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Abstract 

Blood is critical for health, supporting key functions like immunity and oxygen transport. While studies have found 
links between common blood clinical indicators and COVID-19, they cannot provide causal inference due to residual 
confounding and reverse causality. To identify indicators affecting COVID-19, we analyzed clinical data (n = 2,293, aged 
18–65 years) from Guangzhou Medical University’s first affiliated hospital (2022-present), identifying 34 significant 
indicators differentiating COVID-19 patients from healthy controls. Utilizing bidirectional Mendelian randomization 
analyses, integrating data from over 2.46 million participants from various large-scale studies, we established causal 
links for six blood indicators with COVID-19 risk, five of which is consistent with our observational findings. Specifically, 
elevated Troponin I and Platelet Distribution Width levels are linked with increased COVID-19 susceptibility, whereas 
higher Hematocrit, Hemoglobin, and Neutrophil counts confer a protective effect. Reverse MR analysis confirmed four 
blood biomarkers influenced by COVID-19, aligning with our observational data for three of them. Notably, COVID-19 
exhibited a positive causal relationship with Troponin I (Tnl) and Serum Amyloid Protein A, while a negative associa-
tion was observed with Plateletcrit. These findings may help identify high-risk individuals and provide further direc-
tion on the management of COVID‐19.
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Introduction
COVID-19, a complicated multi-system syndrome 
caused by severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2), first emerged in December  2019 
and was declared a global pandemic by the World Health 
Organization (WHO) in March 2020 [1, 2]. Despite isola-
tion measures, the COVID-19 pandemic has spread glob-
ally with over 772 million confirmed cumulative cases, 
and more than 6.9 million cumulative deaths, as reported 
by the WHO on December 17, 2023. The constant emer-
gence of SARS-CoV-2 variants and the ongoing outbreak 
of COVID-19 have already consumed a large number 
of medical resources, leading to a considerable global 
healthcare crisis [2, 3]. Thus, identifying the causal fac-
tors of COVID-19 is crucial for reducing its disease 
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burden. In particular, a deeper awareness of the causality 
and magnitude of the effects of different clinical risk fac-
tors may help identify high-risk individuals and provide 
further direction on the mechanisms of COVID-19.

Blood is critical for human health, underpinning vari-
ous physiological processes such as immune response, 
oxygen transport, and maintenance of homeostasis, 
which when impaired cause a considerable health bur-
den [4, 5]. Recently, several observational studies have 
increasingly revealed the correlation between COVID-
19 and the commonly used clinical indicators of blood 
testing [6–8]. Nevertheless, no causal inference can be 
made from these results due to unmeasured confound-
ing and reverse causality in observational studies [9, 10]. 
Mendelian randomization (MR) can help fill this gap as 
alleles are randomly assigned and allelic randomization 
antedates the onset of disease [10]. As a useful alternative 
to randomized control trials, MR is widely used to infer 
the causal nature between the exposure and the outcome 
in recent years [9–11]. Importantly, bidirectional MR 
allows for the evaluation of reverse causality, determin-
ing whether changes in blood markers are a consequence 
of COVID-19, thereby providing a comprehensive causal 
framework.

In the current study, we first collected clinical data on 
58 common blood indicators from both healthy indi-
viduals and COVID-19 patients, covering a range of 
indicators impacting human health. We then sought to 
identify these indicators affecting COVID-19. Subse-
quently, we obtained the summary-level statistical data 
for these candidate blood clinical factors from large-scale 
GWAS and sought to infer potential causal associations 
of these candidate indicators on COVID‐19 using large‐
sample statistical data sets of three COVID‐19 subtypes 
(COVID-19 infection, hospitalized COVID‐19, and 
severe COVID‐19). Complementing this, bidirectional 
MR analyses were conducted to discern not only the 
effect of blood indicators on COVID-19 risk but also the 
potential influence of COVID-19 on the levels of these 
blood indicators, thus providing a thorough exploration 
of their interplay.

