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Abstract

Background Pontocerebellar hypoplasia is an umbrella term describing a heterogeneous group of prenatal
neurodegenerative disorders mostly affecting the pons and cerebellum, with 17 types associated with 25 genes.
However, some types of PCH lack sufficient information, which highlights the importance of investigating

and introducing more cases to further elucidate the clinical, radiological, and biochemical features of these disorders.
The aim of this study is to provide an in-depth review of PCH and to identify disease genes and their inheritance
patterns in 12 distinct Iranian families with clinically confirmed PCH.

Methods Cases included in this study were selected based on their phenotypic and genetic information available

at the Center for Comprehensive Genetic Services. Whole-exome sequencing (WES) was used to discover

the underlying genetic etiology of participants’ problems, and Sanger sequencing was utilized to confirm any
suspected alterations. We also conducted a comprehensive molecular literature review to outline the genetic features
of the various subtypes of PCH.

Results This study classified and described the underlying etiology of PCH into three categories based on the genes
involved. Twelve patients also were included, eleven of whom were from consanguineous parents. Ten different
variations in 8 genes were found, all of which related to different types of PCH. Six novel variations were reported,
including SEPSECS, TSEN2, TSEN54, AMPD2, TOET, and CLP1. Almost all patients presented with developmental delay,
hypotonia, seizure, and microcephaly being common features. Strabismus and elevation in lactate levels in MR
spectroscopy were novel phenotypes for the first time in PCH types 7 and 9.

Conclusions This study merges previously documented phenotypes and genotypes with unique novel ones. Due
to the diversity in PCH, we provided guidance for detecting and diagnosing these heterogeneous groups of disorders.
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and potential therapeutic targets for PCH.

Moreover, since certain critical conditions, such as spinal muscular atrophy, can be a differential diagnosis, providing
cases with novel variations and clinical findings could further expand the genetic and clinical spectrum of these
diseases and help in better diagnosis. Therefore, six novel genetic variants and novel clinical and paraclinical
findings have been reported for the first time. Further studies are needed to elucidate the underlying mechanisms

Keywords Pontocerebellar Hypoplasia, PCH, Whole exome sequencing, WES, Novel mutations, Novel clinical findings

Introduction

Pontocerebellar Hypoplasia (PCH) is a heterogeneous
group of rare neurodegenerative disorders that have a
fetal onset, which mainly but not exclusively affect the
pons and cerebellum. The first report of PCH dates back
to 1917; however, the first classification was proposed by
Peter G. Barth in 1993. He classified PCH into two types:
PCH1, which was defined as degeneration of the spinal
cord anterior horn, and PCH2, characterized by chorea/
dystonia, microcephaly, severely impaired mental and
motor development, and absence of spinal anterior horn
pathology [1]. Since 1993, in the following 30 years, many
other PCH types have been introduced and added to the
OMIM (Online Mendelian Inheritance in Man) data-
base due to significant advances in imaging modalities
and genetic sequencing. As of March 16, 2023, OMIM
lists (17 types of PCH associated with 25 different genes.
PCHI1 and PCH2 are the most investigated types, each
with six subtypes (A-F). However, some types of PCH are
extremely rare, and hence few cases have been reported.
For instance, PCHS8 has been reported in only three fami-
lies of Peruvian and Puerto Rican origin [2], PCH10 has
been reported in only 11 families of Turkish origin and a
family from Sudan [3-5]. Since the first classification of
PCH in 1993, its clinical and genetic spectrum has sig-
nificantly broadened. As mentioned earlier, 17 types of
PCH have been introduced, and there is vast inter and
intra-heterogeneity among the different types of PCH.
Although cerebellum and brainstem development are
abnormal in patients with PCH; however, obvious cer-
ebellar symptoms are rarely reported, and symptoms
associated with PCH are mostly related to the cortex and
basal ganglia dysfunction, including intellectual disabil-
ity and delayed psychomotor milestones. Although some
clinical features may be common between different types
of PCH, some specific presentations could help differ-
entiate PCH types, like the disorder of sex development
(DSD) in PCHY [6].

The underlying mechanism of PCH has yet to be
understood entirely. Initially, the identification of muta-
tions in the tRNA splicing endonuclease (TSEN) complex
led researchers to a hypothesis that mutations in genes
involved in tRNA processing (CLP1, RARS2, SEPSECS,
TSEN2, TSEN1S, TSEN34, TSEN54) play a role in PCH

etiology. However, subsequent investigations discovered
mutations in genes involved in other forms of RNA pro-
cessing (EXOSCI, EXOSC3, EXOSC8, EXOSCY9, TOEI,
PPIL1, PRPI7) and even in genes that were not involved
in RNA processing at all (VRK1, AMPD2, CHMPIA,
COASY, MINPPI, PCLO, SLC25A46, TBCI1D23,
PRDM13, VPS51, VPS53). As a result, additional func-
tional studies are needed to elucidate the exact etiology
of PCH [7, 8].

The scarce information on some types and subtypes of
PCH underscores the need for further investigation and
the introduction of more cases to better understand the
clinical, radiological, and biochemical features of differ-
ent types of this disease. Moreover, identifying genetic
variations in genes related to various PCH types could
further expand the genetic spectrum of this disease and
aid in the development of focused genetic analysis using
a PCH-specific panel. This study presents twelve Iranian
probands with novel homozygous variations in PCH-
causing genes as well as their clinical and paraclinical
presentation. Additionally, a comprehensive literature
review of different types of this disease from a molecular
perspective is provided.

Methods and materials

The Center for Comprehensive Genetic Services
(CCGS), affiliated with Shahid Beheshti University of
Medical Sciences, is a multidisciplinary genetics facil-
ity offering patients a range of advanced genetic test-
ing. This facility has conducted numerous genetic tests,
totaling in the thousands. The cases encompassed in
this study were selected through a retrospective review
out of all cases sequenced at the center, with some hav-
ing been followed up for more than six years. As the
Center for Comprehensive Genetic Services as a referral
center for patients from all over Iran, it is representative
of genetic diseases in the country. All cases with WES
reports were screened for homozygous or heterozygous
variants in genes related to any type of pontocerebellar
hypoplasia. Patients with phenotypes related to any type
of pontocerebellar hypoplasia and possible disease-caus-
ing variants in pontocerebellar hypoplasia-causing genes
were selected. Sanger sequencing was used to confirm
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the variant in the proband and parents. Cases in which
Sanger analysis overruled the variation, were excluded
(Supplementary Fig. 1). Ultimately, cases with pheno-
types associated with pontocerebellar hypoplasia and
genetic variations in related genes were included in this
study (Supplementary Fig. 1).

