
Lan et al. BMC Medical Genomics           (2024) 17:74  
https://doi.org/10.1186/s12920-024-01842-6

RESEARCH

The RNA sequencing results revealed 
the expression of different genes and signaling 
pathways during chemotherapy resistance 
in peripheral T-cell lymphoma
Yunyi Lan1,3,4*†, Wei Tao2†, Luyao Ma1,3,4, Xiaoxiong Wang1,3,4, Hongsheng Li1,3,4, Yaxi Du1,3,4, Ruijiao Yang1,3,4, 
Shunxian Wu1,3,4, Yingxin Ou1,3,4, Xin Liu1,3,4, Yunchao Huang3,4 and Yongchun Zhou1,3,4 

Abstract 

Background Peripheral T-cell lymphoma (PTCL) is a subtype of non-Hodgkin’s lymphoma that occurs primar-
ily at extranodal sites and is commonly treated using chemotherapy and radiotherapy. PTCL is more malignant 
than other lymphoid tumors, resulting in a poor prognosis.The 5-year recurrence rate remains high, and there is a lack 
of standard treatment for patients with relapse-resistant disease. However, the molecular mechanisms underly-
ing the resistance of peripheral T-cell lymphoma cells to chemotherapeutic drugs, as well as identifying strategies 
to overcome drug resistance remains unclear. In this study, we aimed to identify pivotal genes and signaling pathways 
associated with chemotherapy resistance in PTCL.

Methods In this study, a total of 5 healthy controls and 7 clinical patients were enrolled; 4 patients were classified 
as chemotherapy sensitive, and 3 patients were classified as chemotherapy resistant. Peripheral blood samples were 
collected from each participant, and total RNA was extracted from the white blood cells. RNA sequencing was con-
ducted on the Illumina HiSeq platform to obtain comprehensive gene expression profiles. Subsequently, the expres-
sion patterns of the DEGs associated with the most enriched signaling pathways, with a special focus on cancer-
related genes, were validated using quantitative real-time polymerase chain reaction (qRT–PCR) in peripheral TCL 
patients.

Results RNA sequencing (RNA-seq) analysis revealed 4063 differentially expressed genes (DEGs) in peripheral T-cell 
lymphoma specimens from patients with chemotherapy resistance, of which 1128 were upregulated and 2935 were 
downregulated. Subsequent quantitative gene expression analysis confirmed a differential expression pattern in all 
the libraries, with 9 downregulated genes and 10 upregulated genes validated through quantitative real-time PCR in 6 
clinical specimens from patients with chemotherapy resistance. KEGG pathway analysis revealed significant alterations 
in several pathways, with 6 downregulated pathways and 9 upregulated pathways enriched in the DEGs. Notably, 
the TNF signaling pathway, which is extensively regulated, was among the pathways that exhibited significant 
changes. These findings suggest that DEGs and the TNF signaling pathway may play crucial roles in chemotherapy 
resistance in peripheral T-cell lymphoma.
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Introduction
Peripheral T-cell lymphoma (PTCL) is a specific type of 
non-Hodgkin lymphoma characterized by the prolif-
eration of mature T cells. This disease primarily mani-
fests in extranodal sites such as the intestinal tract, skin, 
lymph nodes, spleen, and other tissues outside of the 
bone marrow. Common symptoms include fever, night 
sweats, weight loss, itching, and other systemic manifes-
tations [1, 2]. The specific etiology of PTCL has not been 
determined and various risk factors have been identified 
for its development. These include viral infections such 
as Epstein–Barr virus and human T lymphocyte virus, 
exposure to radiation or certain chemicals, and abnor-
malities in the immune system [3].

The incidence of peripheral T-cell lymphoma (PTCL) 
varies across different regions, and PTCL is considered a 
relatively rare malignancy, accounting for approximately 
10–15% of all non-Hodgkin lymphoma (NHL) cases [4]. 
However, in Asian countries such as China and Japan, 
the incidence of this disease is relatively high, whereas 
it is lower in western countries [5]. Aggressive subtypes 
of PTCL, such as extranodal nasal NK/T-cell lymphoma 
and cutaneous T-cell lymphoma, are characterized by 
rapid disease progression, short survival periods, and 
poor prognosis [6]. Overall, peripheral T-cell lymphomas 
have an unfavorable prognosis and necessitate intensive 
therapeutic approaches [7].

The management of PTCL involves a multimodal treat-
ment approach that involves combination of chemo-
therapy and radiotherapy [8]. Chemotherapy is currently 
the standard treatment for hematopoietic tumors such 
as lymphoma; however, the development of chemo-
therapeutic drug resistance remains a major obstacle to 
achieving successful treatment outcomes and preventing 
tumor recurrence. Therefore, investigating the molecu-
lar mechanisms underlying the resistance of peripheral 
T-cell lymphoma cells to chemotherapeutic drugs, as well 
as identifying strategies to overcome drug resistance, has 
emerged as a key research area in the field of chemother-
apy for hematopoietic tumors [9]. Clinical investigations 
have demonstrated the efficacy of gemcitabine-based 
chemotherapy regimens in the treatment of PTCL. 

However, studies have reported the generation of gem-
citabine-resistant human peripheral T-cell lymphoma 
cell lines, as well as investigations into the mechanisms 
underlying drug resistance [10].

Over the past few years, genetic analyses of periph-
eral T-cell lymphoma (PTCL) have advanced our under-
standing of the pathogenesis of this malignant tumor. 
Activating mutations in the NF-κB, Notch, JAK/STAT3, 
RHOA, and PI3K/AKT signaling pathways have been 
found to play crucial roles in the pathogenesis of PTCL. 
For instance, NF-κB is involved in proliferative signaling 
in various lymphoid malignancies, and although further 
investigation is needed, gene expression profiling studies 
have shown increased expression of NF-κB-related genes 
in PTCL, and the induction of apoptosis in PTCL cells by 
NF-κB inhibitors supports the notion that this pathway 
plays a significant role in PTCL. Moreover, accumulating 
evidence suggests the involvement of viral components in 
multidrug chemotherapy resistance in lymphoma cells, 
with some mechanisms potentially mediated through 
cancer-causing viruses altering disease signaling path-
ways [11].

Transcriptome sequencing, performed using the Illu-
mina sequencing platform, involves the comprehensive 
analysis of all RNA molecules transcribed by a specific 
cell or tissue at a given time, including both coding and 
noncoding mRNAs. This technique provides valuable 
insights into gene function and structure and plays a cru-
cial role in understanding organism development and 
the pathogenesis of diseases [12]. Therefore, our study 
aimed to elucidate the molecular mechanisms under-
lying chemotherapeutic drug resistance in peripheral 
T-cell lymphoma cells through transcriptome analysis. 
With this approach, we hope to identify novel molecular 
targets and dysregulated molecules within the carcino-
genic pathways, offering potential insights for therapeutic 
interventions.

