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Abstract 

Background The interplay between exosomes and the tumor microenvironment (TME) remains unclear. We investi-
gated the influence of exosomes on the TME in hepatocellular carcinoma (HCC), focusing on their mRNA expression 
profile.

Methods mRNA expression profiles of exosomes were obtained from exoRBase. RNA sequencing data from HCC 
patients’ tumors were acquired from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consor-
tium (ICGC). An exosome mRNA-related risk score model of prognostic value was established. The patients in the two 
databases were divided into high- and low-risk groups based on the median risk score value, and used to validate one 
another. Functional enrichment analysis was performed based on a differential gene prognosis model (DGPM). CIB-
ERSORT was used to assess the abundance of immune cells in the TME. The correlation between the expression levels 
of immune checkpoint-related genes and DGPM was analyzed alongside the prediction value to drug sensitivity.

Results A prognostic exosome mRNA-related 4-gene signature (DYNC1H1, PRKDC, CCDC88A, and ADAMTS5) 
was constructed and validated. A prognostic nomogram had prognostic ability for HCC. The genes for this model are 
involved in extracellular matrix, extracellular matrix (ECM)-receptor interaction, and the PI3K-Akt signaling pathway. 
Expression of genes here had a positive correlation with immune cell infiltration in the TME.

Conclusions Our study results demonstrate that an exosome mRNA-related risk model can be established in HCC, 
highlighting the functional significance of the molecules in prognosis and risk stratification.

Keywords Hepatocellular carcinoma, Extracellular vesicle, Exosome, Risk score, Prognostic signature, Tumor immune 
microenvironment, PRKDC
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Introduction
Hepatocellular carcinoma (HCC) is one of the most fatal 
cancers worldwide [1]. In the past 20 years, treatment 
options of HCC have been primarily chemotherapy, radi-
otherapy, and surgery. Recently, anti-angiogenic drugs 
and immune checkpoint inhibitors (ICIs) have demon-
strated promise here [2]. However, a large number of 
HCC patients inevitably experience relapse or disease 
progression after initial treatment [3]. To identify high-
risk patients with a poor prognosis and inform treatment 
decisions are of vital importance in HCC.

Extracellular vesicles (EVs) are defined as lipid bilayer 
packages of biological materials, released from various 
type of cells into surrounding environment. EVs have 
been considered as ideal biomarkers for the diagnosis 
and prognosis of cancer [4]. EVs include particles such 
as exosomes, microvesicles, ectosomes, oncosomes, 
and apoptotic bodies. Among the main types of EVs, 
exosomes contain large amounts of RNAs, which can be 
transmitted among cells and modulate the gene expres-
sion of recipient cells [5]. Exosomes contain messenger 
RNA (mRNA), circular RNA (circRNA), long non-coding 
RNA (lncRNA), microRNA (miRNA), lipids, and proteins 
[6]. As intercellular messengers between cells, exosomes 
can regulate cell differentiation and tissue development 
[7]. Exosomal RNAs can interact with many types of 
cancers and are associated with several hallmarks fea-
tures of cancer. The liquid biopsy approach of exosomes 
has been used as tumor markers [8]. Based on the abil-
ity of exosomes to carry biomolecules to different tis-
sues, exosomes also have application potential in cancer 
therapy [9]. The potential of using exosomes to predict 
response to immunotherapy has also been investigated 
[10].

Exosomes play a vital role in the development, pro-
gression, and metastases of HCC [11]. Previous studies 
confirmed that exosomes could promote progression 
and metastasis of HCC by regulating multiple signaling 
pathways and modulating the TME [12]. Furthermore, 
as exosomes release inhibitory and stimulatory contents 
that facilitate the cross-talk of tumor cells and the TME, 
exosomes demonstrate potential for overcoming resist-
ance mechanisms of anti-cancer drugs.

In this study, we aimed to explore potential functional 
mRNAs in progression and development of HCC and the 
immune microenvironment of HCC. The study results 
highlight that exosomal mRNAs which could act as prog-
nostic biomarkers for HCC.

Materials and methods
The mRNA expression data collection
The exoRBase database (http:// exorb ase. org/ exoRB 
aseV2/ downl oad/ toInd ex) is a depository of mRNAs, 

lncRNAs, and circRNAs from RNA sequencing (RNA-
seq) data analyses in different human body fluids [13]. 
ExoRBase provides expression landscapes and a com-
prehensive annotation of extracellular vesicle long RNAs 
(exLRs), which will help discover novel exLR signatures 
and facilitate the identification of new circulating bio-
markers for cancer therapy. In the current study, the 
mRNA expression profiles were obtained from the exoR-
Base database up to April 30, 2023, which included 112 
HCC, 130 benign tumor and 118 healthy blood samples.