Sampling and Whole-Exome Sequencing (WES)
The genomic DNA of probands and their parents was
extracted from their peripheral blood using the salting
out method. The concentration and quality of genomic
DNA were assessed by NanoDrop 1000 (Thermo Fisher
Scientific, Inc., Wilmington, DE, USA). Whole Exom
Sequensing (WES)) was performed on the genomic
DNA of probands, using paired-end sequencing on Illu-
mina HiSeq4000, which generates 101-bp paired-end
reads. SureSelectXT2 V6 kits were employed to enrich
exonic and flanking exon—intron boundary regions.
Burrows-Wheeler Aligner (BWA) was used to map
the short reads to the human genome reference (hgl9
build) after ensuring the elimination of low-quality reads
[9]. SAM tools were used to further process BAM files
[10], and Picard was used to remove duplicates (https://
broadinstitute.github.io/picard). Then, recalibration and
SNP/indel calling were performed. The genome analysis
toolkit (GATK) was used for variant calling and filtration
based on the best practice [11]. Variant annotation was
done using ANNOVAR software. An in-house pipeline
was used to annotate, filter, and prioritize the called vari-
ants (Supplementary Fig. 2).

Sanger sequencing

Sanger sequencing was used to confirm the variant found
in each proband. For segregation analysis, in order to
confirm the variant, it was also checked in the proband’s
parents. The Sanger sequencing was performed using
the BigDye Terminator v3.1 Cycle Sequencing Kit (Life
Technologies; Thermo Fisher Scientific, Shanghai, China)
on ABI Sequencer 3500XL PE (Applied Biosystems, CA,
USA). Polymerase chain reaction (PCR) conditions, puri-
fication of the PCR product, and Sanger sequencing were
performed based on standard protocols.

Results

Demographic

Twelve patients were finally included in this study;
four of them were female, and eight of them were male
(Table 1). The age at diagnosis spanned from eight
months to 4.5 years. All of these families were from
Iran, with a high prevalence of consanguinity. Parents
were first cousins in cases 1, 5, 7, 10, and 12, second
cousins in cases 2, 3, 4, 6, and 9, and third cousins in
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case 8. The parents of case 11 were not blood-related
(Supplementary Fig. 3).

WES and Sanger sequencing

Using WES, a total read base of 7 million bp was
obtained, and after variation calling, around 90,000
variants were detected for each proband. Using an in-
house pipeline, these variations were filtered accord-
ing to American College of Medical Genetics (ACMG)
guidelines. Nearly 300 pathogenic, likely pathogenic,
and variants of uncertain significance according to
ACMG guidelines related to the proband’s phenotype
were screened by medical geneticists specialized in WES
analysis for each proband. In twelve probands that were
included in this study, ten different variations in 8 dif-
ferent genes were found, all related to different types of
pontocerebellar hypoplasia. Six of these ten variations
were novel and had not been reported in databases,
including gnomAD and ExAC. These six variants are:
SEPSECS  (c.208T >C:p.C70R), TSEN2(c.749A > G:p.
D250G), TSEN54 (c.1160G > T:p.R387L), AMPD?2 (c.1858
C>A:p.R620S) TOE1 (c.1476C>G:p.F492L), and CL
Pl (c.784C>G:p.L262V). Two variants in SEPSECS
(c.1274A > G:p.H425R) and TBCI1D23(c.458T > C:p.M15
3T), had been reported in gnomAD or ExAC databases;
however, no publications have ever reported the patho-
genicity of these variants in pontocerebellar hypoplasia.
Two variants in EXOSC3 (c.395A >C:p.D132A) and;
CLP1(c.419G > A:p.R140H) had been reported for Pon-
tocerebellar hypoplasia, type 1B and Pontocerebellar
hypoplasia, type 10 in literature. Of the ten reported
variants in this study, two of them (EXOSC3:c.395A >C;
CLPI1:c.419G >A) are pathogenic, one of them is likely
pathogenic (AMPD2:c.1858C>A), and seven of them
are variants of uncertain significance (SEPSECS:c.208T >
C, SEPSECS:c.1274A>G, TSEN2:c.749A>G, TSENS54:
¢.1160G > T, TOE1:c.1476C> G, CLPI:c.784C>G, TBCID
23:¢.458T > C) according to ACMG guideline. The struc-
ture of proteins and the position of mutated amino acids
could be found in Supplementary Fig. 4 [12-18].

Clinical features

Almost all patients presented with developmental delay,
although with various severity from lack of independent
walking in case 9 to absence of development in case 8.
Hypotonia, seizure, and microcephaly are the common
features among PCH cases in this study. Magnetic
resonance imaging (MRI) reports of almost all cases except
for two of them were available, and cerebellar atrophy was
the most found feature in cases, followed by cerebral and
cortical atrophy. Notably, one of the cases (case 9) had
no abnormal MRI findings. The details of clinical and
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paraclinical findings of each proband can be found in
Table 1.

Classification of PCH based on underlying molecular
pathways

Currently, PCH is classified into 17 types, mostly based
on the site of the underlying genetic mutation in the
genome. Based on the genes involved, the underlying eti-
ology of PCH can be further divided into three groups:
tRNA-processing genes (CLPI, RARS2, SEPSECS,
TSEN2, TSENI1S5, TSEN34, TSENS54), non-tRNA-pro-
cessing genes targeting other forms of RNAs (CDC40,
EXOSCI1, EXOSC3, EXOSC8, EXOSC9, PTOE1, PPILI,
PRP17), and genes which are not directly involved in
any form of RNA processing (VRKI, RDM13, AMPD?2,
CHMP1A, COASY, MINPPI1, PCLO, SLC25A46,
TBC1D23, VPS51, VPS53).

