260 nm and 280 nm to calculate the 
concentration of total RNA diluted 20 times with RNA 
se-free water. High purity samples (OD 260/OD 280 ratio 

between 1.9 and 2.0) were suitable for the following stud-
ies. Reverse transcription to synthesize cDNA templates 
was performed using a PCR amplification instrument. 
RT-qPCR were conducted using an ABI7500 Quantita-
tive PCR instrument (Applied Biosystems, Foster City, 
CA, USA) with the following reaction procedures: pre-
denaturation at 95 °C for 30 s, denaturation at 95 °C for 
10 s, annealing at 60 °C for 30 s, and 40 cycles. GAPDH 
was used as an internal reference. The obtained Ct values 
were analyzed using the  2-ΔΔCt method. Each experiment 
was repeated three times. The primer sequences were 
listed in Table S1.

Hematoxylin‑eosin (HE) staining
The mouse brain tissue was fixed in a 4% paraform-
aldehyde solution. The next day, after washing away 

Fig. 1 a, c Box plots of the data normalization results for the dataset samples. b, d Volcano plots with log2 Fold Change as the x-axis and -log10 
(p-value) as the y-axis. Red dots represent up-regulated genes, and blue dots represent down-regulated genes
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paraformaldehyde solution, and the tissue was dehy-
drated using a gradient of 50–70% - 80 - 90% - 95% 
ethanol. Then the tissue was placed in a mixture of 1:1 
ethanol and xylene for 30 min, and then transferred to 
pure xylene for transparency. The tissue was embed-
ded in a paraffin solution. The paraffin portions were in 
an oven at 60 °C and roasted for 2 h and dewaxed from 
xylene to water using routine xylene and ethanol treat-
ments. Sections were stained with hematoxylin and eosin 
for 10 min and observed using an optical microscope.

Statistical analysis
Data processing was conducted using GraphPad Prism 
7.0, which were presented as mean ± standard deviation. 
Comparisons between two groups were conducted by 
t-test, and P < 0.05 showed a statistical significance.

Results
Microarray data and DEGs identification
Two gene expression profile datasets were selected for 
this study, GSE5281 and GSE28146. After normalization 
and removal of batch effects, we selected total 23 sam-
ples in GSE5281 and 15 samples in GSE28146 for further 
analysis (Fig. 1a, c). The gene dataset GSE5281 consisted 
of 13 normal brain samples (Control) and 10 AD samples. 
Using GEO2R, 2780 DEGs were isolated in GSE5281, 
with 2198 up-regulated genes and 582 down-regulated 

genes. The GSE28146 dataset included 8 normal brain 
samples (Control) and 7 AD samples. There were 1123 
DEGs were identified, among which 604 genes were up-
regulated and 519 genes were down-regulated. Clustering 
analysis was performed on DEGs from both datasets and 
generated the volcano plots (Fig. 1b, d).

A Venn diagram revealed that there were 197 common 
DEGs between the GSE5281 dataset and the GSE28146 
dataset (Fig.  2a). Subsequently, the top 25 significantly 
up-regulated and down-regulated DEGs were selected, 
and a heatmap was created for visualization (Table  1) 
(Fig. 2b).

Functional enrichment analysis of common DEGs
The molecular function (MF), biological process (BP), and 
cellular component (CC) categories grouped the results of 
the GO enrichment study. The GO enrichment analysis 
bubble plot and the GO enrichment analysis bar plot dis-
played the top 6 notably enriched GO terms (Fig. 3a, b). For 
the MF, the DEGs mainly enriched in “transcription factor 
binding”, “protein binding”, “transcription factor activity”, 
“chromatin binding”, “transcriptional activator activity”, 
“calmodulin binding”. For the BP, the DEGs mainly enriched 
in “positive regulation of transcription, DNA-templated”, 
“positive regulation of transcription from RNA polymer-
ase II promoter”, “cell morphogenesis”, “macromolecular 
complex assembly”, “cell adhesion”, “negative regulation of 