TCGA‑LIHC cohort and ICGC (LIRI‑JP) cohort
A total of 374 HCC patients from the TCGA-LIHC 
cohort were identified. Among them, the level 3 RNA-
seq data, somatic mutations data and clinical data of 371 
HCC patients with complete information were retrieved 
from the TCGA website (https:// portal. gdc. cancer. gov/ 
proje cts/ TCGA- LIHC/). RNA-seq data, somatic muta-
tions data and clinical information of 231 tumor samples 
(LIRI-JP cohort) from the ICGC database were down-
loaded from ICGC portal (https:// dcc. icgc. org/ proje cts/ 
LIRI- JP). The samples from LIRI-JP cohort were primar-
ily derived from Japanese HCC patients with HBV or 
HCV infection.

Differentially expressed mutant genes (DEMGs)
The 118 healthy blood samples were used as the nor-
mal group. The differentially expressed genes (DEGs) in 
blood samples from 130 benign and 112 HCC patients 
were identified of p < 0.05 and fold-change (FC) > 0 via 
“limma”  R package, respectively. Integration analyses 
between normal vs. HCC and normal vs. benign com-
parisons were performed. Those mRNAs that were only 
significantly differentially expressed in normal vs. HCC 
comparison (not in normal vs. benign comparison) were 
screened out. Then, the DEMGs of HCC were obtained 
from the intersection genes that have mutations in 
TCGA, ICGC, and exoRBase.

Construction and validation of a differential gene 
prognosis model (DGPM)
The DEGs between tumor and adjacent tissues were 
identified with a false discovery rate (FDR) < 0.05 in the 
TCGA cohort. Univariate Cox analysis was carried out to 
screen DEMGs with prognostic values in terms of over-
all survival (OS). P values were adjusted by Benjamini & 
Hochberg (BH) correction. Visualization and compari-
son of gene alterations were conducted with cBioPortal. 
LASSO-penalized Cox regression analysis was used to 
construct a DGPM to minimize the risk of overfitting. 
LASSO algorithm was used for to select variables with 
“glmnet” R package. Penalty parameter (λ) was chosen by 
10-fold cross-validation with the minimum criteria. The 

http://exorbase.org/exoRBaseV2/download/toIndex
http://exorbase.org/exoRBaseV2/download/toIndex
https://portal.gdc.cancer.gov/projects/TCGA-LIHC/
https://portal.gdc.cancer.gov/projects/TCGA-LIHC/
https://dcc.icgc.org/projects/LIRI-JP
https://dcc.icgc.org/projects/LIRI-JP
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risk scores were calculated with the normalized expres-
sion level of each gene and corresponding regression 
coefficients. The risk score was calculated with the fol-
lowing formula:

 where Expri indicates the expression level of gene i, and 
coefi means the regression coefficient of gene i.

The patients were separated into high- and low-risk 
groups due to the median value of the risk score. Prin-
cipal component analysis (PCA) was performed with 
“stats” R package. Besides, t-distributed stochastic neigh-
bor embedding (t-SNE) was used to investigate the dis-
tribution of different groups using “Rtsne” R package. 
The optimal cut-off value for gene expression was deter-
mined by “survminer” R package. The time-dependent 
receiver operating characteristic (ROC) curve analyses 
were conducted with “survivalROC” R package. Survival 
analysis was performed to validate the prognostic per-
formance independent from clinical parameters. For the 
validation studies, LIRI-JP cohort was employed. The risk 
score was calculated with the same formula used with 
TCGA cohort. The patients in the ICGC cohort were also 
divided into low- or high-risk subgroups by applying the 
median risk score from TCGA cohort, and these groups 
were then compared to confirm the gene model.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses were performed with 
“clusterProfiler” R package based on the DEMGs 
between high- and low-risk groups. The infiltrating score 
of immune cells and the activity of immune-related path-
ways were analysed with single-sample gene set enrich-
ment analysis (ssGSEA) with “gsva” R package.

Construction of the prognostic nomogram
To comprehensively assess prognosis predictive ability 
of risk signature, tumor stage, gender, age, WHO grade, 
T category, N category and M category for 1-, 3-, and 
5-year OS, time-dependent ROC curves was performed 
to calculate the area under the curve (AUC) values. Prog-
nostic nomogram which containing DEMG-based risk 
model and clinical parameters was established.