Methods
Study design
We retrospectively collected clinical data from both 
healthy individuals and COVID-19 patients at the First 
Affiliated Hospital of Guangzhou Medical University to 
identify blood clinical indicators affecting COVID-19. 
Summary-level data for 58 blood indicators identified 
by the observational study were obtained from the large-
scale Genome-wide association studies. Two-sample 
Mendelian randomization (MR) analyses were applied 
to infer the causal nature of host genetic factors on 

COVID‐19 risk by exploiting single nucleotide polymor-
phisms (SNPs) as instrumental variables (IVs) of exposure 
[10, 12]. All MR analyses should meet the following three 
assumptions. First, the selected IVs were robustly associ-
ated with the exposure. Second, the used IVs should not 
be related to potential confounders. Third, the IVs only 
affect the outcome only through the exposure. MR analy-
sis was excluded if pleiotropy was detected. Furthermore, 
bidirectional MR was incorporated to assess the potential 
reciprocal causal relationships between COVID-19 and 
the blood indicators, providing a comprehensive analysis 
of directionality in these associations. The workflow of 
the study design is presented in Fig. 1.

Human cohort information
To identify the candidate risk factors of COVID-19, 
we retrospectively collected clinical data on 58 com-
mon blood indicators by reviewing the patients’ elec-
tronic health records from the first affiliated hospital of 
Guangzhou medical university from January 2022 to the 
present. These indicators were divided into five major 
groups: hematological traits, hepatic  and renal function 
markers, myocardial  injury markers, metabolic indexes, 
and inflammatory parameters. Patients aged 18–65 years 
with a diagnosis of COVID-19 by reverse transcription-
polymerase chain reaction (PCR) were defined as the 
COVID-19 group. Healthy adults (aged 18–65 years) who 
tested negative for COVID-19 and attended a medical 
checkup were defined as the healthy control group. Par-
ticipants who had missing information were eliminated 
from the study and the final analytic sample consisted 
of 1,325 healthy individuals and 901 COVID-19 patients 
who had provided informed consent to participate in this 
study. The summary of the demographic information of 
participants is listed in Table S1. Given the retrospective 
nature of our research, the need for ethical approval and 
the informed consent statement was waived by the Ethics 
Committee of the First Affiliated Hospital of Guangzhou 
Medical University (China).

Genome‐wide association study (GWAS) summary datasets 
preparation
All GWAS summary statistics were obtained from IEU 
Open GWAS database. The exposures were obtained 
from publicly available GWAS summary results 
(https://​gwas.​mrcieu.​ac.​uk/​datas​ets/), including those 
on (COVID-19 infection, 38,984 cases, and 1,644,784 
controls), hospitalized COVID‐19 (9,986 cases and 
1,887,658 controls), and severe COVID‐19 (5,101 cases 
and 1,383,342 controls) [13]. Where feasible, independ-
ent samples were utilized to mitigate the risk of sam-
ple overlap between the COVID-19 dataset and the UK 
Biobank GWAS dataset. Despite these precautions, we 

https://gwas.mrcieu.ac.uk/datasets/
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acknowledge that complete exclusion of sample overlap 
cannot be guaranteed due to the shared nature of some 
data sources. The summary-level statistical data for white 
blood cell count (WBC), basophil cell count (BASO), 
lymphocyte cell count (LYM), eosinophil cell count 
(EOS), plateletcrit and hematocrit were downloaded from 
the Blood Cell Consortium [4, 14]. The summary-level 
statistical data for neutrophil count (NEU), red blood 
cell count (RBC), hemoglobin concentration (HGB), 
mean platelet volume (MPV), platelet distribution width 
(PDW), alkaline phosphatase (ALP), albumin, total bili-
rubin (Tbil), HDL cholesterol (HDLC), total cholesterol 
(TC), apolipoprotein A-I (ApoA-I), c-reactive protein 
(CRP), and hemoglobin A1c (HbA1c) were obtained 
from UK Biobank GWAS [15, 16]. The summary-level 
statistical mixed-population data for glomerular filtra-
tion rate (GFR) was obtained from a large GWAS [17]. 
The summary-level statistical mixed-population data for 
troponin I (Tnl), D-dimer (DD), and Serum amyloid A-1 
protein (SAA) were obtained from the INTERVAL study 
[18]. The summary-level statistical data for the levels of 
myoglobin [19] were obtained from large GWASs.