Fig. 2 a Venn diagram of common differentially expressed genes (DEGs). The sum of the numbers of each circle represents the total number 
of DEGs, and the overlapping regions indicate the common DEGs between comparison groups. b Heatmap representation of the selected genes. 
Each column represents a sample and the horizontal axis represents genes. Red indicates high expression, and blue indicates low expression
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Table 1 Common differentially expressed gene of GSE5281 and GSE28146 datasets

Name Description log2FoldChange pval up/down

YME1L1 YME1 like 1 ATPase 2.97 1.63E-04 up

KMT2A lysine methyltransferase 2A 2.69 4.30E-03 up

C10orf90 chromosome 10 open reading frame 90 2.62 7.98E-04 up

EGFR epidermal growth factor receptor 2.49 4.91E-02 up

FARP2 FERM, ARH/RhoGEF and pleckstrin domain protein 2 2.44 3.46E-03 up

CMYA5 cardiomyopathy associated 5 2.38 2.07E-03 up

NSUN3 NOP2/Sun RNA methyltransferase family member 3 2.31 1.45E-02 up

MAGI1 membrane associated guanylate kinase, WW and PDZ domain containing 1 2.28 3.57E-03 up

LOC101927027 uncharacterized LOC101927027 2.25 4.95E-03 up

NPAS3 neuronal PAS domain protein 3 2.23 1.36E-02 up

SLC25A37 solute carrier family 25 member 37 2.22 4.05E-03 up

NFYA nuclear transcription factor Y subunit alpha 2.21 8.77E-03 up

SESN2 sestrin 2 2.19 2.80E-03 up

PIK3C2A phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha 2.17 3.42E-02 up

PARD3B par-3 family cell polarity regulator beta 2.16 5.22E-03 up

PAX8 paired box 8 2.15 3.87E-03 up

OR5J2 olfactory receptor family 5 subfamily J member 2 2.15 3.63E-03 up

IQSEC3 IQ motif and Sec7 domain 3 2.14 1.07E-03 up

EP400 E1A binding protein p400 2.13 3.60E-02 up

DOCK9 dedicator of cytokinesis 9 2.12 2.88E-02 up

MAP3K6 mitogen-activated protein kinase kinase kinase 6 2.08 1.21E-02 up

PHF19 PHD finger protein 19 2.06 8.62E-03 up

BUB1 BUB1 mitotic checkpoint serine/threonine kinase 2.05 1.77E-02 up

ELK4 ELK4, ETS transcription factor 2.04 5.34E-03 up

PRB1 proline rich protein BstNI subfamily 1 2.04 8.28E-04 up

EIF1AY eukaryotic translation initiation factor 1A, Y-linked −2.71 1.28E-02 down

MYH11 myosin heavy chain 11 −2.58 4.80E-04 down

MIR4683///FZD8 microRNA 4683///frizzled class receptor 8 −2.54 7.25E-03 down

COL11A1 collagen type XI alpha 1 chain −2.46 2.52E-02 down

LOC100996385 uncharacterized LOC100996385 −2.45 7.87E-04 down

DUSP16 dual specificity phosphatase 16 −2.37 2.53E-03 down

FBXL17 F-box and leucine rich repeat protein 17 −2.37 1.40E-02 down

KIAA1841 KIAA1841 −2.33 7.73E-03 down

SLF2 SMC5-SMC6 complex localization factor 2 −2.28 4.31E-04 down

TMLHE trimethyllysine hydroxylase, epsilon −2.28 7.54E-03 down

VPS53 VPS53, GARP complex subunit −2.25 8.13E-03 down

CDH7 cadherin 7 −2.14 2.08E-02 down

MYLIP myosin regulatory light chain interacting protein −2.13 9.11E-03 down

CAMSAP1 calmodulin regulated spectrin associated protein 1 −2.11 3.82E-03 down

SCFD1 sec1 family domain containing 1 −2.07 1.43E-02 down

CEP350 centrosomal protein 350 −2.06 1.12E-02 down

NMNAT2 nicotinamide nucleotide adenylyltransferase 2 −2.06 1.22E-02 down

DRP2 dystrophin related protein 2 −2.04 2.51E-02 down

TMF1 TATA element modulatory factor 1 −2.03 2.20E-02 down

CACNG4 calcium voltage-gated channel auxiliary subunit gamma 4 −2.03 6.73E-04 down