Correlation of risk score with immune cells
The information for immune infiltration was down-
loaded from the tumor immune estimation resource 
(TIMER) (https:// cistr ome. shiny apps. io/ timer/). A cor-
relation between prognostic risk score and immune 
cell infiltration was performed. SsGSEA was performed 

The risk score =

n

i=1

Coef i × Expri

to investigate the enrichment of the two subgroups in 
immune function-associated gene sets via “GSEAbase” 
R package. “ESTIMATE” R package was used to evalu-
ate tumor purity and infiltrating cells, including immune 
cell and stromal cell. The fraction of 22 immune cell types 
was assessed by cell type identification by estimating rel-
ative subsets of RNA transcripts (CIBERSORT; https:// 
ciber sort. stanf ord. edu/).

Role of risk score in immune checkpoint blockade (ICB) 
treatment
Herein, 6 key genes of ICB treatment in HCC were 
extracted, including cytotoxic T-lymphocyte antigen 
4 (CTLA-4), programmed death 1 (PD-1, or PDCD1), 
programmed death ligand 1 (PD-L1, or CD274), pro-
grammed death ligand 2 (PD-L2, or PDCD1LG2), T-cell 
immunoglobulin domain and mucin domain-contain-
ing molecule-3 (TIM-3, or HAVCR2), and indoleam-
ine 2,3-dioxygenase 1 (IDO1). DEMG-based prognostic 
signature and expression level of 6 ICB key genes were 
correlated. Furthermore, the expression level of 47 ICB-
related genes between low- and high-risk groups were 
also compared.

Statistical analysis
All statistical analyses were conducted by R software 
(version 4.1.1). Gene expression was analysed by stu-
dent’s t-test. Differences in proportions were analysed 
with Chi-squared test. ssGSEA of immune cells or path-
ways between the groups were examined with Mann-
Whitney test. Kaplan-Meier curves were employed to 
assess survival data. Pearson correlation test was used to 
analyze the correlation of risk score, clinical parameters, 
immune cell infiltration, and immune checkpoints. Inde-
pendent prognostic performance of risk signature was 
evaluated with Cox regression models. p value < 0.05 was 
considered as statistically significant.

Results
Identification of prognostic related DEMGs 
from the exoRBase database
To explore potential mRNAs associated with develop-
ment and progression of HCC, the blood samples of 
112 HCC, 130 benign and 118 healthy people from the 
exoRBase database were investigated, after differen-
tial expression analysis between normal and benign or 
blood samples of HCC patients. Compared with nor-
mal blood samples, 59 and 42 mRNAs were significantly 
upregulated and downregulated in benign blood sam-
ples, respectively (Fig. 1A and Supplementary Table 1). In 
addition, a total of 132 significant DEGs (106 upregulated 
and 26 downregulated ones) were identified in normal vs. 
HCC (Fig.  1B and Supplementary Table  2). Integration 

https://cistrome.shinyapps.io/timer/
https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
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analyses between normal vs. HCC and normal vs. benign 
were performed. The mRNAs only significantly differ-
entially expressed in normal vs. HCC (not in normal vs. 
benign) were screened out. Consequently, 102 upregu-
lated and 25 downregulated mRNAs were identified 
(Fig. 1C-D).

In addition, 374 HCC patients from TCGA-LIHC 
cohort and 273 HCC patients from ICGC cohort were 
enrolled. The frequently mutated genes in American 
HCC samples from TCGA cohort (Fig.  2A) and ICGC 
cohort (Fig. 2B) were identified. Of note, there were some 
frequently mutated genes in both American and Japanese 
patients. Comparative analysis of mutated genes between 
TCGA and ICGC cohorts were performed (Fig.  2C). 
Then, we analyzed the DEGs from the exoRBase data-
base, and 24 HCC DEMGs were obtained (Fig. 2D).

The expression levels of 24 DEMGs were compared 
in the pooled TCGA and Genotype-Tissue Expres-
sion (GTEx) data from 50 normal and 374 tumor tis-
sues, and 13 DEMGs were identified (Fig.  3A). Among 
them, 4 genes (APOB, FGB, ALDOB, and ALB) were 

downregulated while 9 other genes (PPARG, PABPC3, 
MAPKAPK2, ADAMTS5, CCDC88A, PRRC2C, 
HNRNPK, DYNC1H1, and PRKDC) were enriched 
in the tumour group. All of the 13 genes were associ-
ated with OS in the univariate Cox regression analysis 
(Fig.  3B). Mutations of the 13 genes were analyzed by 
cBioPortal (Fig. 3C). The correlation of the genes is pre-
sented in Fig. 3D.