Genetic instrument selection
The candidate IVs were selected by a series of quality 
control steps. Instrumental SNPs meeting quality con-
trol criteria were identified using R software. Initially, 
SNPs were selected as IVs if they met the genome-
wide significance threshold (P < 5 × 10^-8). However, 
for exposures where fewer than three SNPs met this 
threshold, we extended the criteria to include SNPs 
with a P-value < 5 × 10^-6 to ensure a sufficient num-
ber of instruments for robust Mendelian randomization 
analysis. Considering that SNPs which directly affect the 
outcome variable could violate the assumptions of the 
instrumental variable, any IVs not included in the out-
come GWAS and those significantly associated with the 
outcome (P > 5 × 10–5) were removed [20]. Furthermore, 
the number of above-selected IVs selected from the out-
come is not less than three. Subsequently, phenoscanner2 
was used to evaluate whether any exposure-related IVs 
were associated with confounders of COVID-19. Pal-
indromic and incompatible IVs were then removed by 
harmonization to ensure that the effect of these IVs on 
exposure corresponded to the same allele as the effect 

Fig. 1  The workflow of designed analysis. MR, Mendelian randomization; COVID-19, coronavirus disease 2019; SNP, single nucleotide polymorphism
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on the outcome. F statistic was applied to test whether 
there was a weak instrumental variable bias. The  F-sta-
tistics were calculated by the formula of F = R2/ (1 − R2) 
*(n − k − 1)/ k (R2 = 2*MAF*(1-MAF) *Beta2; n, sam-
ple size; k, number of instrumental variables; and MAF, 
minor allele frequency). Moreover, the statistical power 
of MR analysis to detect causal association was calculated 
by mRnd [21].

Statistical analyses
The Chi-square test was applied to detect differences in 
categorical variables, which were reported by percent-
age (%). Continuous variables were compared using t-tests 
or  non-parametric Wilcoxon rank  sum  tests after test-
ing  the  normality of  the  distribution  using  the  Shapiro–
Wilk  test. Mean ± standard deviation (SD)  was  applied 
to describe the normally distributed continuous vari-
ables, while the median and interquartile range (IQR) was 
expressed for these variables that did not meet the normal-
ity assumptions. To maintain the integrity of our statistical 
analysis and avoid the bias associated with listwise deletion, 
we implemented a mean imputation strategy for missing 
values. This method was selected based on its appropriate-
ness for our data structure and the minimal impact it has 
on the distribution of observed data. The “TwoSampleMR” 
package based on R (Version 4.0.2) was used to conduct 
MR analysis. The conventional inverse-variance weighted 
(IVW) was deemed the most reliable model because it 
provides the most persuasive estimates when there is no 
evidence of directional pleiotropy [22–24]. Moreover, MR-
Egger and weighted-median methods were implemented as 
sensitivity analysis approaches to ensure the robustness of 
the results [23, 24]. The MR-Egger test for directional plei-
otropy and Cochran’s Q statistics were applied to identify 
whether significant heterogeneity or directional pleiotropy 
was present.

Results
Distinct blood indicators profiles in COVID patients 
compared to healthy controls
In our  retrospectively analysis, we evaluated 1,325 
healthy individuals and 852 COVID-19 patients from the 
first affiliated hospital of Guangzhou medical university 
(Table S1). The COVID-19 cohort was significantly older 
than the controls, with a balanced gender distribution 
(Table  1). We assessed 58 blood biomarkers, commonly 
used in clinical settings, for potential associations with 
COVID-19 (Fig.  2A, Table  S1). Following FDR correc-
tion, we found significant disparities between the groups 
across a range of biomarkers, including counts of vari-
ous blood cells (white, basophil, lymphocyte, eosinophil, 
neutrophil), red blood cell parameters (count, hemo-
globin concentration, hematocrit), platelet metrics (mean 

volume, plateletcrit, distribution width), coagulation pro-
files (prothrombin time, activated partial thromboplastin 
time, thrombin time, fibrinogen, D-dimer), metabolic 
and organ function indicators (uric acid, urea nitrogen, 
alkaline phosphatase, albumin, bilirubins, bile acids, 
myocardial enzymes), lipid profiles (HDL cholesterol, 
total cholesterol, apolipoprotein A), glycemic control 
marker (hemoglobin A1c), and inflammation markers 
(C-reactive protein, serum amyloid protein A) (Table  2, 
Fig.  2B, C). These data revealed a broad spectrum of 
altered blood biomarkers in COVID-19 patients com-
pared to healthy controls.