Materials and methods
Selection of patients and sample preparation
Eligible participants for this study included individu-
als aged aged over 18  years who had a confirmed 

Conclusion Our study revealed that the expression of specific genes, including TNFRSF1B, TRADD2, and MAP3K7, 
may play an important role in chemotherapy resistance in peripheral T-cell lymphoma. Moreover, we identified 
the downregulation of the TNF signaling pathway, a crucial pathway involved in cell survival, death, and differentia-
tion, as a potential contributor to the development of chemotherapy resistance in peripheral T-cell lymphoma. These 
findings provide valuable insights into the molecular mechanisms underlying chemotherapy resistance and highlight 
potential targets for overcoming treatment resistance in this challenging disease.
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Signaling pathways
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histological diagnosis of peripheral T-cell lymphoma, as 
per the World Health Organization (WHO) classifica-
tion of lymphoid neoplasms. Patients were required to 
have documented relapse or disease progression follow-
ing prior chemotherapy treatment with gemcitabine, as 

indicated in Table 1. The table presented within the study 
consisted of different cohorts, including the discovery 
and validation cohorts. The control group consisted of 
healthy control samples, while the sensitivity group com-
prised samples from patients exhibiting chemotherapy 

Table 1 Characteristics of the samples in the pilot study (n = 12)

Discovery cohorts Sample Name Age (year) Gender Proportion 
of primary 
lymphocytes

Histopathological 
characterization

Drug regimens

Control Sample 1 37 Male - - -

Sample 2 38 Male - - -

Sample 3 28 Female - - -

Sample 4 25 Female - - -

Sample 5 34 Female - - -

Sensitivity Sensitivity_1 59 Male 13% NK/T lymphoblastic lymphoma, 
stage IV group B, IPI 3 score

P-GELOX (gemcitabine 1.4 mg, 
d1, 8; Pemendon 3750 d1; 
Oxalipol 150 mg d1)

Sensitivity_2 59 Male - Extranodal NK/T cell lymphoma, 
nasal type, Stage IV Group A, IPI 
2 score

P-GELOX (gemcitabine 1.8 g, d1, 
8; Pemendon 3750 d1; Oxalipol 
180 mg d1)

Sensitivity_3 26 Male 0.5% Primary cutaneous peripheral 
T-cell lymphoma

P-Gemox(Pemaspartase 3750 
u d1, gemcitabine 1.6 g d1, d8, 
oxaliplatin 150 mg d1)

Sensitivity_4 43 Female 2% Primary cutaneous peripheral 
T-cell lymphoma

GDP + etoposide (gemcitabine 
1.3 g, d1, 8; Dexamethasone 
40 mg d1-4; Cisplatin 100 mg d1; 
Etoposide 80 mg d1-4)

Experimental Experimental_1 47 Male - NK/T cell lymphoma stage II 
Group A, IPI 1 Score

P-Gemox(Pemaspartase 3750 
u d1, gemcitabine 1.6 g d1, d8, 
oxaliplatin 150 mg d1)

Experimental_2 62 Male - Peripheral T cell lymphoma 
stage III Group B, IPI 1 Score

GDP (Gemcitabine 1.6 g, d1, 8; 
Dexamethasone 40 mg d1-4; 
Cisplatin 120 mg d1)

Experimental_3 51 Male 25% T-lymphoblastic lymphoma, 
stage III Group B, IPI 1 Score

Sidanidine + GDP (Sidanidine 
30 mg, d1, 4, 8, 11; Dexametha-
sone 40 mg, d1-4; Gemcitabine 
1.6 g, d1, 1.2 g, d8; Cisplatin 
120 mg, d1)

Sensitivity Sensitivity_5 54 Male - T-lymphoblastic lymphoma 
stage I, low risk group. (No IPI 
score)

COP tumor reduction and BFM-
90 treatment were performed 4 
times

Sensitivity_6 70 Male - Extranodal NK/T cell lymphoma, 
nasal type, Stage IIB, IPI2 score, 
Low risk group

P-GELOX (gemcitabine 1.8 g, d1, 
8; Pemendon 3750 d1; Oxalipol 
180 mg d1) and radiotherapy

Sensitivity_7 25 Female - Acute leukemia MA scheme treatment were 
performed

Experimental Experimental_4 16 Male - Stage III T-lymphoblastic 
lymphoma (mediastinum, neck, 
supraclavicular lymph nodes)

VDLP scheme, CAM scheme were 
performed twice, M scheme 
treatment were performed 3 
times

Experimental_5 55 Male - Peripheral T cell lymphoma, 
non-specific type, stage IVB, IPI 
4 score, high risk group

CHOP scheme were performed 
twice, ESHAP scheme, GDP 
and sidarbenamide scheme 
treatment

Experimental_6 60 Female - T-lymphoblastic lymphoma 
stage III, low risk group. (No IPI 
score)

VDLP + CAM scheme, M 
scheme were performed 4 
times and VDLP scheme treat-
ment
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sensitivity. Conversely, the experimental group included 
samples from patients with chemotherapy resistance. 
The allocation of samples into these respective groups 
was performed based on predetermined criteria and 
classification.

Peripheral blood or bone marrow blood samples were 
taken in 2020 and 2021 at the Department of Hematol-
ogy of the Second and the Third Affiliated Hospital of 
Kunming Medical University, Yunnan, China. The Eth-
ics Committee of Kunming Medical University approved 
this research. After sample collection, the leukocytes 
were immediately separated from each sample and stored 
at − 80 °C until further processing and sequencing.

Ritchie Giemsa staining
The anticoagulant EDTA was used to absorb 5–7  μl 
of peripheral blood via a capillary pipette, after which 
the blood was dropped on a glass slide. Apply Garry’s 
Giemsa A solution to the smear, and let the solution 
cover the whole specimen for 1 min. Then, Rei’s Jemsa B 
solution was added to liquid A (the amount of drip was 
2–3 times that of liquid A), after which the mixture was 
blown through the mouth or earball to make the liquid 
surface ripple so that the two liquids were fully mixed 
and stained for 3–10 min. Then, the slides were washed 
and dried, after which the blood cells were examined via 
microscopy.

RNA quantification and RNA library construction
RNA was extracted from  leukocytes  with an RNeasy® 
Mini Kit (Qiagen, Duesseldorf, Germany, cat# 74104), 
and a Nanodrop and an RNA Nano 6000 Assay Kit from 
a Bioanalyzer 2100 system (Agilent Technologies, CA, 
USA) were used to evaluate the quantity and stability of 
the RNA.

The initial RNA used for library construction was total 
RNA, which was enriched with oligo(dT) magnetic beads 
for poly(A) tail mRNA, and then randomly disrupted by 
divalent cations in fragmentation buffer. With the frag-
ments of mRNA serving as templates and random oli-
gonucleotides used as primers, the M-MuLV reverse 
transcriptase system was used to synthesize the first 
cDNA strand. RNaseH degrades RNA strands, and DNA 
polymerase I synthesizes the second strand of cDNA with 
dNTPs. Following terminal repair of the purified double-
stranded cDNA, a tail was added, and the sequence was 
joined. AMPure XP beads were subsequently employed 
to screen cDNA approximately 370–420 bp in length for 
PCR amplification, after which the beads were reused to 
purify PCR products and obtain the final library.

After constructing the library, a Qubit 2.0 fluorom-
eter was used for initial quantification, and the library 
was diluted to 1.5  ng/µl. Subsequently, an Agilent 2100 

bioanalyzer was utilized to determine the insert size of 
the library.

Computer sequencing
After a thorough library review, Illumina platform 
sequencing was employed to amalgamate and sequence 
multiple libraries, resulting in 150  bp paired-end reads 
that were in accordance with the desired concentration 
and data volume. The fundamental principle of sequenc-
ing is the sequencing by synthesis(SBS).