ARHGEF28 Rho guanine nucleotide exchange factor 28 −2.02 3.06E-02 down

FAM86B3P family with sequence similarity 86, member A pseudogene −2.02 2.45E-02 down

IKZF3 IKAROS family zinc finger 3 −2.00 2.24E-02 down

UBASH3B ubiquitin associated and SH3 domain containing B −1.97 1.34E-02 down

NELFCD negative elongation factor complex member C/D −1.97 1.85E-02 down
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transcription from RNA polymerase II promoter”. And for 
the CC, the DEGs mainly enriched in “cytosol”, “nucleo-
plasm”, “endosome membrane”, “chromatin”, “glial cell pro-
jection”, “ruffle membrane”.

Based on the KEGG enrichment analysis results of the 
DEGs, the top 8 enriched pathways were displayed in 
the KEGG pathway enrichment analysis bubble plot and 
the KEGG enrichment analysis bar plot, which mainly 
enriched in “MAPK signaling pathway”, “human papillo-
mavirus infection”, “transcriptional mis regulation in can-
cer”, “proteoglycans in cancer”, “Rap1 signaling pathway”, 
“pathways in cancer”, etc. (Fig. 3c, d).

PPI construction and key module analysis
Utilizing the STRING tool, a PPI network based on DEGs 
was constructed (Fig. S1A). Subsequently, MCODE 

(Molecular Complex Detection) was used to identify 
three highly interconnected clusters from the PPI net-
work of DEGs, which potentially represented functional 
molecular complexes associated with AD. RBL1, BUB1, 
HDAC7, KAT5, SIRT2 and ITGB1 were selected as  hub 
genes from these molecular (Fig. S1B).

Analysis of hub genes
We used R language to create a GO enrichment chord 
diagram, which revealed the differences of hub genes in 
biological functions and the relationship between pro-
tein and pathway of hub genes. The left side of the GO 
enrichment chord diagram was the hub gene sequenced 
according to Log Fold Change, and the right side was 
the GO term list. The hub gene with the significantly 
up-regulated differential fold was BUB1, and the hub 

Fig. 3 Enrichment analysis of the common DEGs. A Gene Ontology (GO) enrichment analysis bubble plot. The color intensity of nodes represents 
the adjusted p-value, and the node size indicates the number of genes. B GO enrichment analysis bar plot. The x-axis represents the GO terms, 
and the y-axis represents the -log10 (p-value) of enrichment of each term. C Kyoto Encyclopedia of Genes and Genomes (KEGG) bubble plot. D: 
KEGG bar plot
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gene with the significantly down-regulated differential 
fold was ITGB1. The biological process of the hub genes 
was mainly enriched in “gastrin signaling pathway”, 
“mitotic cell cycle process”, “regulation of chromosome” 
and “chromatin organization” (Fig. 4a).

PCA analysis revealed that hub genes were the key 
influencing factors of AD (Fig.  4b). The scatter plot 
(PC1 and PC2 as the horizontal and vertical coordi-
nates) suggested the total variance explained rate of 
PC1 and PC2 was 69.5% and the samples had a good 

separation, further confirming the effectiveness of PC1 
and PC2, which indicating that hub genes could distin-
guish between the AD samples from control samples. To 
visualize the expression level of hub genes in the orig-
inal sample, we plotted the ridgeline plot using R lan-
guage, showing the distribution of hub gene expression 
(Fig. 4c). These indicators could serve as a basis for dis-
tinguishing between control samples and AD samples.