Genetic instrumentation and GWAS data for COVID‑19 risk 
factors
To assess the causal nature of potential risk factors 
on COVID‐19, we sourced the summary-level statis-
tics for 25 candidate markers from extensive GWASs. 
Post LD pruning, we identified 3 to 510 genetic instru-
ments for blood indicators, all demonstrating strong 
genetic instruments (F-statistics > 10, Table  3). We tar-
geted three COVID-19 subtypes—infection, hospitaliza-
tion, and severity—as outcomes, reflecting the spectrum 
of SARS-CoV-2 infection impacts (Table  4). Detailed 
information on COVID-19 independent SNPs (after the 
clumping process) for candidate markers were listed in 
Tables S2- S6.

The MR analyses revealed the causal roles of blood 
indicators on COVID‑19
Our MR analyses explored the causal imapct of 25 can-
didate factors on COVID‐19 outcomes (Tables  S7-  9). 
Notably, genetic liability to higher basophil cell counts 
(BASO) was linked to a reduced risk of hospitalization 
due to COVID-19, with an odds ratio (OR) of 0.85 for 
each standard deviation (SD) increase in BASO (95% 
CI: 0.73–0.99, Figs.  3,  4, Table  S8). Elevated Troponin I 
(Tnl) levels were associated with an increased risk of 
severe COVID-19, while higher BASO, hemoglobin 

Table 1  Baseline characteristics of participants

Normally distributed continuous variables are presented as means ± SDs

Categorical variables are expressed as numbers (percentages)
* Significantly different between healthy individuals and COVID-19 patients 
(p < 0.05)

Healthy individuals COVID-19 patients P
N = 1390 N = 852

Age[mean(SE)] 37.65 ± 12.12 43.30 ± 13.94  < 0.001*

Gender(%) 0.22

Male 54.32% 51.60%

Female 45.68% 48.40%
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concentration (HGB), and hematocrit (HCT) levels were 
associated with reduced risk (Figs. 3, 4). Specifically, ORs 
for severe COVID-19 were 1.21 for Tnl, 0.74 for BASO, 
0.76 for HGB, and 0.83 for HCT per SD increase (95% 
CIs: 1.02–1.43, 0.60–0.93, 0.61–0.94, and 0.70–0.97, 
respectively; Table S9). Our MR analysis confirmed four 
blood biomarkers affecting COVID-19, aligning with our 
observational data for all of them (Fig. 5).

The MR revealed the causal roles of COVID‑19 on blood 
indicators
To obtain a deeper understanding of the potential 
causal mechanisms between COVID-19 and blood fac-
tors, we employed bidirectional MR analyses to test 
if there is a causal effect of disease on these biomark-
ers (Tables  S10-  12). Genetic liability to higher creatine 
kinase B-type (CKB) and total bilirubin (Tbil) were 

Fig. 2  Difference of the clinical blood indicators between COVID-19 patients and healthy individuals. A Summary of the commonly used clinical 
indicators of blood testing. B The geographical locations of the first affiliated hospital of Guangzhou medical university. C Log 2 the fold changes 
of clinical indicators between COVID-19 patients and healthy individuals. Bars in red represent up-regulated traits in COVID-19 patients compared 
to healthy individuals while bars in blue indicate down-regulated traits in COVID-19 patients compared to healthy individuals. The depth of color 
refers to the Log 10 expression of the p-value
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Table 2  Risk factors for COVID-19 patients from the first affiliated hospital of Guangzhou medical university

Risk factors Healthy individuals COVID-19 patients P FDR

White blood cell count 6.63 (5.51,8.04) 5.95 (4.15,7.69) 0.002* 0.004142857*

Basophil count 0.03 (0.00,0.05) 0.02 (0.01,0.03)  < 0.001* 0.002230769*

Monocyte cell count 0.50 (0.40, 0.60) 0.46 (0.34, 0.61) 0.595 0.651132075

Lymphocyte cell count 2.10 (1.74,2.50) 1.65 (1.10,2.10)  < 0.001* 0.002230769*

Eosinophil cell count 0.12 (0.10,0.22) 0.08 (0.02,0.15)  < 0.001* 0.002230769*

Neutrophil cell count 3.70 (2.90,4.60) 3.28 (2.30, 4.30)  < 0.001* 0.002230769*

Red blood cell count 4.81 (4.38,5.21) 4.16 (3.59, 4.57)  < 0.001* 0.002230769*

Hemoglobin concentration 143.00 (130.00,153.00) 133.00 (121.00,146.75)  < 0.001* 0.002230769*