PCH-related genes involved in tRNA-processing

PCH2 subtypes (except for PCH2A, E), PCH4, PCHS5,
PCH6, and PCHI0 are all results of genetic alterations
in genes involved in tRNA-processing (detailed clini-
cal presentations of these types of PCH can be found in
Table 2). These genes code proteins involved in TSEN
protein complex, aminoacyl tRNA synthetase (RARS2),
or SepSecS enzyme (SEPSECS).

Mutations in components of the TSEN protein complex

tRNAs are RNA subtypes transcribed by RNA
polymerase III, involved in protein production in the
ribosomal complex. Following transcription, pre-tRNAs
undergo a series of post-transcriptional modifications
toward becoming mature and functional tRNAs. An
important step in this regard is tRNA splicing to remove
the intron sections of the transcript. Unlike prokaryotes,
Eukaryotic tRNAs do not possess self-splicing qualities
and specific splicing enzymatic complexes exist to carry
out this role. The tRNA splicing endonuclease (TSEN)
complex in eukaryotes, has four subunits TSEN2,
TSEN34, TSEN54, and TSEN15, which form a complex
along with the regulatory component, CLP1 [19]. The
catalytic subunits TSEN2 and TSEN34 are involved in
5" and 3’ splicing sites’ cleavage. Studies on Archaeal
and Eukaryotic TSEN complexes have revealed that the
5° splicing site requires a motif known as a cation-m
sandwich consisting of Arginine 243 and Tryptophan
271 residues at the active site of TSEN34 subunit, and a
catalytic triad of Tyrosine, Histidine, and Lysine residues
at the active site of TSEN2. Though the 3’splicing site’s
cleavage does not need the presence of similar motif
on the TSEN2 subunit [20]. Roles of the non-catalytic
subunits TSEN15 and TSEN54 as well as the possibly
regulatory CLP1 component have not been entirely
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established and further studies are needed in this regard
(Fig. 1a) [19].

PCH2 is presented with signs and symptoms such as
developmental retardation, seizure, hypotonia, hypoki-
nesia, visual deficit, and weakness, with a vermis-spar-
ing pattern of cerebellar involvement which leads to a
dragon-fly-like pattern on the coronal section of MRI
[21]. Similar to PCH1, PCH2 is categorized into six
subtypes, PCH2A-F. Four of these subtypes, PCH2A,
PCH2B, PCH2C, and PCH2E, result from genetic altera-
tions in members of TSEN family, TSEN54, TSEN2,
TSEN34, and TSEN15 respectively [22, 23].

In addition to the aforementioned subtypes of PCH2,
PCH4, and PCHS5 are also results of genetic mutations in
the TSEN gene family member, TSEN54. Both types have
manifestations such as respiratory impairment, seizure,
joint contracture in multiple sites, and clonus [24]. The
three types related to TSEN54 mutations differ in both
genetic and MRI findings. PCH2A subtype is a result of a
homozygous missense mutation in TSEN54, and investi-
gated cases are the result of a change of Alanine 307 resi-
due into a Serine residue. PCH4 cases have compound
heterozygous genotypes at the same site or are the result
of splice site mutations. PCH5 cases show both heterozy-
gosities at this site and splice site mutations. Such dif-
ferences in the genetic component of the variants lead
to differential findings in imaging modalities, especially
MRI. PCH2A abundantly involves disproportional cer-
ebellar hypoplasia with a higher degree of hemisphere
involvement and segmentally atrophied cortex, as well
as fragmented dentate nucleus and reduction in olivary
nuclei folding, reflected in the MRI by a dragonfly pat-
tern. Also, pontine involvement in forms of loss of ventral
nuclei and transverse fibers is prominent. PCH4 pathol-
ogy is differentiated from PCH2 by the absence of foliar
structure of vermis, complete loss of both olivary nucleus
folding and gliosis along with ventral nuclei and trans-
verse fibers of the pons. MRI findings in this type show
microcephalus, pontocerebellar hypoplasia, and retar-
dation of cortical maturation. PCH5 is associated with
similar levels of cortical involvement compared to PCH4,
though more extensive vermis involvement is prominent,
which is also observed in MRI results. This type is also
associated with the loss of dentate nuclei in the cerebel-
lum [25].

PCHI10 is characterized by microcephalus, develop-
mental retardation, pyramidal manifestations, and mildly
atrophied cerebellum. The underlying mutations involve
alterations in cleavage factor polyribonucleotide kinase
subunit 1 (CLPI), a genetic locus encoding a protein
involved in tRNA splicing and maturation and 3’ mRNA
processing (Fig. 1a) [26, 27].
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Unknown enzyme

Toel
immature 3’-tailed hTR —— > mature 451nt hTR

Telomerase activity I /

PPIL1

ESOSC1

ESOSC3
RrP40 / f

PRP17

Rrp42

Fig. 1 Schematic representation of main pathways involved in PCH. a schematic representation of tRNA splicing by TSEN complex and CLP1. b
charging of Arg-related tRNA by RARS2. ¢) the conversion of O-phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA by SepSecs. d) exosome complex:
the structural cap including EXOSC1-3, the core ring including EXOSC4-9, and the catalytic unit made up of DIS3 protein. e) Processing of immature
3"-tailed human telomerase RNA component (hTR) to mature 451nt hTR. f) structure of the human spliceosome prior to exon ligation. PRP17

and PPILT are shown by arrows

RARS2 genetic mutation

Secondary to the aforementioned post-transcriptional
modifications, the tRNA will be ready to get attached
to the pertaining amino acid, to get involved in the
ribosomal protein synthesis. The enzymatic com-
plex involved in this process are aminoacyl tRNA
synthetases (ARS). RARS2 gene encodes both mito-
chondrial and cytoplasmic isomers of arginyl tRNA
synthetase, which have a role in the attachment of the
Arginine residue to the pertaining tRNA during the
process of gene expression (Fig. 1b) [28]. The enzyme
recognizes both D-loop and anticodon structures of
the tRNA and forms an induced fit through confor-
mational changes at the responsive site which at last
induces conformational changes in the substrate tRNA
and the active site’s structure. Also, the adhesion of the
Arginine molecule to the active site helps to maintain
the conformational integrity via appropriate position-
ing of the CCA sequence at the 3’end of the tRNA
strand. A variety of key amino acid residues exist in
every step of this process [29].

