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Abstract
Background Liver cancer ranks sixth in incidence and third in mortality globally and hepatocellular carcinoma (HCC) 
accounts for 90% of it. Hypoxia, glycolysis, and lactate metabolism have been found to regulate the progression 
of HCC separately. However, there is a lack of studies linking the above three to predict the prognosis of HCC. The 
present study aimed to identify a hypoxia–glycolysis–lactate-related gene signature for assessing the prognosis of 
HCC.

Methods This study collected 510 hypoxia-glycolysis-lactate genes from Molecular Signatures Database (MSigDB) 
and then classified HCC patients from TCGA-LIHC by analyzing their hypoxia-glycolysis-lactate genes expression. 
Differentially expressed genes (DEGs) were screened out to construct a gene signature by LASSO-Cox analysis. 
Univariate and multivariate regression analyses were used to evaluate the independent prognostic value of the gene 
signature. Analyses of immune infiltration, somatic cell mutations, and correlation heatmap were conducted by 
“GSVA” R package. Single-cell analysis conducted by “SingleR”, “celldex”, “Seurat”, and “CellCha” R packages revealed how 
signature genes participated in hypoxia/glycolysis/lactate metabolism and PPI network identified hub genes.

Results We classified HCC patients from TCGA-LIHC into two clusters and screened out DEGs. An 18-genes 
prognostic signature including CDCA8, CBX2, PDE6A, MED8, DYNC1LI1, PSMD1, EIF5B, GNL2, SEPHS1, CCNJL, SOCS2, 
LDHA, G6PD, YBX1, RTN3, ADAMTS5, CLEC3B, and UCK2 was built to stratify the risk of HCC. The risk score of the 
hypoxia-glycolysis-lactate gene signature was further identified as a valuable independent factor for estimating 
the prognosis of HCC. Then we found that the features of clinical characteristics, immune infiltration, somatic cell 
mutations, and correlation analysis differed between the high-risk and low-risk groups. Furthermore, single-cell 
analysis indicated that the signature genes could interact with the ligand-receptors of hepatocytes/fibroblasts/plasma 
cells to participate in hypoxia/glycolysis/lactate metabolism and PPI network identified potential hub genes in this 
process: CDCA8, LDHA, YBX1.

Conclusion The hypoxia–glycolysis–lactate-related gene signature we built could provide prognostic value for HCC 
and suggest several hub genes for future HCC studies.
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Introduction
Liver cancer ranks sixth in incidence and third in mor-
tality globally [1]. Hepatocellular carcinoma (HCC) 
accounts for approximately 90% of all liver cancer cases 
[2]. While significant advancements have been made in 
therapeutic approaches for HCC, such as surgical resec-
tion, radiofrequency ablation, and orthotopic liver trans-
plantation [3], the prognosis for HCC patients remains 
unsatisfactory [4]. Heterogeneity within HCC presents 
challenges in both diagnosis and treatment, making accu-
rate prognosis estimation and personalized treatment 
for patients a complex task [5, 6]. Therefore, seeking a 
more reliable prognostic prediction model for HCC is 
significant.

The microenvironment of solid tumors is often charac-
terized by hypoxia, resulting from an aberrant vascular 
system that fails to deliver sufficient oxygen to meet the 
rapid proliferation demands of tumor cells [7]. The liver, 
being highly susceptible to hypoxia, exhibits a micro-
environment in HCC that is both hypoxic and nutri-
tion deficient [8]. Tumors adapt to hypoxia by activating 
hypoxia-inducible factors (HIFs), which play a crucial 
role in facilitating a shift towards anaerobic energy pro-
duction [9]. The acceleration of cellular glycolysis by 
hypoxia-inducible factor-1α (HIF-1α) has been docu-
mented as a means to sustain energy supply, impacting 
both cancer cells and healthy cells [10]. Tumor-associated 
aberrant glycolysis can result in elevated lactate produc-
tion, thereby influencing the pH of the tumor microenvi-
ronment and affecting both cancer cells and immune cells 
[11]. Previous research has indicated that the knockout of 
aldolase A (ALDOA), a crucial enzyme in glycolysis and 
gluconeogenesis, can deplete lactate levels in HCC and 
impede tumor growth [12].