Hematocrit 0.42 (0.39,0.45) 0.39 (0.35,0.43)  < 0.001* 0.002230769*

Mean corpuscular hemoglobin concentration 341.00 (332.00,349.00) 341.00 (336.00,346.00) 0.911 0.926982456

Mean corpuscular hemoglobin 30.10 (28.90,31.20) 29.80 (28.73,30.90) 0.095 0.134390244

Mean corpuscular volume 88.00 (84.40,90.85) 87.20 (84.40, 90.10) 0.104 0.14027907

Red cell distribution width 13.00 (12.60,13.60) 12.90 (12.50,13.50) 0.04* 0.064444444

Mean platelet volume 8.90 (8.10,9.73) 8.40 (7.80,9.20)  < 0.001* 0.002230769*

Plateletcrit 0.22 (0.19,0.25) 0.20 (0.16,0.24)  < 0.001* 0.002230769*

Platelet count 246.00 (209.00,287.50) 236.00 (183.25,296.25) 0.079 0.117487179

Platelet distribution width 16.40 (15.80,16.80) 16.60 (16.20,17.10)  < 0.001* 0.002230769*

Prothrombin time 12.95 (12.50,13.60) 13.35 (13.00,13.90) 0.001* 0.002230769*

Activated partial thromboplastin time 35.50 (33.90,38.55) 37.45 (35.15,40.88) 0.004* 0.007483871*

Thrombin time 16.70 (16.35,17.45) 18.10 (17.10,19.50)  < 0.001* 0.002230769*

Fibrinogen 3.05 (2.66,3.40) 4.64 (3.48, 5.81)  < 0.001* 0.002230769*

D-dimer 236(172,804) 594.00(366.00,1309.00)  < 0.001* 0.002230769*

Serum cystatin C 0.82 ± 0.14 1.33 ± 0.69 0.111 0.146318182

Serum creatinine 82.00 (70.18,92.43) 79.70 (67.70, 94.10) 0.467 0.531098039

Uric acid 381.40 (313.40,476.40) 319.10 (264.03,390.45)  < 0.001* 0.002230769*

Urea nitrogen 5.00 (4.10,5.70) 4.50 (3.70,5.90) 0.008* 0.0145*

β2-microglobulin 1.69 (1.66,2.11) 2.25 (1.86,3.21) 0.114 0.146933333

Alkaline phosphatase 65.40 (53.40,79.10) 58.70 (49.15,70.70) 0.014* 0.023882353*

Alanine aminotransferase 20.80 (13.20,32.80) 19.10 (12.40,29.15) 0.077 0.117487179

Aspartate aminotransferase 22.50 (18.60,27.20) 22.30 (19.10,29.70) 0.299 0.361291667

Gamma glutamyltransferase 23.30 (14.90,39.83) 23.00 (15.75,43.30) 0.212 0.261617021

Albumin 44.10 (42.60,45.90) 43.40 (37.10,46.65)  < 0.001* 0.002230769*

Total bilirubin 10.70 (8.80,13.70) 13.10 (10.40,17.10)  < 0.001* 0.002230769*

Direct bilirubin 2.30 (1.70,3.10) 2.00 (1.70,2.70) 0.002* 0.004142857*

Total bile acid 4.30 (3.20,6.13) 3.15 (1.87,4.93)  < 0.001* 0.002230769*

Total protein 75.60 (73.00,78.30) 76.00 (68,45,80.25) 0.573 0.639115385

Myoglobin levels 14.70 (11.50,21.00) 18.80 (14.30,28.40) 0.001* 0.002230769*

Troponin I 2.40 (1.60,3.60) 3.50 (2.50,6.15)  < 0.001* 0.002230769*

Creatine Kinase 111.70 (79.60,153.70) 78.85 (53.43,115.23)  < 0.001* 0.002230769*

creatine kinase isoenzymes 9.00 (7.00,12.00) 9.00 (7.00,11.00) 0.767 0.823814815

Lactate dehydrogenase 177.50 (152.80,199.55) 205.00 (185.20,248.48)  < 0.001* 0.002230769*