PCHBS6 is associated with genetic alterations of the
mitochondrial arginine tRNA synthetase gene, RARS2,
and it is characterized by a phenotype of severe epi-
lepsy with early occurrence of first episodes, epilep-
tic encephalopathy, widely distributed brain atrophy,

especially in pontocerebellar regions, lactic acidosis,
and mitochondrial respiratory chain defects [30].

SEPSECS genetic mutation

PCH2D is caused by mutations in the SEPSECS gene
that encodes SepSecS, an enzyme in the last step of the
selenocysteine production pathway that catalyzes the
conversion of O-phosphoseryl-tRNA(Sec) to selenocyst-
einyl-tRNA (Fig. 1c) [31, 32]. This reaction is the only
route of selenocysteine biosynthesis in humans. Since
mice with neuronal selenoproteins deficiency show cer-
ebellar hypoplasia, it seems selenoproteins play a crucial
role in brain development [33]. Selenoproteins are also
involved in antioxidant defense, and reduced selenopro-
teins levels could damage organs with high mitochondrial
activity since mitochondria are one the primary sources
of oxidative stress in cells [34].

PCH-related genes involved in other forms

of RNA-processing

PCH1 subtypes (with an exception of PCHI1A, E),
PCH7, PCH14, and PCH15 are the results of genetic
mutations in non-tRNA processing loci (detailed clinical
presentations of these types of PCH can be found in
Table 3). These genes play roles in RNA exome complex,
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small nuclear RNA (snRNA) processing, and spliceosome
complex.

Mutations in components of RNA exosome complex
PCH1, a major differential diagnosis of spinal muscular
atrophy (SMA), involves motor neuron degeneration in
the anterior spinal horn as well as progressive pontocer-
ebellar lesions. Clinical manifestations of the disease
include the visual and auditory sensory deficit, upper and
lower motor signs, ataxia, extrapyramidal manifestations,
microcephalus, seizure, developmental impairment, and
congenital contractures [35]. PCH1 is further categorized
into six subtypes, PCH1A-F, based on the gene which the
underlying mutation involves.

The RNA exosome is a multi-subunit protein com-
plex comprised of 9 EXOSC subunits and a ribonuclease
involved in the degradation and processing of a vari-
ety of RNA molecules. The complex can be divided into
three modules; the structural cap including EXOSC1-
3, the core ring including EXOSC4-9, and the catalytic
unit made up of DIS3 protein (Fig. 1d). In the eukaryotic
nucleus, the eleventh subunit, EXOSC10, with riboexo-
nuclease properties is present in close proximity to the
cap. The RNA targets of this complex include non-coding
RNAs (ncRNA) and “faulty” RNAs in the nucleus, and
mRNAs and improper RNAs in the cytoplasm [36].

PCH1B comprises approximately 50% of the PCH1
patients and is a result of Exosome component 3
(EXOSC3) gene mutation, which is an indicator of a good
prognosis. EXOSC3 is involved in mRNA degradation
through encoding component 3 in RNA exosome com-
plex [37].

Mutation of another RNA exosome gene, Exosome
component 8 (EXOSCS), is seen in PCHI1C patients.
EXOSCS8 expression results in the production of the hex-
americ ring subunit of RNA exosome. PCHI1C patients
show a phenotype similar to PCH1B with the addition
of hypomyelination [36]. Mutations in two other mem-
bers of mRNA degradation genes, EXOSC9 and EXOSCI,
are responsible for the incidence of PCH1D and PCHI1F,
respectively [38, 39].

Mutations in TOE1

PCH7 is presented with developmental retardation,
truncal hypotonia, limb hypertonia, episodes of
seizure, and hyperactive deep tendon reflexes (DTR),
in combination with sexual ambiguity. The underlying
mutation of this type is in the target of early growth
response 1 (TOE1l) locus [40]. TOEI encodes a
protein involved in snRNA processing [41]. TOEL is
a 3’exonuclease abundant in the Cajal bodies of the
cellular nuclei. This enzyme is involved in the processing
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and maturation of the snRNAs via 3'deadenylation [42].
TOEL1 also functions in conjunction with Poly(A)-specific
ribonuclease (PARN) as a 3’-to-5" exonuclease in the
maturation process of 3’-tailed human telomerase RNA
(hTR) component to mature 451nt hTR (Fig. 1e) [43].

Mutations in components of the spliccosome complex
Mutations in components of spliceosome complex
involved in pre-mRNA splicing, peptidyl prolyl isomer-
ase like-1 (PPILI), and pre-RNA processing 17 (PRP17)
(CDC40), result in the incidence of PCH14 and PCHI15,
respectively. The major spliceosomal complex comprises
eight cyclophilin peptidyl prolyl isomerases (PPlase),
two of which are the aforementioned PPIL1 and PRP17,
which form a PPlase-substrate pair (Fig. 1f) [8]. PCH14
and PCH15 have neuropathological characteristics of the
pontocerebellar, brain stem, and corpus callosal hypo-
plasia, developmental delay, seizure, hypo/hypertonia,
brisk DTR, spastic features, and microcephalus.

Other underlying etiologies of PCH

And lastly, subtypes PCH1A, PCHIE, PCH2E, and PCH
types 3, 8, 9, 11, 12, 13, 16, and 17 underlying genetic
mutations involve genetic loci encoding proteins which
are not directly involved in any form of RNA processing
(detailed clinical presentations of these types of PCH can
be found in Table 4).

Mutations in VRK1

PCHIA is a result of a mutation in the Vaccinia related
kinase 1 (VRKI) locus with clinical manifestations
of psychomotor retardation, hypotonia, ataxia, poor
feeding, and respiratory insufficiency. VRK1 is a serine-
threonine kinase mostly located in the nucleus [44].
VRK1 is involved in a variety of cellular pathways via
the phosphorylation of different protein groups such
as chromatin proteins, transcription factors, and DNA
damage response proteins. Chromatin protein substrates
of VRKI1 include H3 and H2A histones resulting
in regulation of histone modification, chromatin
compaction, and regulation of gene expression, as well
as hnRNP1, phosphorylation of which causes activation
of telomerase. VRK1 role in cellular proliferation
and tumorigenesis has been investigated extensively.
Among the transcription factors targeted by VRKI,
phosphorylation of p53, c-Jun, ATF2, CREB, and
Sox-2 activates transcription, which is required for
cell cycle progression and proliferation [12]. VRK1
deficiency has been shown to cause both developmental
and degenerative neurological manifestations. These
phenotypes could be due to the disruption of the VRK1/
p53 autoregulatory loop that plays a crucial role in cell
division and death during nervous system development.
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On the other hand, since VRKI1 activates CREB,
mutations in VRK1 may cause neurological phenotypes
by disrupting the CREB signaling pathway, as had been
shown mutations in RSK2 (CREB kinase) and CREBBP
(CREB- binding protein) cause neurological diseases
Coffin Lowry syndrome and Rubinstein Taybi syndrome,
respectively [12].