Recent studies have confirmed that hypoxia, glycolysis, 
and lactate metabolism are crucial for HCC development. 
Previous prognostic models of HCC were constructed 
based on the individual effects of hypoxia or glycolysis 
or lactate metabolism separately. For example, Hu et al. 
found hypoxia/immune-associated prognosis signature 
can stratify the risk of HCC [13]. Chen et al. found gly-
colysis/gluconeogenesis-related genes were associated 
with patient prognosis, immune microenvironment, 
and immunotherapy response in HCC [14]. Cheng et al. 
found the lactylation-related gene signature could serve 
as a biomarker for the clinical treatment of HCC [15]. 
However, upon the integration of previous studies, we 
conjectured that hypoxia, glycolysis, and lactate metabo-
lism do not function independently but interact to regu-
late HCC. Therefore, we comprehensively discussed their 
combined prognostic value of HCC for the first time. 

Subsequently, we developed a hypoxia-glycolysis-lactate-
related gene signature and systematically examined its 
implications through survival analysis, clinical character-
istics, immune infiltration, somatic cell mutations, corre-
lation analysis, and single-cell analysis, which filled this 
particular gap in the prognostic models for HCC.

Materials and methods
Data collection
We downloaded the complete RNA expression matrix 
along with the relevant clinical data for 377 HCC patients 
from the TCGA database (http://portal.gdc.cancer.gov/
repository). Additionally, we obtained the RNA expres-
sion matrix and associated clinical data of 247 HCC 
patients from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/). These raw data were collated and nor-
malized through the “limma” R package [16]. Detailed 
clinicopathological characteristics of HCC patients in 
TCGA-LIHC and GSE14520 were provided in Table S1 of 
the supplementary materials.

Genes collection
A total of 200 hypoxia genes, 200 glycolysis genes, and 
303 lactate genes were acquired via the human gene 
sets in the Molecular Signatures Database (MSigDB) 
[17] (http://www.gsea-msigdb.org/gsea/msigdb). After 
excluding the same genes among the three gene sets, we 
collected 510 related genes. These 510 related genes were 
further utilized to classify HCC patients from TCGA into 
two subtypes, among which we screened out DEGs.

Consistency clustering analysis and clinical traits analysis 
between different subtypes
The “Consensus Cluster Plus” R package [18] was used 
to classify the HCC patients in the TCGA into two major 
subtypes. The heatmap was conducted to test whether 
there was a difference between the two subtypes regard-
ing specific clinical characteristics. We also conducted a 
Kaplan-Meier survival analysis to compare the survival 
probability of the two subtypes. Moreover, the heatmap 
of two subtypes from KEGG gene sets and hallmark gene 
sets of the MSigDB was conducted to explore the differ-
ential gene sets between the two subtypes.

DEGs among two HCC subtypes and functional enrichment 
analysis
We utilized the R package “ggplot2” [19] to identify 
the DEGs between the two subtypes of HCC. Genes 
with|log2 fold change (FC)| > 1 and false discovery rate 
(FDR) < 0.05 were defined as differentially expressed. 
Afterwards, we visualized the results through a volcano 
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plot. Enrichment analyses of Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes pathway 
(KEGG) were conducted to explore various functional 
pathways associated with DEGs. GO enrichment analysis 
included the biological process (BP), molecular function 
(MF), and cellular component (CC).

Construction and validation of a hypoxia-glycolysis-lactate 
related gene signature
We defined 370 HCC patients in TCGA-LIHC as the 
training cohort and 220 HCC patients in GSE14520 as 
the test cohort. We performed univariate regression 
analysis to identify potential prognostic genes the criteria 
of p value < 0.001 [20]. The least absolute shrinkage and 
selection operator (LASSO) is a regularization method 
for linear regression problems that can reduce model 
complexity, avoid overfitting, and select important eigen-
variables. The principle of LASSO is to minimize the 
sum of residual squares, resulting in certain regression 
coefficients equal to 0, thus obtaining an optimal model. 
Therefore, we utilized the LASSO Cox regression analysis 
[21] along with “glmnet” R package [22] to identify genes 
with strong correlation. Finally, a related gene signature 
was constructed. The risk score was calculated as the sum 
of multiplication with gene expression and correlation 
gene coefficients. Subsequently, HCC patients in both 
cohorts were categorized into high-risk and low-risk 
groups based on the median risk score value. The survival 
state and survival probability of HCC patients in both the 
training cohort and test cohort were explored through 
the “pheatmap” R package.