Hydroxybutyrate Dehydrogenase 112.00 (96.65,128.90) 135.00 (121.00,152.00)  < 0.001* 0.002230769*

Glucose 5.25 (4.93,5.68) 5.31 (4.89,6.21) 0.064 0.100324324

HDL cholesterol 1.24 (1.08,1.45) 1.13 (0.96,1.33)  < 0.001* 0.002230769*

LDL cholesterol 3.41 (2.80,3.90) 3.37 (2.89,3.85) 0.986 0.986

Total cholesterol 5.33 (4.57,6.12) 5.04 (4.44,5.67) 0.014* 0.023882353*

Triglyceride 1.35 (0.90,2.14) 1.36 (0.98,2.05) 0.884 0.915571429

Apolipoprotein A 1.30 (1.16,1.50) 0.74 (0.58,1.06)  < 0.001* 0.002230769*

Apolipoprotein B 0.90 ± 0.28 0.75 ± 0.35 0.45 0.522
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linked to a incresed risk of COVID-19 infection, while 
higher platelet distribution width (PDW) and albumin 
were associated with reduced risk. Specifically, ORs for 
severe COVID-19 infection were 1.30 for CKB, 1.12 for 
Tbil, 0.93 for PDW, and 0.80 for albumin per SD increase 
(95% CIs: 1.01–1.67, 1.01–1.23, 0.87–0.99, and 0.66–0.97, 

Table 2  (continued)

Risk factors Healthy individuals COVID-19 patients P FDR

Hemoglobin A1a 0.99 (0.89,1.10) 1.09 (0.90,1.33) 0.101 0.13947619

Hemoglobin A1b 0.94 (0.85,1.10) 1.10 (0.86,1.20) 0.156 0.196695652

Hemoglobin A1c 5.45 (5.14,5.80) 5.96 (5.43,7.55) 0.004* 0.007483871*

C-Reactive protein 0.32 (0.09,1.31) 0.68 (0.10,6.38)  < 0.001* 0.002230769*

Serum amyloid protein 5.00 (5.00,6.21) 93.83 (26.62,127.22) 0.004* 0.007483871*

Complement C3 0.88 ± 0.18 0.99 ± 0.20 0.34 0.40244898

Complement C4 0.21 (0.15,0.27) 0.29 (0.23,0.34) 0.034* 0.056342857

Transferrin 2.29 ± 0.33 1.71 ± 0.28 0.815 0.859454545

Ceruloplasmin 0.31 ± 0.03 0.34 ± 0.08 0.085 0.12325

Continuous variables with nonnormal data distribution are presented as medians (interquartile range)

Normally distributed continuous variables are presented as means ± SDs

*Significantly different between healthy individuals and COVID-19 patients (p < 0.05)

Table 3  Characters of 28 candidate risk factors in European ancestry

Category Phenotype_name Abbreviation GWAS id Sample Size N_SNPs F

Hematological traits White blood cell (leukocyte) count WBC ieu-b-30 563,946 507 107.69

Basophil cell count BASO ieu-b-29 563,946 201 109.61

Lymphocyte cell count LYM ieu-b-32 563,946 510 113.99

Eosinophil cell count EOS ieu-b-33 563,947 448 140.17

Neutrophil count NEU ukb-d-30140_irnt 349,856 296 87.90

Red blood cell count RBC ukb-d-30010_irnt 350,475 358 79.17

Hemoglobin concentration HGB ukb-d-30020_irnt 350,474 301 56.93

Hematocrit HCT ebi-a-GCST90002304 562,259 463 101.22

Mean platelet (thrombocyte) volume MPV ukb-d-30100_irnt 350,470 440 251.48

Plateletcrit PCT ebi-a-GCST004607 164,339 227 98.83

Platelet distribution width PDW ukb-d-30110_irnt 350,470 350 177.40

D-dimer DD prot-a-1086 3,301 12 24.66

Hepatic and renal function markers Alkaline phosphatase ALP ukb-d-30610_raw 344292 252 48848.18