SLC25A46 mutations

PCHIE is a result of genetic mutations in the Solute
carrier family 25 member 46 (SLC25A46). SLC25A46
encodes a protein located in the outer mitochondrion
membrane, involved in mitochondprial fission and fusion,
maintaining crista structure and facilitation of phospho-
lipid transfer from the endoplasmic reticulum [45, 46].
SLC25A46 is a member of a genetic family encoding
mitochondrial carriers, SLC25, encoding transmembrane
proteins constructed of three domains, each contain-
ing two transmembrane alpha helices connected with a
loop at the matrix side of the membrane, all involved in
the transportation of a variety of solutes across the mito-
chondrial membrane [47]. SLC25A46 was first identified
in 2006 as a member of the SLC25 family with mitochon-
drial solute carrier functions widely present in the central
nervous system [48]. Knockdown of slc25a46 expression
in zebrafish embryos led to brain malformation, spinal
motor neuron loss, and poor motility, additionally, stud-
ies have shown the balance between mitochondrial fis-
sion and fusion is important in cerebellar development
and degeneration [46]. Hence mutations in the SLC25A446
gene could cause a lethal form of PCH with cerebellar
atrophy. SLC25A46 mutations are also associated with a
variety of diseases in addition to the lethal PCH1, such as
Leigh syndrome and optic atrophy [45, 46].

Mutations in components of the vesicular trafficking
system

The Golgi apparatus is an important subcellular organelle
involved in the processing, packaging, and sorting of
both secretory and membrane protein structures. Based
on a model described as “cisternal maturation’, the newly
produced proteins from the endoplasmic reticulum,
enter the Golgi apparatus through the cis-compartment
and undergo several maturation processes towards the
trans compartment. Meanwhile, retrograde vesicular
transportation occurs from trans to cis compartments
in order to recycle the Golgi enzymatic complexes to
maintain the localization of such proteins. GARP is a
protein complex located at the trans compartment of
the Golgi complex, comprised of four subunits vascular
protein sorting 51 (VPS51), VPS52, VPS53, and VPS54,
involved in tethering the endosome-derived vesicles
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in the aforementioned retrograde trafficking. Subunits
VPS51-53, along with another subunit, VPS50, construct
a complex with similar functions, endosome-associated
recycling protein (EARP) [49].

PCH2E is caused by variants of mutant VPSS53. The
clinical manifestations of the disease include develop-
mental delay, spasticity features, seizure, microcephaly,
optic atrophy and nystagmus, and facial dysmorphism
[50, 51].

In addition to PCH2E, PCH13 is also a result of muta-
tions in another member of the GARP complex, VPS51.
The neuropathological findings of this type include pon-
tocerebellar hypoplasia, developmental impairment, epi-
lepsy, hypotonia, and visual impairment [52].

Another example of eukaryotic vesicular trafficking
is the process of synaptic transmission via the release
of neurotransmitter-containing vesicles. Through this
process, the synaptic vesicles are transferred from the
reserved pool to the readily releasable pool at the pre-
synaptic nerve, followed by exocytosis and endocytosis
of the vesicle. The filamentous (F)-actin is an important
modulator of these steps by means of maintaining the
reservoir, transferring the vesicles from this pool, and
regulating exocytosis and endocytosis, in contribution
to a wide range of proteins. The active zone cytomatrix
(CAZ), which F-actin is a part of, is a synaptic structure
in association with the release site of the vesicles. F-actin
is associated with a variety of protein components in
CAZ including piccolo (PCLO), neurexins, and Rab3a-
interacting molecules. PCLO is the largest protein among
the CAZ-associated proteins with a molecular weight
of 560kDa and spans across a number of presynaptic
domains, scaffolding a variety of regulators of F-actin
function [53].

Variants of the PCLO gene are found in cases of PCH3.
PCHS3 is presented with cerebellar vermis and hemi-
spheres hypoplasia, pontine hypoplasia, atrophied cer-
ebral white matter, seizure within the first year of life,
hypotonia, and hyperreflexia [54].

The endosomal sorting complexes required for trans-
port (ESCRT) pathway is an important component of
mammalian cell vesicular trafficking. The core compo-
nents of the ESCRT machinery include both early-acting
factors, Brol protein family, ESCRT-I, and ESCRT-II, and
late-acting factors, ESCRT-III and VPS4. The early-acting
proteins are involved in the assembly of ESCRT, mem-
brane deformation, and sorting of the cargo. On the other
hand, the late-acting components are involved in mem-
brane fission and disassembly of ESCRT. Among the late-
acting factors, ESCRT-III is a protein complex assembled
into multiple membrane-bound filaments, with impor-
tant roles in membrane fission and cofactor recruitment
[55]. Eight families of ESCRT-III-related proteins are
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expressed in humans named charged multivesicular body
protein (CHMP)1-8 [56].

PCHS is characterized by dystonia, ataxia, microceph-
alus, and non-degenerative, non-progressive cerebel-
lar hypoplasia and is associated with mutations in the
CHMPIA gene. This gene’s product protein is involved
in the ESCRT-III complex and also down-regulates
the expression of INK4A, which is an inhibitor of stem
cell proliferation. Therefore, the mutations in this locus
reduce the rate of proliferation in such cell lineages [2].

Similar to the PCH8 type, PCHI11 is characterized
by non-degenerative pontocerebellar hypoplasia. In
addition, the patients show signs of ataxia, psychomo-
tor developmental delay, and microcephalus. This type
is a result of genetic mutations in TBC1 domain 23
(TBC1D23) involved in intracellular vesicular trafficking
[57, 58]. Similar to the GARP complex and its pertaining
subunits, TBC1D23 is involved in the retrograde Golgi
vesicular transportation and is a determinant of speci-
ficity in endosome-Golgi vesicular transport at the trans
compartment of the Golgi apparatus [59].