Construction and evaluation of the nomogram
Using the “rms” R package, we constructed a nomogram 
that included the risk score and clinical features as prog-
nostic factors. Based on the overall score, we could fore-
cast the 1-, 3-, and 5-year survival probability of HCC 
patients. Calibration curves and ROC curves were plot-
ted to evaluate the nomogram. We also conducted uni-
variate and multivariate Cox regression analyses to assess 
the potential of risk scores as an independent prognostic 
factor for predicting HCC patient prognosis.

Analysis of immune cell infiltration, immune function, 
somatic mutation, and correlation analysis
The “GSVA” R package was used to perform single-sam-
ple gene set enrichment (ssGSEA) analysis to explore 
the immune cell infiltration and immune function of 
each sample [23]. Meanwhile, the TIDE score [24] and 
ROC curve were used to investigate the difference in 
immunotherapy sensitivity between high-risk and low-
risk groups. Moreover, the waterfall diagram of somatic 
mutation distribution was drawn to identify genes with 
the highest frequency of mutations. The “GSVA” R 

package was also used to conduct the heatmap of correla-
tion analysis between risk score and hallmark pathways.

Analysis of single-cell RNA sequencing (scRNA-seq)
We downloaded single-cell RNA sequencing (scRNA-
Seq) data from GSE18993 through the GEO database. 
Firstly, genes with significant variance were screened 
out via the “Seurat” R package for subsequent analysis. 
Dimensional reduction of these genes was then con-
ducted through PCA. Finally, we used Uniform Manifold 
Approximation and Projection (UMAP) to identify differ-
ent cell clusters and annotated each cell cluster through 
“SingleR” and “celldex” R packages.

Single-cell gene set scoring, cell-cell communication 
analysis, and protein-protein Interaction (PPI) network 
construction
Single-cell sequencing data were scored using the “Add-
ModuleScore” function of the “Seurat” R package. The 
“HALLMARK” and “KEGG” gene sets were obtained 
from the Molecular Signatures Database (https://www.
gsea-msigdb.org/gsea/msigdb). Cell-cell communication 
analysis was performed using the R software “CellChat” 
package [25]. Protein-Protein Interaction (PPI) network 
was constructed based on the STRING (https://cn.string-
db.org/) database. Set condition: minimum required 
interaction score is 0.4.

Results
Hypoxia-high, glycolysis-high, and lactate-high HCC 
patients had a lower survival probability
Through ssGSEA score, we found that hypoxia, glycolysis, 
and lactate gene sets were more likely enriched in HCC 
samples than non-tumor samples in both TCGA-LIHC 
and GSE14520 (Fig. 1A). The HCC patients from TCGA 
and GEO databases were stratified into two groups 
based on the expression of hypoxia, glycolysis, and lac-
tate genes respectively. Through survival analysis, it was 
observed that patients of hypoxia-high, glycolysis-high, 
and lactate-high groups had a reduced survival probabil-
ity than those in the hypoxia-low (Fig. 1B), glycolysis-low 
(Fig. 1C) and lactate-low (Fig. 1D) groups in both TCGA 
and GEO databases.

Division subtypes, clinical features analysis, and survival 
analysis based on consensus cluster analysis
To identify potential prognostic genes, we performed 
univariate Cox regression analysis among a total of 510 
hypoxia, glycolysis, and lactate-related genes. Consensus 
clustering analysis was subsequently performed to iden-
tify HCC subtypes. The consensus CDF plot illustrated 
the distribution under various numbers of clusters, sug-
gesting a clear discrimination when the number of clus-
ters (K) was set to 2 (Fig.  2A). Accordingly, we divided 
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all HCC patients into two main subtypes (cluster 1 and 
cluster 2) in TCGA (Fig. 2B). The heatmap of clinical fea-
tures between the two subtypes showed that the charac-
teristics of the two clusters differed in gender, grade, and 
stage (Fig. 2C). Comparing two clusters of HCC patients, 
it was observed that Cluster 1 had a significantly higher 
number of female patients than Cluster 2. Furthermore, it 
was found that the proportion of HCC patients in either 
the middle or end stage was greater in Cluster 1 than in 
Cluster 2 (Fig.  2D). These findings may have important 
implications for classifying HCC patients. Based on the 
Kaplan-Meier analysis, it was observed that the survival 
probability of Cluster 1 (n = 180) was comparatively lower 
than that of Cluster 2 (n = 190) (Fig. 2E). Meanwhile, we 
conducted the heatmap of two subtypes from KEGG 
gene sets and hallmark gene sets of the MSigDB (Fig. 2F). 
It can be found that the process of hypoxia and glycoly-
sis were more likely to be activated in Cluster 1 than in 
Cluster 2.