Albumin ALB ukb-d-30600_raw 315,268 201 525.67

Total bilirubin Tbil ukb-d-30840_raw 342829 89 3594.81

Myocardial injury markers Myoglobin levels MB ebi-a-GCST90012047 21,758 25 28.51

Troponin I, cardiac muscle Tnl prot-a-3066 3,301 9 24.18

Creatine kinase B-type CKB prot-a-565 3,301 17 24.81

Creatine kinase M-type CKM prot-a-566 3,301 3 46.67

Metabolic indexes HDL cholesterol HDLC ieu-b-109 403,943 362 112.33

Total cholesterol TC met-d-Total_C 115,078 64 130.66

apolipoprotein A-I ApoA ieu-b-107 393,193 299 112.57

Hemoglobin A1c HbA1c ukb-d-30750_raw 344,182 190 4703.55

Inflammatory parameters C-Reactive protein CRP ukb-d-30710_raw 343,524 53 2842.86

Serum amyloid A-1 protein SAA prot-a-2623 3301 15 139.63

Table 4  Description of COVID-19 subtypes in European ancestry

Trait_name N_SNPs N_case N_control Sample_size

COVID-19 infection 7 38984 1644784 1683768

hospitalized COVID‐19 5 9986 1887658 1897644

Severe COVID‐19 8 5101 1383342 1388443
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respectively; Table  S10). Notably, genetic liability to 
higher albumin was linked to a reduced risk of severe 
COVID-19, with an odds ratio (OR) of 0.96 for each SD 
increase in albumin (95% CI: 0.93–1.00, Table S12). Our 
reverse MR analysis confirmed four blood biomarkers 
influenced by COVID-19, aligning with our observational 
data for two of them (Fig. 5).

Notably, COVID-19 exhibited a positive causal rela-
tionship with Troponin I (Tnl) and Serum Amyloid Pro-
tein A, while a negative association was observed with 
Plateletcrit.

Discussion
According to our knowledge, our research is the first 
comprehensive inference of the causal nature between 
the common clinical blood indicators and COVID-19. 
We found significant variations in 36 blood indicators 
when comparing COVID-19 patients to healthy con-
trols. Subsequent analysis of 25 candidate indicators 

from GWAS data, using MR-analytic methods, estab-
lished causal links for 4 blood markers with COVID-19. 
Notably, all of these markers (Troponin I, hematocrit, 
hemoglobin concentration, and basophil cell count) cor-
roborate our observational findings. Additionally, reverse 
MR analysis affirmed the influence of COVID-19 on four 
blood biomarkers, with two (albumin and total bilirubin) 
reflecting our observational data trends. These findings 
might provide novel insight into the pathophysiology of 
COVID-19 and may aid in the development of new diag-
nostic and therapeutic strategies for COVID-19.

Our study has confirmed Troponin I (TnI) as heritable 
causal risk factors for COVID-19. The linkage of myocar-
dial injury markers like TnI with higher mortality rates in 
COVID-19 patients is well-documented, with myocar-
dial troponin recognized as a critical prognostic tool for 
assessing COVID-19 severity and mortality, supported 
by prior research and clinical bulletins from leading car-
diology associations [6, 25–28]. Moreover, COVID-19 

Fig. 3  Overview of the associations of 28 candidate markers with three subtypes of COVID-19. IWV indicates an Inverse variance‐weighted method
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appears to elevate levels of total bilirubin (Tbil), indicat-
ing potential pathways for disease impact beyond res-
piratory symptoms, including liver involvement. Studies 
have shown liver abnormalities in COVID-19 patients, 
with elevated Tbil being a significant indicator [29, 30]. 
It is noteworthy that elevated levels of Tbil may predict 
adverse outcomes in COVID-19 patients [31, 32], as it 
reflects the severity of liver damage, which is associated 
with an increased mortality rate among these patients 
[33]. Beyond its correlation with the progression and 
prognosis of COVID-19, TBIL has also been observed 
to relate to the incidence of ARDS and acute myocardial 
injury in affected patients [34], with higher TBIL levels 
corresponding to increased hs-cTnI levels, suggesting 
that elevated TBIL may be indicative of cardiac injury 
[35].