Mutations in components of the purine synthesis pathway
The purine synthesis pathway is an important metabolic
pathway in both nucleic acid synthesis and energy pro-
duction by the synthesis of GTP and ATP molecules.
Purine biosynthesis is done via two pathways; the de
novo pathway starts from ribose 5-phosphate and then
its conversion to inosine monophosphate (IMP) which in
turn is converted into ATP or GTP, and the salvage path-
way which starts with hypoxanthine and guanine which
will be converted into IMP and GMP respectively, and
adenine is salvaged to AMP by adenine phosphoribosyl-
transferase [60].

Variants of adenosine monophosphate deaminase 2
(AMPD2)-encoding gene are associated with the inci-
dence of the PCH9. AMPD2 has an important role in
maintaining the cellular guanine reservoir by metaboliz-
ing AMP into IMP. Therefore, the resultant deficiency of
this protein component secondary to loss-of-function
mutations results in the impairment of cellular protein
production as well as adenosine-caused neurotoxicity.
Neuropathological findings of PCH9, involve a combina-
tion of microcephalus, pontocerebellar, and corpus cal-
losal hypoplasia. In addition, a pathognomonic imaging
finding of the “Figure 8” shape of the midbrain is promi-
nent in axial brain imaging modalities. The clinical mani-
festations of this type include a severe combination of
developmental impairment, seizure, and spastic charac-
teristics [61].
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Mutations in Coenzyme A synthase

Coenzyme A is a key metabolite involved in a wide range
of metabolic pathways including fatty acid synthesis,
oxidation of pyruvate, and regulation of cell cycle and
cell death. This metabolite is synthesized from pantoth-
enic acid. CoA synthetase (COASY) is a mitochondrial
enzyme mediating the final steps of this metabolic path-
way [62]. PCH12 is caused by mutations in the COASY
gene. This results in clinical features such as micro-
cephaly, pontocerebellar hypoplasia, arthrogryposis, and
death, with prenatal onset [63].

Mutations in MINPP1

This type has been associated with mutations in mul-
tiple inositol-polyphosphate phosphatase 1 (MINPPI)
gene resulting in intracellular accumulation of inositol
polyphosphates, especially inositol hexakiphosphate.
Inositol polyphosphates are water-soluble molecules
involved in a variety of cellular pathways including the
calcium ion-releasing actions of signaling molecule ino-
sitol-1,4,5-trisphosphate. The most prevalent forms of
these metabolites are inositol-1,3,4,5,6-pentakisphos-
phate (IP5) and inositol hexakisphosphate (IP6) which
are precursors of the integral signaling molecules, ino-
sitol pyrophosphates. IP6 is also a structural cofactor
in the formation of a variety of protein complexes [64].
The buildup of such anionic metabolites results in the
chelation of intracellular cations. Such events result in a
neuropathological phenotype of pontocerebellar and cer-
ebral cortex hypoplasia, hypoplastic basal ganglia, spastic
tetraplegia, axial hypotonia, distal hypertonia, seizure,
and developmental delay [65].

Mutations in PRDM13

The recently described PCH type, PCH17, is associ-
ated with genetic mutations in PRDM13, and was first
reported by Coolen et, al. in four families with four dif-
ferent variants of PRDM13 in the regions encoding the
zinc finger domain, in 2022. The patients were charac-
terized by developmental retardation, abnormal mus-
cle tone, seizure, as well as hypoplasia in inferior olivary
nuclei, and dentate nucleus dysplasia [66]. PRDM fam-
ily are transcriptional modulators by means of histone
methyltransferase actions directly or by recruitment of
other histone-modifying proteins [67]. PRDMS has a role
in neural circuit formation by regulation of cadherin-11,
PRDM12 is involved in sensory neuron perception, and
PRDM15 mutations are found in neurodevelopmental
impairment syndromes and progressive nephropathy.
PRDM13 is a target of PTF1A and a transcriptional regu-
lator involved in neuronal specification, especially in the
spinal cord and retina, as well as the differentiation of
GABAergic neurons in the cerebellum [66].
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Discussion

This report identified twelve cases of PCH with vari-
ants detected by WES and confirmed through Sanger
sequencing, six of which had novel variants. These
patients were diagnosed with different PCH types. Six
novel homozygous missense mutations in the TOEI
(c.1476C>G; p.F492L), AMPD?2 (c.1858C > A; p.R620S),
CLP1 (c.784C>G; p.L262V), TSEN54 (c.1160G>T;
p-R387L), TSEN2 (c.749A >G; p.D250G), and SEPSECS
(c.208T>C; p.C70R) genes were discovered, resulting
in changes in the amino acid sequence of the product
proteins. These alterations in protein sequence, struc-
ture, and function led to both classic and novel pheno-
types, both in clinical characteristics and paraclinical
findings. More interestingly, the identification of a novel
phenotype in PCH type 9, lactate elevation in MR spec-
troscopy, can aid in the diagnosis and improved manage-
ment of PCH type 9. These findings can also contribute
to the understanding of the underlying molecular mecha-
nisms and pathways involved in PCH, which can provide
insights into the pathophysiology of PCH and may lead to
the development of targeted therapies in the future.

PCH is a term describing a group of prenatal neurode-
generative disorders primarily affecting the pons and cer-
ebellum, typically presenting with underdevelopment of
specific areas of the brain, microcephaly, motor impair-
ment, and mortality in the early years of life [68]. The
disease was first described by Brun in 1917 in a report
regarding brain development abnormalities [69]. Bouman
et al. adopted the term hypoplasia ponto-neocerebellaris
to characterize the sparing of the cerebellar vermis in
comparison to hemisphere involvement [70]. Brouwer
proposed an underlying mechanism of neurodegenera-
tion rather than the initially stated "hypoplasia” a year
later, in 1924 [71]. Krause documented clinical features
of the disease in a 16-month-old patient who presented
with muscular atrophy, swallowing difficulties, spasticity,
and myoclonus in 1929 [72].