Four fluorescently labeled dNTPs, DNA polymerase 
and joint primers were added to the sequencing flow cell 
for amplification. Each cluster was fluorescently labeled 
because it extended complementary chains. dNTP can 
emit the corresponding fluorescence, and the optical 
signal is transformed into a sequencing peak to obtain 
sequence information.

Data analysis
The sequencer’s measured image data were converted 
into sequence reads. Initially, fastq formatted raw reads 
were processed through internal Perl scripts. Clean reads 
were subsequently obtained by eliminating reads with 
adapters, N bases, and low-quality reads. Simultaneously, 
the Q20, Q30, and GC content of the clean data were 
calculated.

We employed fastp software (version 0.23.1) for qual-
ity control. The specific parameters used were as follows: 
qualified_quality_phred set to 5, unqualified_percent_
limit set to 50, n_base_limit set to 15, min_trim_length 
set to 10, overlap_len_require set to 30, overlap_diff_limit 
set to 1, overlap_diff_percent_limit set to 10, length_
required set to 150, and length_limit set to 150. Addition-
ally, a trim_poly_g step was incorporated in the quality 
control process.

To obtain the necessary reference genome and gene 
model annotation files, we obtained them directly from 
the appropriate genome website [13]. These files were 
downloaded and utilized for subsequent analysis. Next, 
HISAT2 software was used to align the clean reads to 
the reference genome. This alignment process allowed 
for the determination of the exact position of the reads 
on the reference genome, providing valuable infor-
mation on their genomic location. This step was con-
ducted to facilitate further analysis and interpretation. 
Following the alignment, FeatureCounts software (ver-
sion 1.5.0-p3) was used to count the number of reads 
associated with each gene. This step involved tallying 
the reads that uniquely mapped to each gene within the 
alignment data. Subsequently, the fragments per kilo-
base of transcript per million mapped reads (FPKM) 
values for each gene were calculated. The FPKM values 
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were determined based on the length of the gene and 
the number of reads mapped to it [14].

For the differential expression analysis between two 
groups, we utilized the DESeq2 R package (version 
1.20.0) [15]. To control for the false discovery rate, the 
p values were adjusted using the Benjamini–Hoch-
berg method. The threshold for determining signifi-
cantly differentially expressed genes (DEGs) was set at 
a padj value of less than or equal to 0.05 and a log2-fold 
change absolute value greater than or equal to 1. To 
validate the accuracy of the identified DEGs, a quanti-
tative real-time PCR comparison was performed on six 
clinical individuals with peripheral T-cell lymphoma. 
Specifically, nine downregulated DEGs (AKT1, NFK-
BIA, TRADD, MAP2K1, MAP2K6, MAP3K7, PIK3CD, 
TRAF1, and TNFRSF1B) and ten upregulated DEGs 
(CAMTA1, HIST1H3B, ARHGEF12, PBX1, HIST1H4I, 
TAL1, YWHAE, ACVR1, MAX, and GNAS) were con-
firmed through this experimental validation.

To conduct a Gene Ontology (GO) enrichment analy-
sis of the DEGs, we utilized the ClusterProfiler R pack-
age (version 3.8.1) [16]. This analysis took into account 
the bias that may arise due to differences in gene 
length. GO terms with a corrected p value less than 
0.05 were considered to indicate significant enrich-
ment of the DEGs. To assess the statistical enrichment 
of DEGs according to the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (Kyto reactome or Disease 
Ontology) pathways, we again used the ClusterProfiler 
R package (version 3.8.1). The Reactome database pro-
vides comprehensive pathway information, while the 
DO database describes the functions of human genes 
and diseases. Significantly enriched pathways were 
identified based on a corrected p value threshold of less 
than 0.05.

To assess whether a predefined gene set exhibits sig-
nificant differences between two biological states, the 
gene set enrichment analysis (GSEA) computational 
approach can be employed. This analysis takes into 
account even subtle changes in gene expression. In our 
study, we utilized a variety of data sets, including Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), Reactome, DO, and DisGeNET data 
sets, to perform GSEA independently. These data sets 
provided valuable information on gene function, bio-
logical pathways, and disease associations. By perform-
ing GSEA using these data sets, we were able to identify 
gene sets that were significantly enriched and showed 
notable differences between the two biological states 
under investigation. This computational approach ena-
bled us to gain insights into the functional implications 
and potential disease relevance of the differentially 
expressed genes.

Statistical analyses
The statistical analysis was performed using Graph-
Pad Prism 5 software (GraphPad Software, La Jolla, CA, 
USA). To assess the differences between multiple groups, 
one-way analysis of variance (ANOVA) followed by Dun-
nett’s multiple comparison test was used. The results are 
presented as the mean ± standard deviation (SD). For 
comparisons between two groups, an unpaired Student’s 
t test was used. A p value of less than 0.05 (*) was consid-
ered to indicate statistical significance, while p values of 
less than 0.01 (**) and less than 0.001 (***) were consid-
ered to indicate high significance.

Results
Histopathological characterization
To analyze the presence of tumor cells in the blood sam-
ples, a Richs–Giemsa mixed staining method was used. 
This staining technique allowed for the detection of 
primitive blood cells in patient samples. As depicted in 
Fig.  1, the results clearly demonstrated the presence of 
these primitive blood cells in the blood samples. These 
findings indicate that the blood samples met the neces-
sary criteria and were suitable for further RNA sequenc-
ing experiments.

Sequencing and transcriptome data
The use of RNA-seq in the nucleus lies in the examina-
tion of gene expression disparities. Statistical techniques 
are used to detect differences in gene expression between 
two or more conditions, uncovering particular genes 
associated with those conditions and further examining 
the biological importance of these genes. The exami-
nation process involved quality control, comparison, 
quantitative analysis, significance analysis of differences, 
functional enrichment, and other connections. In addi-
tion, variable splicing, mutation site and fusion gene pre-
diction data are also important for analyzing RNA-seq 
data. Moreover, according to different research needs, we 
performed personalized transcriptome analysis, such as 
gene coexpression network construction (WGCNA) and 
somatic mutation detection. The information analysis 
process is shown in Fig. 2.

The sequencing process itself has the possibility of 
machine errors. A quality check of the sequencing data’s 
error rate distribution was performed. The sequenc-
ing quality value of each base in the sequence infor-
mation is stored in the fastq file. Figure  3A shows the 
sample sequencing error rate distribution, with e rep-
resenting the sequencing error rate and Qphred the 
base quality value of Illumina. This yields a result of 
Qphred = -10log10(e). The GC content, the proportion of 
guanine (G) to cytosine (C) in the nucleotide sequence, 
varies between species. However, the 6  bp random 
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primers employed in reverse transcription cause the ini-
tial few bases to have a certain predilection for nucleotide 
composition, leading to regular fluctuations and subse-
quent steadiness. The NEB library construction tech-
nique requires that, in accordance with random sequence 
interruption and double-strand complementarity, the GC 

and AT contents of each position of the sequence read 
segment be equivalent and remain steady and horizon-
tal throughout the entire sequence. For a chain-specific 
database, AT or GC separation may occur because only 
single-chain information is retained. Figure 3B shows the 
GC content distribution of each sample in this study.