Construction of a prognostic gene signature for HCC 
patients in the TCGA cohort
A total of thousands of DEGs between the two subtypes 
were identified through the “ggplot2” R package. The 
volcano map revealed that 716 genes were upregulated, 

while 4437 genes were downregulated (Fig. 3A). Further 
analysis was performed using GO and KEGG enrichment 
analyses to determine the biological processes involved 
in the DEGs. The analysis of GO revealed that the DEGs 
were mainly involved in cell activation as regards the bio-
logical process. As for the molecular function of DEGs, 
it was primarily enriched in glycosaminoglycan binding. 
The cellular component of DEGs was mainly enriched in 
an extracellular matrix that contained collagen (Fig. 3B). 
Following the KEGG analysis, it was observed that the 
DEGs were significantly enriched in metabolic path-
ways (Fig.  3C). In the training cohort samples, the uni-
variate regression analysis was performed to identify 
3664 potential prognostic genes. The identified genes 
were further analyzed using LASSO COX regression 
analysis. Through the optimal value of λ, a prognos-
tic signature consisting of 18 genes was established. 
This signature included cell division cycle associated 8 
(CDCA8), Chromobox 2 (CBX2), Phosphodiesterase 6 A 
(PDE6A), mediator complex subunit 8 (MED8), Dynein 
Cytoplasmic 1 Light Intermediate Chain 1 (DYNC1LI1), 
proteasome 26  S subunit, non-ATPase 1 (PSMD1), 
eukaryotic translation initiation factor 5B (EIF5B), G 
Protein Nucleolar 2 (GNL2), selenophosphate synthetase 
1(SEPHS1), cyclin J like (CCNJL), suppressor of cytokine 

Fig. 1 ssGSEA scores and Kaplan-Meier survival analysis of glycolysis, hypoxia, and lactate genes in the GEO and TCGA cohorts. (A) ssGSEA scores of 
glycolysis, hypoxia, and lactate genes in GSE14520 (left) and TCGA–LIHC (right). (B– D) Kaplan-Meier survival analysis of glycolysis, hypoxia, and lactate 
genes in the GSE14520 (left) and TCGA-LIHC (right)
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signaling 2 (SOCS2), lactate dehydrogenase A (LDHA), 
glucose-6-phosphate dehydrogenase (G6PD), Y-box 
binding protein 1 (YBX1), reticulon 3 (RTN3), ADAM 
metallopeptidase with thrombospondin type 1 motif 5 

(ADAMTS5), C-type lectin domain family three mem-
ber B (CLEC3B), and uridine-cytidine kinase 2 (UCK2) 
(Fig. 3D). The following formula calculated the risk score: 
risk score = [CDCA8 expression* (0.0103)] + [CBX2 

Fig. 2 Classification of HCC subtypes and related clinical features analysis. (A) The CDF distribution diagram shows value of CDF under different k value, 
the red line with k = 2 is most smoothest (Left); the relative change in area under CDF curve is shown on the right and the largest difference is between 
k = 2 and k = 3. (B) The diagram illustrating the consistency matrix when k = 2. (C) Heatmap of clinical traits (TNM, stage, grade, gender, age) of two 
subtypes (*p < 0.05, **p < 0.01, ***p < 0.001). (D) Comparison of the proportion between two subtypes regarding gender, grade, stage, and T staging. (E) 
Kaplan-Meier survival analysis of two subtypes. (F) Heatmap of two subtypes from KEGG gene sets and hallmark gene sets of the MsigD
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expression* (0.1041)] + [PDE6A expression* (0.2492)]+ 
[MED8 expression* (0.0031)] + [DYNC1LI1 expres-
sion* (0.0344)]+ [PSMD1 expression* (0.0202)]+ [EIF5B 
expression* (0.1233)]+ [GNL2 expression* (0.0137)]+ 
[SEPHS1 expression* (0.0140)]+ [CCNJL expression* 
(0.0730)]+ [SOCS2 expression* (-0.0736)]+ [LDHA 
expression* (0.0510)]+ [G6PD expression* (0.0047)]+ 
[YBX1 expression* (0.0832)]+ [RTN3 expression* 
(0.0491)]+ [ADAMTS5 expression* (0.1021)]+ [CLEC3B 
expression* (-0.0643)]+ [UCK2 expression* (0.0200)]. All 
samples from the train and test cohorts were classified 
as high- or low-risk groups based on their median risk 
score value. The risk curves (Fig. 3E) and survival status 
plots (Fig. 3F) revealed that in both the training and test 
cohorts, patients at high risk had significantly reduced 
survival time compared to those at low risk. The survival 
probability of patients in the high-risk group was lower 
than that of patients in the low-risk group, as shown by 

the Kaplan-Meier analysis, which was observed in both 
the training and test cohorts (Fig. 3G, p < 0.001).