The ROC curves of RBL1, BUB1, HDAC7, KAT5, 
SIRT2, and ITGB1 were plotted using raw data from 

Fig. 4 Hub gene analysis a GO pathway diagram, consisting of three parts: genes, LogFold Change (representing the fold change of genes 
for sorting and color-coding gene blocks), and other columns representing GO terms. Different connections between genes indicate their 
involvement in specific GO terms. b Principal component analysis (PCA) plot. The coordinates PC1 and PC2 represent the first and second principal 
components (i.e., latent variables explaining the differences). Points represent samples, and different colors represent different groups. c Gene ridge 
plot. The x-axis represents gene expression levels, and the shape of the ridges represents the distribution of data within each group, with the height 
indicating the number of samples corresponding to the gene expression level
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GSE28146 dataset, with the true positive rates of 83.9, 
82.1, 85.7, 92.9, 85.7, and 82.15%, respectively (Fig.  5). 
The true positive rates of ROC curves plotted using raw 
data from GSE5281 dataset of hub genes were 82.3, 88.5, 
81.5, 90.8, 80.8, and 94.6%, respectively, which showed 
a distinguishing capacity of hub genes expression levels 
between AD samples and healthy controls (Fig. 6).

HE staining
The size, density, and arrangement of cortical nerve cells 
suggested the extent of neuron damage. In the control 
group, the cortical nerve cells of the mice brain tissue were 
densely organized, with full nucleoli and clear boundaries, 
which were in normal shape without pathological features. 
On the contrary, marked neuronal damage was observed 
in the mice of the model group. The cortical nerve cells of 
the model mice were overstained, loosely arranged, and 
their cytoplasm deformed and swollen, showing more 
lesions and irregular cell boundaries, which represented 
successful establishment of AD mice model (Fig. 7).

RT‑qPCR
The results indicated that compared to the control group, 
the  mRNA expression levels of RBL1, BUB1, HDAC7, 
KAT5, and SIRT2 in the model group were significantly 
increased, while the mRNA expression level of ITGB1 
was significantly decreased, consisting with the predic-
tion of bioinformatics analysis (Fig. 8).

Discussion
Currently, the treatment for AD can only alleviate its symp-
toms, which cannot suppress the progression of neurodegen-
eration and there is no effective treatment for people with AD 
[14]. Some oncogenes and suppressor genes have been found 
to be novel gene signatures for AD diagnosis [15, 16]. In this 
research, we identified 6 hub genes from PPI network based 
on 2 gene expression profiles related to AD. We then verified 
the abnormal expression of hub genes in vivo by constructing 
a mouse model of AD. Our findings not only provided new 
genetic diagnostic strategies, but also pointed the way to fur-
ther study disease pathogenesis and therapeutic targets of AD.

Fig. 5 Receiver operating characteristic (ROC) curve plotted using the expression level of hub gene in GSE28146 dataset. a-f ROC analysis plots 
for genes RBL1, BUB1, HDAC7, KAT5, SIRT2, and ITGB1. The x-axis in ROC curve represents the false positive rate, the y-axis represents the true positive 
rate
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RBL1, BUB1, HDAC7, KAT5, SIRT2 and ITGB1 have 
been identified as key genes in various diseases. By ana-
lyzing the clinical data of 4 glioma patients in Affymetrix 

chip, RBL1 is isolated as a core gene affecting glioma 
patient survival and chemotherapy sensitivity [17]. BUB1 
is a gene signature that have a key effect on glioma stem 

Fig. 6 ROC curve plotted using the expression level of hub gene in GSE5281 dataset. a-f ROC analysis plots for genes RBL1, BUB1, HDAC7, KAT5, 
SIRT2, and ITGB1. The x-axis in ROC curve represents the false positive rate, the y-axis represents the true positive rate