Development of a prognostic gene model in TCGA cohort
A prognostic model was established by LASSO Cox 
regression with the expression profile of the 13 genes 
identified above. As a result, the 4-gene signature based 
on the optimal value of λ was identified (DYNC1H1, 
PRKDC, CCDC88A, and ADAMTS5, Table 1). Survival 
analyses suggested that high expression of these genes 
correlated with a poor prognosis according to the opti-
mal cut-off expression value of each gene (all adjusted p 
< 0.05). The patients were stratified into high- and low-
risk group based on the median cut-off value (Fig. 4A). 
The patients in different risk groups were distributed 

Fig. 1 Candidate mRNAs in HCC. A Volcano plot of DEGs between 130 benign and 118 healthy blood samples of exosome. B Volcano plot 
of DEGs between 112 HCC and 118 healthy blood samples of exosome. C Interaction analysis of downregulated (C) and upregulated (D) DEGs 
in both compared groups
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Fig. 2 Frequently mutated genes in HCC. A The frequently mutated genes in HCC from TCGA cohort were depicted with Oncoplot. B The 
frequently mutated genes in HCC from ICGC cohort were displayed by waterfall plot. C Venn diagram of genes covered by both TCGA and ICGC 
cohorts. D Interaction analysis for DEMGs in both compared groups
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in two directions as PCA and t-SNE analysis indicated 
(Fig.  4B-C). Patients in high-risk group had a higher 
probability of death earlier (Fig. 4D) and a significantly 
worse OS (Fig. 4E). The AUCs reached 0.733, 0.634, and 
0.652 at 1-, 3-, and 5-year, respectively (Fig. 4F).

Although that there was no significant difference in 
TMB between patients with high- and low-DEMG 
(Fig. 4G), low TMB was associated with better OS (Log-
rank test, p < 0.001, Fig.  4H). When DEMG and TMB 
were e integrated to stratify the samples into  TMBhigh/
DEMGlow,  TMBlow/DEMGlow,  TMBhigh/DEMGhigh, 
and  TMBlow/DEMGhigh groups, significant differences 
were found among all groups (Fig.  4I, Log-rank test, p 

< 0.001), and patients in the  TMBlow/DEMGlow group 
exhibited the best OS.

Validation of the risk signature in ICGC cohort
To validate the robustness of the model constructed from 
TCGA cohort, a total of 273 HCC patients from ICGC 
cohort were utilized as the validation cohort. Based on 
the median risk score in TCGA cohort, the patients in 
ICGC cohort were also categorized into high- or low-
risk groups (Fig. 5A). PCA and t-SNE analysis confirmed 
the discrete distribution of the patients in two subgroups 
(Fig.  5B-C). The survival outcomes of high-risk group 
were similar with those from TCGA cohort, Fig. 5D-E). 
ROC curve showed that this model had good predic-
tive efficacy (AUC = 0.630, 0.607, and 0.638 for 1-, 3-, 
and 5-year survival, Fig.  5F). Although TMB is not sig-
nificant between patients with  DEMGhigh and  DEMGlow 
subgroups (Fig.  5G),  TMBlow (Fig.  5H) and  TMBlow/
DEMGlow (Fig.  5I) were also associated with good OS. 
These results collectively demonstrate that increased risk 
score was correlated with tumor progression.

Independent prognostic value of the risk model
The univariate Cox regression analysis suggested that 
the risk score was an independent prognostic factor 

Fig. 3 Candidate prognostic related DEMGs in the TCGA cohort. A Heatmap of the prognostic related DEMGs between normal and tumour tissues. 
B Forest plots showing the results of the univariate Cox regression analysis between gene expression and OS. C Landscape of prognostic related 
DEMGs alteration in HCC. D The correlation network of candidate genes