Fig. 1 Histopathological characterization between chemotherapy sensitivity and chemotherapy resistance PTCL samples. A The Bone marrow 
morphology of the chemotherapy sensitivity sample: Sensitivity_4. B Bone marrow morphology of the chemotherapy resistance sample: 
Experimental_3

Fig. 2 RNA Sequencing analysis process
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To guarantee the accuracy and dependability of the 
data analysis, the raw sequencing data were filtered in 
the following manner: 1) reads with adapters were elimi-
nated; 2) reads with N (the base information was not 
discernible); and 3) reads of poor quality (Qphred <  = 20 
base number comprising more than 50% of the whole 
read length) were excluded. The filtering of the sequenc-
ing data from each sample is shown in Fig. 3C.

After checking the sequencing error rate and the GC 
content distribution, the original data were filtered, and 
clean reads were obtained for subsequent analysis. The 
summary of the data is shown in Table 2.

Reference genome alignment
The sum of read1 and read2, that is, the number of clean 
reads in the data quality summary table, was used to 
determine the mapping rates of read1 and read2; this 
is the total read number in the table below. The actual 
number of reads should be based on the data quality. A 
summary table (Table  3) shows the proportions of the 
samples relative to the reference genome.

According to the comparison results, the proportions 
of reads in the exon region, intron region and intergene 
region of the genome were calculated. The general model 
species had relatively well-annotated genes (e.g., humans 

Fig. 3 Data quality control of the RNA sequencing sample. A-D The figures show the error rate distribution, GC content distribution, sample 
sequencing data filtering and reference genome alignment of the RNA sequencing sample



Page 8 of 19Lan et al. BMC Medical Genomics           (2024) 17:74 

and mice), with a high proportion of comparisons to the 
exon region. Reads matched to intron regions may be 
derived from precursor mRNAs or introns retained by 
variable splicing events. Reads in intergenomic regions 
may be derived from ncRNA or from DNA fragment con-
tamination, or gene annotation may not be perfect. The 
distribution of sequencing reads in the genome region of 
all the samples is shown in Fig. 3D.

Quantitative analysis
The reference genome’s gene alignment position infor-
mation was used to calculate the number of reads from 
the start to the end of each gene, including the new pre-
dicted gene. Reads with alignment quality values less 
than 10, reads on unpaired alignments, and reads aligned 
to multiple regions of the genome were filtered out. Sub-
read software10 employs the Counts feature in this analy-
sis [17].

We performed quantitative analysis of the gene expres-
sion levels for each sample separately and then merged 
the results to obtain the expression matrix of all the sam-
ples [18]. The expression value determined via RNA-seq 
is not typically determined by read count but rather by 
FPKM, which has been adjusted for sequencing depth 
and gene length [19]. After calculating the expression 
values of all the genes in each sample, box plots (Fig. 4A) 
were generated to demonstrate the distribution of the 
gene expression levels in the different samples. The 
sample name is depicted in the figure. The ordinate is 
log2(FPKM + 1), and the box plot of each area is com-
posed of five statistics: the maximum, the upper quartile, 
the median, the lower quartile, and the minimum.

Biological repetition is usually necessary for any bio-
logical experiment, and currently, mainstream journals 
also basically require biological repetition. Biological 

replication serves two main purposes. One purpose is 
to demonstrate that the biological experimental manip-
ulations involved are not accidental but reproducible. 
Another is to ensure more reliable results from subse-
quent differential genetic analysis. An important measure 
of the dependability of experiments and the suitability 
of sample selection is the correlation of gene expression 
levels between samples. The closer the correlation coef-
ficient is to 1, the more similar the expression patterns 
are between samples. The Encode program recommends 
that the square of the Pearson correlation coefficient 
(R2) should be greater than 0.92 under ideal sampling 
and experimental conditions. The R2 between biological 
replicates in this project operation must be at least 0.8; 
otherwise, the sample must be properly interpreted, and 
the experiment must be repeated. The FPKM values of all 
genes in each sample were used to calculate the correla-
tion coefficients of samples within and between groups, 
which can be visualized in a heatmap to show the sample 
differences between groups and the repetition of samples 
within a group. When the correlation coefficient between 
samples is greater, their expression patterns become 
more closely aligned. The sample correlation heatmap is 
shown in Fig. 4B.

The figure below displays the gene expression values 
(FPKM) of all samples that underwent principal compo-
nent analysis (PCA), a process that utilizes linear algebra 
calculations to reduce dimensionality and extract prin-
cipal components for tens of thousands of genetic varia-
bles. This technique is also frequently employed to assess 
the distinctions between groups and the repetition of 
samples within a group. It is desirable that the PCA plot 
have samples between groups dispersed, and samples 
within groups clustered together. The principal compo-
nent analysis results are shown in Fig. 4C.

Table 2 The details of the transcriptome assembly result

Sample Library Raw _reads Raw _bases Clean _reads Clean _bases Error _rate(%) Q20 Q30 GC_pct

C1 Sample 1 45186018 6.78G 43780932 6.57G 0.03 97.65 93.89 58.92

C2 Sample 2 40270380 6.04G 39434346 5.92G 0.03 97.71 93.95 58.89

C3 Sample 3 46773424 7.02G 45533344 6.83G 0.02 98.16 94.57 59.62

C4 Sample 4 42724428 6.41G 41601340 6.24G 0.02 98.20 94.66 56.57

C5 Sample 5 45300782 6.8G 44047466 6.61G 0.03 97.76 93.65 57.94

S1 Sensitivity_1 43300398 6.5G 42447828 6.37G 0.03 97.21 92.33 50.76

S2 Sensitivity_2 39648482 5.95G 38825744 5.82G 0.03 97.11 92.17 51.55

S3 Sensitivity_3 47937238 7.19G 46735142 7.01G 0.03 97.22 92.49 54.72

S4 Sensitivity_4 24241332 3.64G 23893386 3.58G 0.03 96.67 90.94 45.37

E1 Experimental_1 37478390 5.62G 37064522 5.56G 0.03 96.62 91.33 53.36

E2 Experimental_2 29402980 4.41G 29075142 4.36G 0.03 96.75 91.09 44.93

E3 Experimental_3 32223896 4.83G 31400410 4.71G 0.03 96.86 91.28 45.81
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Analysis of DEGs
After the quantification of gene expression is completed, 
statistical analysis of the expression data is required to 
screen genes with significantly different expression levels 
in the samples under different states. Difference analysis 
can be divided into three steps. The original read count 
was first normalized, mainly to correct the sequencing 
depth. The statistical model calculates the hypothesis 
test probability (p value) and finally performs multiple 
hypothesis test correction to obtain the FDR value (false 
discovery rate, padj is its common form) [20, 21].

From the quantification of gene expression in our 
research, we found that two samples, experimental 1 
and sensitivity 4, were not suitable for clinical behavior. 
Therefore, in the subsequent process of data analysis, 
the two samples were separated from the other 5 patient 
samples.