In 1993, Barth made the first attempt to classify the ill-
ness. He divided it into two categories: type 1, in which
anterior spinal horn degeneration is observed, and type
2, in which chorea and dystonia are present. According
to this classification, type 1 PCH typically manifests with
respiratory impairment, motor involvement, and con-
genital contractures. Type 2 patients, on the other hand,
show signs of microcephaly and developmental impair-
ment in both motor and mental status [1]. Currently,
PCH is classified into 17 types, primarily based on the
site of the location of the underlying genetic mutation in
the genome. As thoroughly discussed in the result sec-
tion, the underlying etiology of PCH can be divided into
three groups based on the underlying mechanism: tRNA-
processing genes, non-tRNA-processing genes targeting
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other forms of RNAs, and genes which are not directly
involved in any form of RNA processing.

This study presents a case featuring a novel homozy-
gous mutation in TSEN54 (c.1160G>T; p.R387L) and
associated clinical manifestations (case 6): developmen-
tal delay, motor delay, speech delay, muscle weakness,
and ataxia. MRI findings revealed cerebellar vermis atro-
phy, aligning more closely with the diagnostic criteria for
PCHS5, where pronounced vermis involvement is evident
in MRI scans. The three PCH types linked to TSEN54
mutations exhibit variations in the nature of genetic
mutations. The PCH2A subtype arises from a homozy-
gous mutation, specifically the substitution of Alanine
307 with a Serine residue in TSEN54. PCH4 cases either
display compound heterozygous genotypes at the same
site or result from splice site mutations. In PCH5 cases,
both compound heterozygous genotypes at this site and
splice site mutations are observed [24, 25].

The identified mutation in our case (homozygous
p-R387L) does not align precisely with the genetic basis of
the aforementioned three PCH types. Given the incom-
plete understanding of genotype—phenotype correlations
and the capacity of mutations in TSEN54 to manifest as
PCH2A, PCH4, or PCHS5, further exploration of novel
mutations in TSEN54 and their corresponding clinical
presentations is imperative for a comprehensive elucida-
tion of the genetic underpinnings of these disorders.

The PCHI10 case (case 9), harboring the ¢.784C>G
variant in the CLPI gene, displayed an absence of abnor-
mality in MRI findings, diverging from previous cases
characterized by cortical and cerebellar atrophy [31,
32]. Notably, this patient exhibited novel signs, includ-
ing hypotonia and epileptic vertigo or dizziness (EVD).
Conversely, the two additional patients diagnosed with
PCH10 (case 10 and 11) shared a similar genotype
(c.419G > A homozygous mutation) but presented with
slightly distinct phenotypic characteristics.

The first patient, a 4.5-years-old female, manifested
growth and developmental retardation, microcephaly,
sensorimotor and speech impairment, scoliosis, strabis-
mus, tonic seizures, and hypotonia. Imagining findings
revealed cortical atrophy and enlarged ventricles. The
second case, an eight-months-old male, Experienced
seizure, developmental delay, microcephaly, hyperto-
nia, spasticity, and succumbed at the age of 20 months
Imaging disclosed cerebral and cerebellar atrophy along-
side leukodystrophy. These variations among patients
with similar variants underscore the broad spectrum of
phenotypic diversity resulting from alteration in both
levels of genetic sequence and regulation of gene expres-
sion and their pertaining factors. It is worth mentioning
that only 11 families of Turkish origin and a family from
Sudan [31] have been reported for PCH10 [3-5] in the
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literature, and these three cases are the first Iranian cases
to be reported.

The c.419G > A mutation that causes the substitution of
arginine 140 with histidine has been reported in Turkish
families. Functional studies demonstrated that although
this mutation does not destabilize the protein, it does
impair the kinase activity of the CLP1 enzyme, alters the
nuclear localization, and reduces its affinity for the TSEN
complex, which together impair the tRNA processing [4].

We identified two patients (case 4,5) with novel
homozygous variants in SEPSECS (c.208T >C; p.C70R
and c.1274A > G; p.H425R), both presenting with devel-
opmental and motor delay and intellectual disability.
These cases mark the first instances reported in Iran.
Notably, both patients exhibited febrile seizures and eye
involvement, encompassing strabismus and nystagmus.
Previous instances of PCH2D have typically featured
intellectual disability, developmental delay, progressive
microcephaly, spasticity, and cerebellar atrophy. How-
ever, akin to other PCH types, heterogeneity is observed
in this subtype [73]. While nystagmus has been reported
in one previous case, our findings constitute the second
report of this characteristic [74]. Furthermore, we intro-
duce strabismus as a novel finding in case 4.

In this report, we present two cases of PCHI1B (case
1,2), both carrying a homozygous mutation in EXOSC3
(c.395A >C; p.D132A). This variant stands out as the
most commonly reported mutation in the EXOSC3 gene
and is typically associated with milder forms of PCHI.
Previous cases with this variant demonstrated develop-
mental delay but lacked respiratory dysfunctions, usually
exhibiting a lifespan extending into adulthood [75]. Con-
trary to these milder phenotypes, our first case (case 1)
exhibited severe manifestations, including neurodevelop-
mental delay, hypotonia, hyperreflexia, seizures, and suc-
cumbed at the age of three years. The disease course was
similarly severe in the second case (case 2), suggesting
potential involvement of other genetic or environmental
modifying factors in the pathogenesis of PCH1B.

EXOSC3 comprises three domains: the N-terminal
domain, and the RNA-binding S1 and KH domains. The
mutation observed in the presented cases (c.395A>C;
p-D132A) is located in a loop interconnecting the strands
of the S1 domain. The substitution of the hydrophilic and
ionic aspartate with the hydrophobic alanine may com-
promise the folding of this loop, leading to a distorted
structure and impairing its interaction with the catalytic
subunits EXOSC5 and EXOSC9 of the exosome complex
[36]. However, the wide range of clinical manifestations,
spanning from mild to severe forms in patients with the
p-D132A mutation, remains challenging to elucidate, and
the underlying mechanism is yet to be discovered.
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The case of PCH7 (case 7) exhibited previously
reported characteristics such as developmental delay and
sexual ambiguity, along with strabismus that has only
been reported in siblings of Chinese origin (compound
heterozygous: ¢.553C>T;p.R185W, ¢.562G>T;p.V188L)
recently [76]. A novel missense homozygous mutation
in TOE1 (c.1476C>G; p.F492L) was identified in this
proband, classified as a variant of uncertain significance
(VUS) following ACMG guidelines. However, consider-
ing the clinical findings in this study, this variant could
be pathogenic, emphasizing the importance of analyzing
genetic variations within the context of clinical manifes-
tations. The reporting of VUS variants in symptomatic
patients holds potential benefits, as they could contribute
to PCH diagnosis in a clinical setting.