Table 1 Genes selected to construct the prognostic model

Abbreviation: LogFC log fold change

Gene Control mean Treatment mean logFC p Value

DYNC1H1 2.521309 3.507417 0.986108 1.99E-23

PRKDC 1.734856 2.758504 1.023648 2.87E-20

CCDC88A 0.668268 1.238603 0.570335 7.28E-14

ADAMTS5 0.35781 0.533908 0.176098 0.024572407
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(HR = 2.613, 95% CI: 1.784−3.826 for TCGA and HR: 
3.204, 95% CI: 1.730−5.932 for ICGC, Fig.  6A-B). The 
multivariate Cox regression analysis also indicated 
that the risk score was a prognostic factor, after adjust-
ing for other confounding factors (HR = 2.405, 95% 
CI: 1.639−3.528 for TCGA and HR: 2.879, 95% CI: 
1.499−5.529 for ICGC, Fig.  6C-D). The clinical features 
of TCGA cohort suggested that grade and survival status 
of the patients were diversely distributed between low- 
and high-risk subgroups (Fig. 6E, p< 0.01).

Functional analyses
The DEGs were extracted by LASSO regression with 
“limma” R package using criteria FDR < 0.05 and 
|log2FC | ≥1 as indicated above. GO enrichment and 

KEGG pathway analysis were performed with these 
DEGs. DEGs in TCGA cohort were mainly correlated 
with the extracellular matrix, extracellular matrix (ECM)-
receptor interaction, and PI3K-Akt signaling pathway 
(Fig.  7A-B). The biological processes, molecular func-
tions and signaling pathways were validated by ICGC 
cohort (Fig. 7C-D).

Comparison of the immune activity between subgroups
The ratio of immune cell infiltration and correlation of 
immune cells in TCGA and ICGC databases were shown 
in Fig.  8. The enrichment scores of 16 types of immune 
cells and the activity of 13 immune-related pathways were 
compared between low- and high-risk groups in both 
TCGA and ICGC cohorts by employing ssGSEA. In TCGA 

Fig. 4 Prognostic value of the risk score in the TCGA cohort. A Distribution and median value of the risk scores. B PCA plot and C t-SNE analysis. D 
Distributions of OS status, OS and risk score. E Kaplan-Meier curves for the OS of patients in the high- and low-risk group. F AUC of time-dependent 
ROC curves confirmed the prognostic performance of the risk score. G Comparison of TMB between low- and high-risk groups. H Survival analysis 
based on the TMB. I Survival analysis for 4 groups by combining TMB and DEMG-based risk signature
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cohort (Fig.  9A), higher levels of infiltration of immune 
cells in high-risk subgroup, especially activated dendritic 
cells (aDCs), dendritic cells (DCs), immature dendritic 
cells (iDCs), macrophages, T helper (Th) cells (Tfh, Th1, 
and Th2 cells) and regulatory T (Treg) cells. Except for the 
type-1 and type-2 IFN response pathway, other immune 
pathways exhibited higher activity in the high-risk group 
in the TCGA cohort (Fig.  9B). When the immune status 
in ICGC cohort was evaluated, similar conclusions were 
drawn (Fig. 9C-D).

Construction of nomogram with prognostic signature 
with clinical features
The risk score increased significantly with tumor grade, 
stage, and T category (Fig.  10A-C). A nomogram was 
constructed based on the prognostic signature and clin-
ical parameters (Fig.  10D). The nomogram-predicted 
survival closely matched with the optimal predictive 
performance. The AUCs for the 1-, 3-, and 5-year were 
0.752, 0.687, and 0.710, respectively (Fig.  10E). The 

Fig. 5 Validation of the risk score in the ICGC cohort. A Distribution and median value of the risk scores. B PCA plot and C t-SNE analysis. D 
Distributions of OS status, OS and risk score. E Kaplan-Meier curves for the OS of patients in the high-risk group and low-risk group. F AUC 
of time-dependent ROC curves confirmed the prognostic performance of the risk score. G Comparison of TMB between low- and high-risk groups. 
H Survival analysis based on the TMB. I Survival analysis for 4 groups by combining TMB and DEMG-based risk signature
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Fig. 6 Univariate and multivariable Cox regression analyses of risk score. A Univariate and B multiple Cox regression analyses were performed 
in the TCGA cohort. C Univariate and D multiple Cox regression analyses were performed in the ICGC validation cohort. E Heatmap of clinical 
parameters for the TCGA cohort
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nomogram had similar performance to that of an ideal 
model (Fig. 10F).