In general, if a gene has a more than two fold difference 
in expression between two groups of samples, we con-
sider that the gene is differentially expressed. To judge 
whether the difference in expression between the two 
samples was due to various errors or an essential differ-
ence, we needed to perform hypothesis testing on the 
expression data of all the genes in the two samples. Tran-
scriptome analysis is performed on thousands of genes, 
which can lead to the accumulation of false positives. The 
p value of the hypothesis test was corrected by introduc-
ing padj, thus controlling the proportion of false posi-
tives16. This is because a greater number of genes leads 
to a greater accumulation of false positives [22].

The screening criteria for differentially expressed genes 
are highly important. The criteria |log2(fold change)|> = 1 
and padj <  = 0.05 are commonly used empirical values 
that can be flexibly selected according to the actual pro-
ject. Figure  5A shows the statistics for the number of 

DEGs (both up- and downregulated) for each compari-
son combination.

A volcano map was constructed to visualize the distri-
bution of DEGs associated with each comparative combi-
nation, as shown in Fig. 5B. In the figure, the x-coordinate 
indicates the change in the gene expression ratio between 
the treatment and control groups (log2FoldChange), and 
the y-coordinate indicates the level of significance of the 
difference in gene expression between the treatment and 
control groups (-log10padj or -log10pvalue). The red dots 
represent upregulated genes, and the green dots repre-
sent downregulated genes.

A venn diagram can illustrate the common or exclu-
sive differential genes identified in certain comparison 
combinations, as well as the overlap of differential genes 
between them. The total number of DEGs in the com-
parison combination is represented by the sum of all the 
genes in the circle of the Venn diagram, while the overlap 
area is the number of DEGs common to the combina-
tions (Fig. 5C).

The differentially expressed genes of all the compari-
son groups were merged to form the difference gene set. 
Cluster analysis of diverse gene sets can be performed 
for more than two experiments, and genes with analo-
gous expression patterns can be amalgamated. We used 
mainstream hierarchical clustering to perform cluster 
analysis on the FPKM values of genes and normalize the 
rows (Z scores). Clustering genes or samples with simi-
lar expression patterns in the heatmap, the color in each 
square does not reflect the gene expression value but 
rather the value obtained after the expression data rows 
are normalized (usually between -2 and 2). Therefore, the 
colors in the heatmap can be compared only horizontally, 
representing the expression of the same gene in different 
samples, and vertically, representing the expression of 

Fig. 4 Quantitative analysis of the RNA sequencing samples. A Box plot illustrating the distribution of gene expression across samples. B 
Correlation heatmap showing the relationships between samples. C The results of principal component analysis (PCA)
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different genes in the same sample. There are both clus-
ters between groups and clusters between samples in the 
results file. Figure 5D shows the clustering of samples in 
the conclusion report.

Enrichment analysis
After we obtained DEGs based on gene expression 
analysis, we further examined the functions of the 
genes. For transcriptome analysis, thousands of genes 

are often involved, which complicates the analysis. 
The solution is to divide a gene list into multiple parts, 
thereby reducing the complexity of the analysis. Gene 
function enrichment analysis is typically employed to 
ascertain how to separate genes into distinct groups, 
with the aim of uncovering biological pathways that are 
essential for biological operations, thereby revealing 
and comprehending the fundamental molecular pro-
cesses of biological operations. Functional enrichment 

Fig. 5 Difference analysis between chemotherapy sensitivity and chemotherapy resistance PTCL samples. A The bar chart depicting the number 
of DEGs identified in the various comparisons. B The volcano plot depicting differential gene expression. C The venn diagram depicting the overlap 
of differentially expressed genes. D The clustering heatmap of the differentially expressed genes
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analysis can classify hundreds of genes, proteins or 
other molecules into different pathways to reduce the 
complexity of the analysis. In addition, the activated 
pathways were clearly more convincing than a simple 
list of genes or proteins under two different experimen-
tal conditions. The construction of a gene set (e.g., GO 
and KEGG databases) for classification is the initial step 
in gene function enrichment analysis [23, 24]. The next 
step involved mapping our target gene set (differential 
or otherwise) to the background gene set, with a focus 
on distinguishing between annotation and enrichment.

We used ClusterProfiler software to determine the 
enrichment of GO functions and KEGG pathways in 
the diverse gene sets. Hypergeometric distribution 
serves as the basis for the enrichment analysis, wherein 
the differential gene set is the differential gene set 
obtained from the differential analysis and annotated to 
the GO or KEGG database, and the background gene 
set is all the genes that have undergone significant dif-
ferential analysis and annotated to the GO or KEGG 
database. Enrichment analysis revealed enrichment of 
all the DEGs, as well as upregulation of the DEGs and 
downregulation of the DEGs for each differential com-
parison combination. The table shown in this report is 
the enrichment analysis result of a selected comparison 
combination, and the picture is the enrichment analysis 
result of all combinations.

A comprehensive database, GO (Gene Ontology), 
which can be divided into three parts—biological process 
(BP), cellular component (CC), and molecular function 
(MF)—was used to describe gene function. To achieve 
significant enrichment, padj must be lower than 0.05 for 
GO functional enrichment. The 30 most significant terms 
from the GO enrichment analysis were subsequently 
chosen for bar charts, with all the terms being drawn if 
there were fewer than 30 terms, as shown in the figure 
below. The figure displays the GO terms in the horizontal 
coordinate and the significance level of enrichment in the 
vertical coordinate. The higher the value is, the more sig-
nificant the difference is. The colors in the figure (Fig. 6A) 
represent the three GO subclasses of BP, CC and MF. 
Scatter plots of the 30 most significant terms from the 
GO enrichment analysis were generated; if fewer than 30 

Fig. 6 Enrichment analysis between chemotherapy sensitivity 
and chemotherapy resistance PTCL samples. A The GO enrichment 
analysis bar diagram. B The GO enrichment analysis scatter 
plot. C The KEGG enrichment analysis bar diagram. D The KEGG 
enrichment analysis scatter plot. E The Reactome enrichment analysis 
bar diagram. F The Reactome enrichment analysis scatter plot. G The 
DO enrichment analysis bar diagram. H The DO enrichment analysis 
scatter plot. I The DisGeNET enrichment analysis bar diagram. (J)The 
DisGeNET enrichment analysis scatter plot
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terms were present, all the terms were included, as illus-
trated in the figure (Fig. 6B).

The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a vast repository of genomic, chemical, and 
systemic functional information. For KEGG pathway 
enrichment, padj was less than 0.05 as the threshold 
for significant enrichment. The enrichment results are 
shown in Fig. 6C.

The significantly downregulated and upregulated 
(experiment vs sensitivity) KEGG pathways are listed in 
the table (Tables 4, 5). Scatter plots were created from the 
KEGG enrichment results, with the most noteworthy 20 
pathways chosen. For genes with fewer than 20 KEGG 
pathways, all pathways were plotted, as shown in the 
figure below. The ratio of DEGs annotated to the KEGG 
pathway to the total number of DEGs is depicted in the 
figure as the horizontal coordinate, the KEGG pathway 
is represented by the vertical coordinate, dots signify the 
number of genes annotated to the KEGG pathway, and 
the color from red to purple symbolizes the importance 
of enrichment (Fig. 6D).

The Reactome database aggregates responses and bio-
logical pathways in model species such as humans. Padj 
values less than 0.05 were used as the threshold for sig-
nificant enrichment in the Reactome pathway, and the 
enrichment results are shown in Fig. 6E.