In the case of the PCH type 9 patient (case 8), novel
paraclinical characteristics included an elevation in lac-
tate levels in MR spectroscopy. While elevated lactate
levels in serum (PCHI1E and PCH6) and CSF (PCH®6)
have been reported, this study represents the first docu-
mentation of elevated lactate levels in PCH9. A novel
homozygous mutation in the relatively conserved pro-
tein-coding region of AMPD2 (c.1858C>A; p.R620S)
[77] was identified in this proband, classified as likely
pathogenic according to ACMG guidelines, aligning with
the clinical findings of this study.

Variants in the AMPD2-encoding gene are associ-
ated with the incidence of PCH9. AMPD2 plays a cru-
cial role in maintaining the cellular guanine reservoir
by metabolizing AMP into IMP, thereby contributing
to energy production through the synthesis of GTP and
ATP molecules. Consequently, deficiency in this protein
component due to loss-of-function mutations results
in impaired cellular protein production and adenosine-
induced neurotoxicity. However, the precise mechanism
by which AMPD?2 disruption leads to elevated lactate lev-
els necessitates further investigation.

Genetic counseling and pattern recognition approach

Due to the specificity of the described signs and
symptoms, a variety of diseases should be considered
as a differential diagnosis of PCH, including congenital
disorder of glycosylation type Ia, CASK-related
disorders, Tubulin defects, mutations in RELN and
VLDLR genes, Walker-Warburg syndrome, Muscle eye
brain disease, Fukuyama muscular dystrophy, pediatric-
onset spinocerebellar ataxia, SMA, Joubert’s syndrome,
and Dandy-Walker malformation. Though similarities
can be observed among these diseases, distinct clinical
and paraclinical, as well as genetic testing, can be used
to differentiate among such disorders [6]. Since the
differential diagnosis of these diseases with PCH had
been discussed in detail previously [46, 78], we focus
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on the clinical findings of PCH, which helps in the
differentiation of different PCH types and subtypes.
Although WES remains a first-tier diagnostic test for
patients with PCH-related signs, establishing specific
genotype—phenotype relation could help clinicians in
diagnosing PCH by checking a single gene or developing
a PCH-specific gene panel. As stated earlier, PCH is a
heterogeneous group of neurodegenerative disorders
with cerebellar and pons hypoplasia, in which some
manifestations such as microcephaly and motor
and cognitive impairments are present in almost all
individuals. However, there are some manifestations that
have been reported in specific types or subtypes of PCH
and could be used to differentiate among different types
of PCH. For instance, the disorder of sex development
has been only reported in PCH7 patients. PCH4,5 are
the most severe forms of PCH with polyhydramnios
and congenital contracture, which could lead to even
prenatal death. The neurological finding could also
be helpful since the “eight” pattern is pathognomonic
for PCH9 patients and the “dragonfly” pattern is seen
in PCH2 patients. Genotype—phenotype correlation
is most clear in PCH2A patients, where patients with
A307S mutation in the TSEN54 gene have a “dragonfly”
pattern, poor feeding, and extrapyramidal movement
disorders. In patients with the aforementioned symptoms
and neuroimaging findings, prompt testing for A307S
mutation is recommended [6]. Increased serum lactate
may help in recognizing PCH6 patients; however, it
has also been reported in PCHIE. Ethnicity is another
factor to consider when dealing with PCH patients.
Until recently, PCH10 has been reported only in people
of Turkish origin (a family from Sudan, and three
Iranian families of this study have also been added.),
or in another instance, PCH2E has been only reported
in people of Moroccan Jewish origin. Although ethnic
background could be helpful, it should bear in mind that
PCH is a very rare disease, and underrepresentation or
overrepresentation of cases could make bias towards
some specific origin. It is worth mentioning the incessant
growing literature regarding PCH has expanded the
genotypic and phenotypic spectrum of this disease,
leading to the introduction of four new types of PCH
since 2020. This expansion will probably continue in the
incoming years and add more types and subtypes to the
PCH disorder group. Regarding heterogeneity in PCH
disorders, the diagnostic work-up should be customized,
considering the cost-benefit of each patient. In the
absence of clinical clues, comprehensive genetic testing
like WES or WGS could be beneficial. However, WES or
WGS interpretation could be more fruitful when taking
clinical, imaging, and laboratory input into consideration.
In the case of a patient with clinical suspicion of PCH, a
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PCH gene panel could be the diagnostic choice; however,
in a more specified manner, if the patient has some
specific clinical or paraclinical manifestations that point
to a specific type of PCH, checking that single gene may
be the most beneficial approach. The last approach is
only plausible by defining hallmarks for each type and
subtype of PCH, which requires more cases [6, 48, 78].
A pattern recognition approach mainly based on imaging
was proposed by Rusch et al., in 2020 when 13 types of
PCH were listed in the OMIM database. However, four
types of PCH have been added to OMIM since then, and
due to the overlap of clinical and neuroimaging findings
among these different types, genome-wide genetic testing
remains the first choice for PCH diagnosis [79].

Conclusion

In this study, novel and distinct phenotypes and geno-
types are combined with previously described informa-
tion. We offered recommendations for identifying and
diagnosing these various subgroups of disorders due to
the diversity in PCH. Hence, providing cases with novel
variations and clinical findings could further expand the
genetic and clinical spectrum of these diseases and help
in better diagnosis. This is because certain critical condi-
tions, such as spinal muscular atrophy, are part of their
differential diagnosis. Thus, for the first time, six novel
genetic variants, as well as novel clinical and paraclinical
findings, have been reported. Further studies are needed
to elucidate the underlying mechanisms and potential
therapeutic targets for PCH. It is, therefore, crucial to
continue investigating these novel phenotypes and their
implications for PCH diagnosis and treatment.
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