PRKDC independently affected prognosis
PRKDC was only gene whose expression level was 
upregulated among the four prognostic-related DEMGs 
(DYNC1H1, PRKDC, CCDC88A, and ADAMTS5) (Log 
FC >1). PRKDC expression level was lower in adja-
cent normal specimens compared that of tumor tissues 
(Fig. 11A). There are 4 analyses showing high expression 
of PRKDC from ONCOMINE website (Fig.  11B). The 
protein expression level of included gene of signature 
was verified by The Human Protein Atlas (Fig.  11C-D). 
The results found that PRKDC expressed statistical sig-
nificantly among different pathological grades (Fig. 11E, 
most p < 0.05). The TIMER shows that the clinical out-
come of age, gender, race, stage, and purity increased risk 
with the increase of PRKDC gene expression (Fig. 11F). 
Kaplan-Meier analysis showed lower PRKDC expression 
level was correlated with longer OS time (Fig. 11G).

PRKDC correlated with ICB key genes
The correlation between six key ICB key targets and 
prognostic signature was analyzed to reveal the poten-
tial player of risk signature (Fig.  12A). Besides, expres-
sion levels of 36 out of 47 ICB-associated genes between 
low- and high-PRKDC groups were dysregulated in dif-
ferent subgroups (Fig.  12B). TIMER results adjusted by 
tumor purity showed PRKDC was positively correlated 
to CD274 (r = 0.433; p = 3.47e−17), CTLA4 (r = 0.214; 
p = 5.98e−05), HAVCR2 (r = 0.407; p = 3.43e−15), IDO1 
(r = 0.181; p = 7.41e−04), PDCD1LG2 (r = 0.264; p = 
6.34e−07) and PDCD1 (r = 0.209; p = 9.32e−05), suggest-
ing PRKDC may exert a vital role in ICB treatment of 
HCC (Fig. 12C-H).

Role of PRKDC in TME
HCC patients were classified into high- and low- PRKDC 
expression groups based on the median PRKDC expres-
sion level. ESTIMATE results suggested that patients 
with higher PRKDC expression had a higher stromal 

Fig. 7 Functional analysis of the DGPM in TCGA and ICGC cohort. A Bubble graph for GO enrichment and B barplot graph for KEGG pathways 
in the TCGA cohort. C Bubble graph for GO enrichment and D barplot graph for KEGG pathways in the ICGC cohort
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score, higher ESTIMATE score and lower tumor purity 
(Fig. 13A). TIMER showed that low PRKDC was associ-
ated with good OS (Fig. 13B). Arm-level deletion was the 
main type of mutation (Fig. 13C-D). PRKDC expression 
was positively correlated with immune cell infiltration 
(Fig.  13E). The results of ssGSEA suggested that except 
for cytolytic activity and NK cells, the infiltration fraction 
of aDCs, antigen-presentation cell (APC) co-inhibition, 
iDCs, macrophages, MHC-class-I, para-inflammation 
and Treg expression were significantly decreased when 
risk score is declining (Fig. 13F).

Discussion
Exosome-derived mRNAs have gained attention due 
to their potential role in cancer development, progres-
sion, and as a source of diagnostic and therapeutic tar-
gets. Exosomes released by cancer cells can carry various 
molecular cargoes, including mRNA, contributing to the 
communication between cancer cells and their microen-
vironment. ExLR, mainly mRNAs are potential biomark-
ers in HCC [14]. Compared to tissue mRNAs, circulating 
emRNAs may reflect their original tissues and the rela-
tive fraction of immune cell types [15].

Exosome mRNA-related gene expression is associated 
with cancer development and progression. However, 
the characteristics and landscape of exosomal mRNAs 
are not fully understood. In this study, four exosomal 
mRNA-related genes were included to construct the 
prognostic model by univariate Cox and LASSO Cox 
regression analysis. Patients in high- and low-risk group 
had significantly different survival outcomes. Further-
more, ROC curve demonstrated that the prognostic sig-
nature was robust in predicting the OS for HCC patients. 
Additionally, when combined the prognostic signature 
with clinical parameters, the nomogram had satisfactory 
predictive performance for HCC. The prognostic signa-
ture correlated with tumor microenvironment and the 
expression of immune checkpoints. The flow diagram of 
our study is shown in supplementary Figure S1.