The scatter plots for display, as depicted in the figure 
(Fig. 6F), were generated from the analysis of Reactome 
enrichment, with the most significant 20 pathways cho-
sen; if fewer than 20 were present, all pathways were 
included. Disease Ontology (DO) is a database that 
describes human gene functions related to diseases. For 
DO enrichment, a padj value less than 0.05 was used as 
the threshold for significant enrichment, and the enrich-
ment results are shown in the figure below (Fig. 6G). The 
scatter plots for display were chosen from the DO enrich-
ment analysis, with the 20 most significant terms cho-
sen; any terms that were less than 20 were excluded, as 
depicted in the figure (Fig. 6H).

The DisGeNET database integrates human disease-
related genes. The threshold for significant enrichment 
in DisGeNET enrichment was a padj value less than 0.05, 
and the enrichment results are depicted in the figure 
below (Fig. 6I).

Figure 6J shows the selection of the 20 most significant 
terms from the DisGeNET enrichment analysis for bar 
charts; any terms below this amount were excluded, and 
all the terms were included. In the figure, the horizontal 
coordinate is the DisGeNET term, and the vertical coor-
dinate is the enrichment significance level of the term. 
The significance increases proportionally to the magni-
tude of the value.

Table 4 Significant down regulated (Experiment vs Sensitivity) KEGG

KEGGID Description GeneRatio BgRatio P value padj

hsa03018 RNA degradation 34/1136 71/5752 7.38E-08 2.29E-05

hsa04668 TNF signaling pathway 42/1136 100/5752 2.37E-07 3.68E-05

hsa05169 Epstein-Barr virus infection 55/1136 158/5752 4.99E-06 0.000515

hsa05168 Herpes simplex infection 46/1136 138/5752 9.97E-05 0.007724

hsa04612 Antigen processing and presentation 17/1136 37/5752 0.000267 0.016567

hsa04622 RIG-I-like receptor signaling pathway 21/1136 53/5752 0.000645 0.033322

Table 5 Significant up regulated (Experiment vs Sensitivity) KEGG

KEGGID Description GeneRatio BgRatio P value padj

hsa05034 Alcoholism 32/290 150/5752 1.28E-12 3.33E-10

hsa05322 Systemic lupus erythematosus 25/290 95/5752 3.03E-12 3.96E-10

hsa04611 Platelet activation 18/290 108/5752 5.88E-06 0.000512

hsa05203 Viral carcinogenesis 23/290 178/5752 2.51E-05 0.001638

hsa04610 Complement and coagulation cascades 11/290 56/5752 8.62E-05 0.004189

hsa05012 Parkinson disease 18/290 132/5752 9.63E-05 0.004189

hsa00190 Oxidative phosphorylation 16/290 120/5752 0.000306 0.011402

hsa04723 Retrograde endocannabinoid signaling 15/290 114/5752 0.000543 0.017713

hsa04810 Regulation of actin cytoskeleton 20/290 182/5752 0.000764 0.022168
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To elucidate the potential pathogenesis of peripheral 
T-cell lymphoma chemotherapy resistance, a comprehen-
sive analysis of differentially expressed genes (DEGs) was 
conducted, including Gene Ontology (GO) enrichment, 
Kyoto Encyclopedia of Genes and Genomes (KEGG), 
Reactome enrichment, Disease Ontology (DO), and Dis-
GeNET enrichment. These signaling pathways may serve 
as potential novel molecular targets for therapy [25].

To verify the accuracy of the DEGs, 9 downregulated 
DEGs (AKT1, NFKB1A, TRADD, MAP2K1, MAP2K6, 
MAP3K7, PIK3CD, TRAF1, TNFRSF1B) and 10 up regu-
lated DEGs (CAMTA1, HIST1H3B, ARHGEF12, PBX1, 
HIST1H4I, TAL1, YWHAE, ACVR1, MAX, GNAS) were 
confirmed in a quantitative real time PCR comparison of 
chemotherapy resistance in extranodal peripheral T cell 
lymphoma from 6 clinical specimens. The sequences of 
primers used are listed in Table 6. As shown in Fig. 7A, 
there were significant differences in the down regulated 
DEGs, while the up regulated DEGs didn’t show signifi-
cant differences (Fig. 7B).

Fusion gene analysis
In this study, fusion genes were detected using STAR-
Fusion software. Through this analysis, we identified 
a number of fusion genes in the sample groups under 
investigation. A detailed list of these fusion genes is pre-
sented in Table 7. The detection of fusion genes provides 
insights into potential oncogenic drivers and can contrib-
ute to a better understanding of the underlying molecular 
mechanisms involved in the development and progres-
sion of the specific disease or condition being investi-
gated. This knowledge provides a foundation for further 
investigation into the biological and clinical implications 
of these fusion events in the context of the studied dis-
ease or condition.

Discussion
Peripheral T-cell lymphoma (PTCL) is a rare subtype 
of T-cell lymphoma characterized by aggressive clini-
cal behavior and relative resistance to chemotherapy. 
Understanding the underlying mechanisms responsible 
for the development of chemotherapy resistance in PTCL 
patients is crucial for advancing our knowledge in this 
area. The study of abnormally expressed genes in the con-
text of chemotherapy resistance in PTCL patients is an 
important step toward unraveling the complex mecha-
nisms underlying this disease and refining our strategies 
for its diagnosis, treatment and management [26].

Resistance to therapy in peripheral T-cell lymphoma 
(PTCL) can be influenced by the activation status of lym-
phomatocytes [27, 28]. The activation state of lympho-
matoblasts has the potential to impact their response to 
antitumor drugs, thereby affecting the effectiveness of 

Table 6 Real-Time PCR Primer Sequences List

Genes Name Primers Sequence(5’ → 3’)