Fig. 7 Hematoxylin-eosin staining results of brain tissues from AD mouse model (Magnification: 20×, scale: 100 μm)
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cells after evaluating mRNA expression in glioma patient 
samples using The Cancer Genome Atlas and construct-
ing DEGs co-expression networks of glioma samples 
by weighted gene co-expression network analysis [18]. 
Analysis of genomic data from 154 patients with glio-
blastoma multiforme has determined a strong correla-
tion between HDAC7 expression and patient outcomes: 

Subgroup of patients with overexpressed HDAC7 has 
particularly poor clinical outcomes [19]. To investi-
gating the role of Tip60 (now called KAT5) in human 
glioma malignant behavior, RT-qPCR analysis of fresh 
human brain tumor tissues from 55 patients shows that 
decreased KAT5 expression is associated with advanced 
glioma, which is an important candidate gene for glioma 

Fig. 8 The mRNA expression expression levels of RBL1, BUB1, HDAC7, KAT5, SIRT2, and ITGB1 detected by Real-time quantitative PCR. **P < 0.01, 
***P < 0.001 vs. control group
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Their abnormal expression was verified in  vivo using 
AD mouse model. These hub genes have the potential 
to be novel treatment targets and biomarkers for AD 
patients. It is believed that our discovery would consid-
erably advance knowledge of the underlying molecular 
mechanisms and causes of AD.
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hub genes that have been identified as possible targets for 
AD diagnosis and treatment [22]. In our research, after 
analyzing GSE5281 and GSE28146 datasets, RBL1, BUB1, 
HDAC7, KAT5, SIRT2 and ITGB1 were screened out with 
high predictive value, which might be important diagnos-
tic markers for AD.

RBL1 can inhibit the cell cycle and act as a disease 
suppressor [23–25]. In glioma, the expression level of 
RBL1 is markedly down-regulated in glioma samples, 
playing a crucial role in glioma tumorigenesis [26]. 
BUB1 is a mitotic kinase whose overexpression leads 
to aneuploidy, resulting in brain aging in health and 
disease [27, 28]. Compared with normal control tis-
sues, BUB1 expression is significantly up-regulated 
in glioblastoma multiforme samples [29]. HDAC7 is 
a kind of histone deacetylases, and some histone dea-
cetylases are associated with memory impairment and 
dementia [30–32]. HDAC7 expression is up-regulated 
in malignant glioma, colorectal cancer, choroidal mela-
noma and other diseases [33–35]. KAT5 acetylates and 
activates p53, which plays an important role in various 
cellular functions, associated with ageing-related dis-
eases, including AD [36]. Transcriptomic analysis using 
the childhood cerebral cortex cell line as a neuronal 
model of novel coronavirus infection finds a decreased 
mRNA expression level of KAT5 [37]. SIRT2 is a sir-
tuin that is involved in aging, autophagy and inflam-
mation, etc. [38, 39]. The expression level of SIRT2 is 
up-regulated in brains of an insulin-deficient amyloid-β 
precursor protein transgenic mouse [40]. Additionally, 
the expression level of ITGB1 in an orthotopic xeno-
graft model of invasive glioblastoma is down-regulated 
[41]. In the brain tissue of a mouse model of AD that 
we constructed, the mRNA levels of RBL1, BUB1, 
HDAC7, KAT5, and SIRT2 significantly increased, while 
the mRNA level of ITGB1 significantly decreased. In 
conclusion, RBL1, BUB1, HDAC7, KAT5, SIRT2, and 
ITGB1 were involved in AD, which were the crucial 
biomarkers for AD.

All in all, the identification of key hub gene of AD 
using bioinformatics techniques is the main focus in 
this study. Among the DEGs, 6 hub genes, RBL1, BUB1, 
HDAC7, KAT5, SIRT2, and ITGB1 were acquired. 
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