A better understanding of the biology represented by 
the selected genes can be obtained via analysis of func-
tional networks or pathways that these genes based on 
their biological functions. The functional analysis indi-
cated the prognostic signature was enriched in extracel-
lular matrix, ECM-receptor interaction, and PI3K-Akt 
signaling pathway. Tumor cells release exosomes to 

Fig. 8 Immune cell infiltrations of TCGA and ICGC cohorts. Relative proportion of immune cell infiltration in (A) TCGA and (B) ICGC (B). Correlation 
analysis of immune cells in (C) TCGA and (D) ICGC 
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interact with ECM. In turn, ECM regulates exosome 
secretion and uptake. The biomolecules of exosomes can 
impact ECM remodeling, which is associated with can-
cer progression. Tumor-derived exosomes are capable of 
modulating ECM and TME by disruption of cell adhesion 
formation and stimulation of the extracellular receptor 
signaling. Exosomes reach distal sites where they bind 
to cell surfaces and experience endocytosis with specific 
mechanisms [16]. ECM reorganization by exosomes con-
tributes to physiological and pathologic angiogenesis. 
The surface to volume ratio of EVs is relatively large, 
which enables efficient surface interactions of EVs with 
cells and molecules. The surface interactions determine 
the fate of EVs by orchestra them to certain tissues or 

cell membrane. Focal adhesion pathway has also been 
implicated in KEGG pathway, which could regulate ECM. 
Being dynamic integrin-based adhesion complexes, focal 
adhesions anchor actin cytoskeleton to ECM, which 
transfers environmental stimuli to the cells and to change 
cell motility, adhesion, and shape [17]. Taken together, 
ECM modulation of the host tissue by tumor-derived 
exosome is involved in the crosstalk between cancer and 
the premetastatic niche [18].

Tumor-derived exosomes carry immunostimulatory 
and immunosuppressive receptor or ligands, partially 
mimicking the profiles of the parent cells [19]. Exosomes 
are involved in immune responses for tumorigenesis 
[20]. Exosomes-mediated signaling is contextual, and 

Fig. 9. SsGSEA scores between different risk groups in TCGA and ICGC cohort. A The scores of 16 immune cells and B 13 immune-related functions 
in TCGA cohort are displayed in boxplots. C The scores of 16 immune cells and D 13 immune-related functions in ICGC cohort are displayed 
in boxplots. Adjusted P values were showed as: *, p < 0.05; **, p < 0.01; ***, p < 0.001
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tumor-derived exosomes mainly mediate suppression in 
TME. The role of exosomes in antigen specific immune 
responses have also been demonstrated. In our study, 
the enriched immune cell types in high-risk group were 
aDCs, DCs, iDCs, Th2 cells, and Tregs. The results also 
found that most of the 13 immune-related functions were 
highly activated in the high-risk group, especially APC 
co-inhibition, APC co-stimulation, check-point, HLA, T 
cell co-stimulation. A large body of evidences supports 
the potential of tumor-derived exosomes to promote 
antigen-processing and differentiation capabilities of DC 
in TME. Exosomes carrying tumor-associated antigens 
(TAAs) and costimulatory molecules reprogram APCs, 
which could promote immune responses. The effects 
of tumor-derived exosomes on T-cell subsets are com-
plex [19]. The proteins carried by exosomes can inhibit 
cytotoxicity and regulate immune-related genes in T 
cells [19]. Previous studies have reported tumor-derived 
exosomes could promote Treg activity and expansion [21, 
22]. These results collectively indicated the risk signature 
was associated with TME.

Inhibitory receptors have been identified in cancers, 
including but not limited to PD-1, CTLA-4, LAG3, and 
TIM3, etc. [23],. Many biochemical studies have revealed 
complex and delicate regulation of checkpoint expression 

on cell surface [24]. Upon ligand engagement, check-
points follow distinct signaling mechanisms to inhibit 
antitumor immunity. Exosomes communicate between 
tumor cells of immune cells and stromal cells by trans-
ferring message, contributing to immune escape. For 
example, tumor-derived exosomes containing PD-L1 can 
mimic the function of PD-L1 on cell surface. The asso-
ciation between levels of circulating exosomal PD-L1 and 
response to anti-PD-1/PD-L1 antibody therapy has been 
documented [25]. The correlation of the prognostic sig-
nature of exosome mRNA-related genes with ICB key 
targets reveal the risk signature has a potential role in the 
ICB treatment of HCC.