NFKBIA NFKBIA Forward Primer CCC GCA CCT CCA CTC CAT CC

NFKBIA Reverse Primer AGC ATT GAC ATC AGC ACC 
CAAGG 

AKT1 AKT1 Forward Primer GCA GGA TGT GGA CCA ACG 
TGAG 

AKT1 Reverse Primer GCA GGC AGC GGA TGA TGA 
AGG 

PIK3CD PIK3CD Forward Primer CAG GTG AAC GGC AGG CAT 
GAG 

PIK3CD Reverse Primer TGG CGA GGA TGG AGG AGG 
AATG 

TRAF1 TRAF1 Forward Primer TTG GAG CAG AGG GTG GTG 
GAG 

TRAF1 Reverse Primer CCG CCT GGT GAC ATT GGT 
GATC 

TNFRSF1B TNFRSF1B Forward Primer CAC GCA GCC AAC TCC AGA 
ACC 

TNFRSF1B Reverse Primer AGT CGC CAG TGC TCC CTT 
CAG 

MAP2K1 MAP2K1 Forward Primer TCA TCT GGA GAT CAA ACC 
CGC AAT C

MAP2K1 Reverse Primer CCA TCG CTG TAG AAC GCA 
CCA TAG 

MAP2K6 MAP2K6 Forward Primer GCT CAA CCA GAA GGG ATA 
CAG TGT G

MAP2K6 Reverse Primer TGT GGC GAT GGC TCC TCT ACC 

MAP3K7 MAP3K7 Forward Primer GCA ACC ACA GGC AAC GGA 
CAG 

MAP3K7 Reverse Primer ACA CTG GGA CTG GAT GAC 
CTA CTG 

TRADD TRADD Forward Primer CGC CAC CTG CCC AGA CTT 
TTC 

TRADD Reverse Primer CGC CAT TTG AGA CCC ACA 
GAGC 

GNAS GNAS Forward Primer GCC TGC TAC GAA CGC TCC 
AAC 

GNAS Reverse Primer TCC TGA TCG CTC GGC ACA 
TAGTC 

MAX MAX Forward Primer GAC GCT GAC AAA CGG GCT 
CATC 

MAX Reverse Primer AGC TTC TCT CCT TGG AGT 
GAT GGG 

ACVR1 ACVR1 Forward Primer CGA AGG GCT CAT CAC CAC 
CAATG 

ACVR1 Reverse Primer CCT TTC CCG ACA CAC TCC 
AACAG 

YWHAE YWHAE Forward Primer AGG AAG GAG GCT GCG GAG 
AAC 

YWHAE Reverse Primer ATA GGA TGC GTT GGT GGA 
AGT TCT G

TAL1 TAL1 Forward Primer GCC TTC CCT ATG TTC ACC 
ACC AAC 

TAL1 Reverse Primer TTC ACA TTC TGC TGC CGC 
CATC 
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chemotherapy. If lymphoblasts remain in a continuously 
activated state, they may develop resistance to chemo-
therapy drugs, leading to ineffective treatment outcomes. 
Hence, understanding the activation status of lymphoma-
toblasts is crucial in guiding physicians to select the most 
suitable treatment plan, ultimately improving the efficacy 
of chemotherapy.

Furthermore, resistance to therapy in peripheral T-cell 
lymphoma (PTCL) can also be attributed to the imma-
ture development of T-cell tumors [29]. The develop-
ment and maturation of T-cell tumors are regulated by 

various factors, including gene mutations, abnormal sig-
nal transduction pathways, and epigenetic modifications. 
These abnormalities can lead to abnormal proliferation 
and malignant transformation of T-cell tumors while also 
impacting their response to therapy. During treatment, 
certain T-cell tumors may develop resistance, resulting 
in the failure of chemotherapy or targeted therapy. This 
resistance can be linked to the immature development 
of T-cell tumors. Studies have suggested that immature 
T-cell tumors may have a greater propensity for genetic 
mutations and abnormal signal transduction pathways, 
rendering them resistant to treatment [30].

The content of transcriptome analysis includes data 
quality control, gene structure analysis and gene expres-
sion level analysis, the core of which is gene expression 
level analysis.Transcriptome data mining basically fol-
lows a global-to-local approach and can analyze the 
expression levels, functions, and specific genes of a gene 
[31].

Generally, our experimental designs are based on 
phenotypes, and the changes at the gene level obtained 
through transcriptome data reflect the differences in phe-
notypes. Differentially expressed gene (DEG) screening is 
the core basis of transcriptome sequencing analysis. The 
genes with high expression and great differences, or com-
mon differential genes, are often the genes we can focus 
on.

Genes involved in the same biological process are usu-
ally controlled by the same regulatory system; that is, 
genes involved in the same biological process have simi-
lar or the same change rules. By examining the expression 
of genes in diverse samples, gene modules with compa-
rable expression patterns can be identified, and the most 

Table 6 (continued)

Genes Name Primers Sequence(5’ → 3’)

HIST1H4I HIST1H4I Forward Primer CTA CAC GGA GCA CGC CAA GC

HIST1H4I Reverse Primer TAG CCG CCG AAG CCA TAG 
AGG 

PBX1 PBX1 Forward Primer GCG GTG ATG ATC CTG CGT TCC 

PBX1 Reverse Primer CTT GGC TAA CTC CTC TTT GGC 
TTC C

ARHGEF12 ARHGEF12 Forward Primer TGC CTG CCA ATT CCA TGT 
CTT CTG 

ARHGEF12 Reverse Primer AGG TGT GCC ATC TAA GGT 
GTC TCC 

HIST1H3B HIST1H3B Forward Primer AGA AAT CGC CCA AGA CTT 
CAA GAC C

HIST1H3B Reverse Primer GTT TGT GTC CTC AAA GAG 
CCC TAC C

CAMTA1 CAMTA1 Forward Primer AGG GGA AAT GGC TGC CGA 
AAAC 

CAMTA1 Reverse Primer CTT CTA TAG GTG GCA CGG 
TGT TGA G

Fig. 7 Verification of the accuracy of the differentially expressed genes (DEGs) between chemotherapy sensitivity and chemotherapy resistance 
PTCL samples. A The chart shows the RT‒qPCR analysis results for the genes whose expression was downregulated in chemotherapy resistance 
PTCL samples. *P < 0.05,**P < 0.01. B The chart shows the RT‒qPCR analysis results for the genes whose expression was downregulated 
in chemotherapy resistance PTCL samples
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significant gene modules can be identified by phenotype. 
Common gene expression pattern analysis techniques 
include cluster heatmaping, trend analysis, and weighted 
correlation network analysis (WGCNA) [32, 33]. Cluster 
heatmap analysis was suitable for analysis after certain 
genes were initially identified. Trend analysis requires an 
experimental design with at least 3 continuous variables. 
WGCNA is suitable for experimental designs with large 
sample sizes. Either way, the goal is to find the gene with 
the expression module most related to the trait, and the 
module with the expression pattern consistent with or 
opposite to the trait change should be the focus.

Genes whose expression levels are consistent must 
eventually return to their functions. Enrichment analysis 
was used to classify the functions of genes through dif-
ferent databases. The purpose of enrichment analysis is 
to study the pathways in which DEGs are significantly 
enriched. The pathways that were significantly enriched 
according to the enrichment analysis were definitely key 
pathways that play important roles, and these pathways 
were directly discussed and analyzed. In addition, we 
can directly identify the pathway of interest according 

to the research purpose. For example, when we study 
the growth and development of plants, the Plant Hor-
mone Signal transduction pathway must be the focus of 
research [34].

We identified several genes that may play a role through 
the above ideas. These genes are called potential key 
genes. The next step was to further analyze these genes 
and target genes. We can analyze the expression level 
and function of the candidate genes. The key genes must 
have high expression levels and significant differences 
and must have functions consistent with our research 
purposes. A common idea of quickly targeting genes is to 
look for "star" molecules, which requires literature collec-
tion, summarizing certain star genes from previous stud-
ies, and then focusing on the expression of these genes in 
our project and structural information [35].

Assuming that our purpose is to study cancer treat-
ment efficacy, we must pay attention to anticancer genes 
such as P53. On the other hand, in addition to the gene 
level, we can also focus on pathways, such as pathways 
related to cancer and other cancer-related signaling path-
ways. Another way is that we can make stars ourselves. 