In our investigation, we identified basophil cell count, 
hematocrit, and hemoglobin concentration (HGB) as 
heritable causal protective factors of COVID-19. Addi-
tionally, our findings indicate that COVID-19 may lead 
to a decrease in albumin levels. Leukocytes are crucial 
for immune balance and defense against SARS-CoV-2, 
as evidenced by lower counts in COVID-19 patients 

compared to controls, which is consistent with multiple 
reports highlighting their prognostic value [36–40]. Our 
MR analysis specifically underscores the protective role 
of basophil cell, suggesting their monitoring could be piv-
otal in managing COVID-19. Moreover, we observed that 
anemia, marked by reduced hematocrit and HGB levels, 
may contribute to the susceptibility to COVID-19—a 
finding echoed by recent studies indicating anemia as a 
prevalent condition in COVID-19 patients [39, 41, 42]. 
Anemia can be a manifestation of malnutrition, which, 
in turn, may lead to decreased levels of albumin [43, 
44]. HGB has been regarded as a more sensitive  indica-
tor of anemia than hematocrit. Nevertheless, recent stud-
ies show conflicting results on the association between 
HGB and COVID-19 [39]. Some papers observed simi-
lar HGB in deceased patients and those who survived 
COVID-19 [45], or in ICU patients and those who had 
been not admitted to ICU [46], whereas others reported 
lower HGB levels in COVID-19 patients [39, 47]. These 
findings suggest that our study results may inform the 
development of targeted therapeutic interventions 
that target these blood indicators to reduce the risk of 
COVID-19.

Fig. 4  The causal association of candidate blood indicators on COVID-19. Forest plot for causal effects of blood indicators on three subtypes 
of COVID-19 (COVID-19 infection, hospitalization, and severity).The red diamonds indicated higher odds of COVID-19 (P < 0.05), the blue diamonds 
indicated lower odds of COVID-19 (P < 0.05), and the grey diamonds indicated the odds of COVID-19 (P > 0.05)
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Our study’s strength lies in integrating observational 
data with Mendelian randomization (MR) analyses, which 
mutually reinforce the robustness of our findings. The 
observational study provided a broad scope, while MR anal-
yses reduced confounding and reverse causation, although 
the possibility of false negatives remains. The utilization 
of electronic health records facilitated the retrospective 
collection of extensive data, enhancing our analysis with 
a substantial sample size. Additionally, employing sum-
mary-level GWAS data strengthened the causality infer-
ence through genetic instruments. Nevertheless, there are 
also several limitations to consider when interpreting our 
results. The study’s reliance on European and Chinese data 
may not be representative of other ethnicities, potentially 
limiting the broader applicability of our findings. Further-
more, We also did not apply a range of MR methods, such 
as MR-PRESSO, which may have left certain pleiotropic 
effects unaddressed, thus impacting our conclusions. Fur-
thermore, the potential for sample overlap in the large-scale 
genomic data used, including between COVID-19 datasets 
and the UK Biobank, is acknowledged as a challenge that 
could introduce analytical bias. The issue of pleiotropy, 
with single genetic variants influencing multiple traits, also 
remains a concern for the validity of our results.

While our findings shed light on the potential links 
between blood indicators and COVID-19, we recog-
nize the limitation of not conducting a multivariable 
Mendelian randomization analysis to assess each indi-
cator’s independent effect. Acknowledging this, we 
suggest that future studies incorporate multivariable 
approaches to more definitively determine the rela-
tionships observed. Moreover, in cases where genetic 
instruments could not be identified or were not suffi-
ciently reliable, we chose not to proceed with MR anal-
ysis to avoid potential biases and misinterpretations. 
Additionally, examination of the biological pathways 
linking blood indicators to COVID-19 risk would pro-
vide a deeper understanding of the mechanisms under-
lying these associations. This could involve conducting 
functional genomics studies to identify the specific 
genes and molecular pathways that are affected by these 
blood indicators, as well as conducting animal and cell-
based studies to further explore the causal relationships 
identified in this study.Comprehensive approaches, 
including the consideration of sample overlap, will be 
crucial to further validate our findings and enhance the 
reliability of potential interventions derived from these 
insights.

Fig. 5  Summary of the causal association between COVID-19 and blood indicators
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