There are several proposed exosome-mediated drug 
resistance mechanisms, including exosome-mediated 
transfer of miRNAs, neutralization of antibody-based 
drugs, and drug export via the exosome pathway [26]. 
Exosomes could also induce therapy-resistance by pro-
moting anti-apoptotic pathways and alteration of sign-
aling transduction [27]. The PI3K-Akt pathway has been 
linked to modulate the multidrug resistance of various 
cancers [28]. For example, the exosome-mediated PI3k/
Akt/mTOR signaling pathway has been implicated in 
cervical cancer [29]. Similarly, gastric cancer-derived 
exosomes facilitate the proliferation of recipient cell 

Fig 10 Correlation of DGPM with clinical features and construction of clinicopathological nomogram. A Correlation of risk score with A tumor 
grade, B clinical stage, and C T status. D Nomogram was constructed by grade, stage and risk signature for predicting survival. E AUCs for predicting 
1-, 3-, and 5-year survival. F The 1-, 3-, and 5-year nomogram calibration curves
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Fig. 11 The clinical significance of PRKDC in HCC. A PRKDC are overexpressed in HCC tumor tissue. B Four analyses from ONCOMINE platform 
showing high expression of PRKDC. C‑D Protein expression level of PRKDC was shown by The Human Protein Altas by immunohistochemistry. 
E Correlation of risk score with tumor grade. F The TIMER shows that the clinical outcome increased risk with the increase of PRKDC gene 
expression. G Lower PRKDC level predicts longer OS
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via PI3K/Akt signaling pathway [30]. However, the role 
of exosome mRNA-related gene signature in the drug 
sensitivity prediction needs further validation in larger 

clinical samples. More studies are required to fully 
uncover the complexities of exosome-derived mRNA 
in cancer. Ongoing research aims to unravel the specific 
mRNA cargoes carried by exosomes, their functional 

Fig. 12 Association between PRKDC and immune checkpoint genes. A Correlation analysis between immune checkpoints CD274, PDCD1, 
PDCD1LG2, CTLA4, HAVCR2, and IDO1 and risk score. B Comparison of the expression levels of ICB-related genes between low- and high-PRKDC 
groups. Association between PRKDC and C CD274, D CTLA4, E HAVCR2, F IDO1, G PDCD1LG2, and H PDCD1



Page 16 of 18Du et al. BMC Medical Genomics           (2024) 17:86 

implications, and their potential as therapeutic targets 
or tools for cancer management.

Among the four genes selected to construct the prog-
nostic signature, PRKDC was recently identified as a 
new biomarker and potential target for immunotherapy 
[31]. PRKDC gene encodes catalytic subunit of a nuclear 
DNA-dependent serine/threonine protein kinase (DNA-
PKcs) [32]. As a catalytic protein, DNA-PKcs together 
with Ku70 and Ku80 constitute a DNA-dependent pro-
tein kinase (DNA-PK) [33]. The degradation of DNA-PK 
is regulated by vasolin-containing protein (VCP), which 
is found in the exosomes from gliomas [34]. DNA-PK is 

involved in DNA double-strand break repair, immuno-
competence, and genomic integrity [35]. Previous studies 
indicated DNA-PK is a candidate driver of hepatocar-
cinogenesis which can predict treatment response and 
patient survival [36]. DNA-PK has emerged as a potential 
therapeutic target in various cancer types. By inhibition 
of its kinase function, DNA-PK inhibitors could poten-
tiate DNA damage [37]. The investigation of DNA-PK 
inhibitor employs with monotherapy and combination 
strategy [38].

Our study is the first to construct and validate an exo-
some mRNA-related gene risk model based on four 

Fig. 13 The role of PRKDC in TME features. A Comparison of (A1) immune score, (A2) ESTIMATE score and (A3) tumor purity 
between low- and high-PRKDC groups. B TIMER showed that low PRKDC was associated with good OS. Copy number of C CD4+ T-cells and D CD8+ 
T-cells in HCC. E Relationship between PRKDC with (E1) CD4+ T-cells, (E2) neutrophils, (E3) macrophages and (E4) myeloid dendritic cells. F 
Comparison of ssGSEA enrichment between low- and high-PRKDC groups.
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exosome-related genes, which can serve as an independ-
ent prognostic factor in HCC patients. However, our 
study has some limitations. First, the validation of the 
prognostic signature was performed in public database, 
larger clinical cohorts are need to confirm the value of 
this signature. Second, the risk model was solely estab-
lished on exosome mRNA-related genes, the information 
of lncRNA, miRNA, and circRNA were not included in 
our study. Third, the relationship of this signature with 
tumor microenvironment is preliminary and hypothe-
sis-generating, therefore, experimental confirmation is 
required in the future.

Conclusions
In summary, an exosome mRNA-related prognostic 
risk model was established and validated to predict the 
prognosis of HCC patients and associated with immune 
infiltration. The risk model can serve as an independent 
prognostic factor for HCC patients and highlights the 
functional significance of mRNAs in exosomes.
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