Table 7 Fusion Gene list of the RNA Sequence Result

Groups Sample Name Fusion Genes List

Corntrol Sample1 RSRP1–TMEM50A AL359644.1–GGTA1P XRCC5–STAT1

Sample2 HNRNPUL1–BCL6 PFKFB3–LINC02649 RBM38–UBB TSPAN5–UBB YAF2–KDM3B

Sample3 HBA1–B2M

Sample4 LINC00402–AL353660.1

Sample5 NCEH1–SPATA16 IGH@-ext–PRPF8

Sensitivity Sensitivity-1 /

Sensitivity-2 AC005280.2–NUMB ANKRD11–MAP1LC3B B3GNT5–BCL6 B3GNT5–KLHL24 DDX5–ATP6V0C

EEF1D–ING1 EEF1D–ZC3H3 ELOVL5–PNRC1 FBXL5–PNRC1 GLT1D1–ETS2

GLT1D1–PFKFB3 HNRNPK–NFIL3 HRH2–ING1 IER2–KLF2 ITGAX–FES

IVNS1ABP–PNRC1 LATS2–ING1 LBR–H3-3A LENG8–CNOT3 LITAF–SNN

LRCH4–ATP6V0C LRCH4–KLF2 LRCH4–TMC6 LSP1–PNRC1 MBP–ITGB2

MIDN–KLF16 MYO9B–KLF2 NAMPT–FKBP8 NAMPT–SLC25A37 NINJ1–NFIL3

OAZ1–KLF2 PFKFB3–EEF1D PFKFB3–LINC02649 PFKFB3–UBB PGS1–DDX5

PGS1–LINC01578 PIM3–CFL1 PIM3–RAC2 PLXNB2–SCO2 POU2F1–GLUL

RAB20–ING1 SBNO2–KLF16 SEPTIN14–AP006222.1 SH2B2–ING1 SLC19A1–ITGB2

SLC66A2–CTDP1 SLC7A5–LINC01578 ST3GAL1–GLUL TAGLN2–PHC2 TMCC3–MAEA

TMCC3–UBC UBE2J1–PNRC1 WDR1–MAEA YPEL5–ANP32A YPEL5–PHC2

YWHAE–DDX5 ZC3H3–CTDSP1 ZNF292–PNRC1

Sensitivity-3 ARRDC2–KLF2 C19orf25–DAZAP1 LILRA2–AC245884.12 PLXNB2–SCO2 SBF1–SCO2

SLC16A3–ATP6V0C TRABD–SCO2 ZEB2–PTMA

Sensitivity-4 /

Experimental Experimental_1 AC020916.1–KLF2 CSNK1G2–KLF16 NOTCH1–ATP6V0C ARF1–H3-3A BAZ1A–GNAS

ELL–KLF2 FRY–RHEB GNB2–RNF166 NFIL3–HNRNPK NINJ1–METRNL

NOL4L–UBC NOP53–DHX34 RABGEF1–MFSD12 RENBP–S100A9 YPEL2–ACSL1

Experimental_2 /

Experimental_3 /
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If some of the key genes we found were not star genes, 
we could find ways to rely on research hotspots to make 
these new genes stars, such as transcription factor (TF) 
research.

Our findings indicated that the expression of differ-
ent genes, particularly TNFRSF1B, TRADD, TRAF1, 
PIK3CD, MAP3K7, and MAP2K6, may be important 
for chemotherapy resistance in peripheral TCL. The 
TNF receptor superfamily member 1B (TNFRSF1B), 
TNFRSF1A linked by the death domain TRADD, and 
TRAF1 associated with TNF receptors are inhibited in 
peripheral T-cell lymphoma when chemotherapy resist-
ance occurs. In addition, phosphatidylinositol-4,5-bi-
sphosphate 3-kinase catalytic subunit delta (PIK3CD), 
mitogen-activated protein kinase kinase kinase 7 
(MAP3K7) and mitogen-activated protein kinase kinase 
6 (MAP2K6) are downregulated in peripheral T-cell lym-
phoma during chemotherapy resistance. These downreg-
ulated genes may be potential molecular biomarkers for 
diagnosing chemotherapy resistance in peripheral T-cell 
lymphoma patients.

The expression data of various genes revealed that the 
TNF signaling pathway, NF-kappa B signaling pathway, 
apoptosis signaling pathway, AMPK signaling pathway, 
Epstein–Barr virus infection pathway, and Herpes sim-
plex infection were the primary signaling pathways likely 
responsible for the emergence of chemotherapy resist-
ance in peripheral T-cell lymphoma. The TNF-α and NF-
kappa B pathways are closely linked to tumor progression 
and resistance to treatment [36]. In the Epstein–Barr 
virus infection signaling pathway, Herpes simplex infec-
tion is the main cause of peripheral T-cell lymphoma 
[37, 38]. The PI3K/AKT/MAPK and NF-kappa B signal-
ing pathways, in response to external signals, encourage 
metabolism, proliferation, cell survival, growth, and angi-
ogenesis [39]. AMP-activated protein kinase (AMPK) is a 
major factor in energy balance, thus protecting cells from 
detrimental pressures through the coordination of mul-
tiple metabolic pathways. Notably, AMPK activation was 
recently shown to mediate metabolic reprogramming in 
drug-resistant cancer cells [40]. By targeting these sign-
aling pathways, drug resistance to peripheral T-cell lym-
phoma therapy may be overcome.

To conclude, this research has enhanced our under-
standing of the link between signaling pathways and 
chemotherapy resistance in peripheral T-cell lymphoma, 
yet certain limitations remain. First, although we inves-
tigated the association between signaling pathways and 
chemotherapy resistance in peripheral T-cell lymphoma 
patients, there is a dearth of clinical patients for whom 
the strong connection between them has been con-
firmed; therefore, we still need to increase the number of 
patients to verify our findings.

Second, we found that there were no significant  
changes in the up regulated DEGs, such as CAMTA1, 
HIST1H3B, ARHGEF12, PBX1, HIST1H4I, TAL1,YWH 
AE,ACVR1,MAX,GNAS. Therefore, investigation the 
up regulated DEGs of resistance to chemotherapy in 
patients with peripheral T-cell lymphoma must be pur-
sued in additional patient studies.

Third, the concentration of primary lymphocytes is 
low in the selected peripheral T-cell lymphoma samples. 
Therefore, we still need to carry out RNA sequencing 
experiments on additional primary lymphocyte samples.

Conclusion
Understanding the changes in gene expression and sign-
aling pathways associated with chemotherapy resistance 
in PTCL patients could help identify novel therapeutic 
targets and develop personalized treatment strategies. 
By targeting specific genes or signaling pathways that 
are upregulated or downregulated during chemotherapy 
resistance, it may be possible to overcome drug resist-
ance and improve patient outcomes. RNA sequencing 
provides a comprehensive and detailed analysis of the 
transcriptome, allowing for a deeper understanding of 
the molecular mechanisms underlying chemotherapy 
resistance in PTCL. This groundbreaking discovery sug-
gests that the expression patterns of multiple genes, 
particularly TRADD2 and MAP3K7, may play a crucial 
role in chemotherapy resistance in peripheral T-cell lym-
phoma (PTCL). Furthermore, the TNF signaling pathway 
has been identified as potentially involved in the devel-
opment of resistance to chemotherapy in PTCL. In sum-
mary, these various genes and signaling pathways with 
altered expression could serve as promising prognostic 
factors. Their potential utilization in clinical practice has 
the potential to aid in the identification of more effective 
treatment strategies for multidrug resistance in PTCL. 
By considering the expression profiles of these genes 
and understanding their association with specific signal-
ing pathways, clinicians can make informed decisions to 
tailor treatment plans and improve patient outcomes in 
patients with PTCL harboring chemotherapy resistance.
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