Independent prognostic value of the 18-gene signature
ROC curves were used to evaluate the accuracy of the 
18-gene signature in predicting the survival rates at 
1-year, 3-year, and 5-year in both the training and test 
cohorts, as shown in Fig.  4A. The results indicated that 
the AUC was greater than 0.7 for all time points, indi-
cating satisfactory accuracy. We also explored the cor-
relation between clinical characteristics and risk scores. 
The results showed that patients at advanced stages of 
HCC had higher risk scores (Fig.  4B). Using the “rms” 
R package, we developed a nomogram to predict the 
survival probability of HCC patients at 1-year, 3-year, 
and 5-year based on available clinical data and the risk 
score (Fig. 4C). The calibration plots (Fig. 4D) and ROC 
curves for both the training and test cohorts (Fig.  4E) 

Fig. 3 Functional enrichment analysis and prognostic gene signature construction. (A) A volcano plot depicting genes related to hypoxia, glycolysis, 
and lactate that were differentially expressed. Downregulated genes are represented in blue, upregulated genes in red, and non-differentially expressed 
genes in gray. (B) GO enrichment analysis of DEGs; BP, MF, CC are shown from top to bottom. (C) KEGG enrichment analysis of DEGs based on four groups: 
cellular processes, human diseases, metabolism, and organsimal systems. (D) Regression coefficient path plot (left) and cross-validation curve (right) of 
LASSO Cox regression analysis. (E– G) Risk curve, survival status, and Kaplan-Meier survival analysis of HCC patients under different risk groups in the train-
ing cohort (left) and test cohort (right) (***p < 0.001)
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demonstrated the accuracy of the nomogram in pre-
dicting the survival of HCC patients. We performed 
univariate and multivariate Cox regression analyses 
based on risk score and clinical traits for both the train-
ing and test cohorts to confirm that the risk score of the 
18-gene signature was an independent prognostic factor 
for HCC patients. The risk score was found to be sig-
nificantly associated with overall survival (OS) in both 
cohorts through univariate Cox analysis (training cohort: 
HR = 14.234, 95%CI = 7.219–28.064, P < 0.001; test cohort: 
HR = 7.720, 95%CI = 2.991–19.928, P < 0.001; Fig.  4(F)). 
Moreover, multivariate Cox analysis indicated that the 
risk score was an independent predictor for OS (train-
ing cohort: HR = 14.259, 95%CI = 6.556–31.014, P < 0.001; 
GEO cohort: HR = 5.050, 95%CI = 1.934–13.181, P < 0.001; 
Fig. 4(G)).

Immune landscape, state of somatic mutation, and 
correlation analysis based on risk score
The immune cell infiltration analysis revealed an upreg-
ulation of activated dendritic cells, macrophages, and 
regulatory T cells, along with a downregulation of B 
cells, interdigitating cells, mast cells, NK cells, and T 
helper cells in the high-risk group (Fig.  5A). Enrich-
ment analysis of immune function indicated that the 
APC co-inhibition, checkpoint, and MHC-class-I were 
significantly enriched in the high-risk group. In con-
trast, the low-risk group exhibited a significant enrich-
ment in cytolytic activity, Type-I-IFN-Response, and 
Type-II-IFN-Response (Fig.  5B). We investigated the 
correlation between the TIDE and risk scores (Fig.  5C) 
and compared the response proportion between differ-
ent risk groups (Fig. 5D). Patients in the high-risk group 
demonstrated a higher TIDE score, suggesting a greater 
probability of immune evasion and lower chances of ben-
efiting from immunotherapy. The ROC curve confirmed 
the accuracy of the above results, with an AUC of 0.773 

Fig. 4 Construction of a nomogram and independent prognostic analysis of risk score. (A) ROC curves for 1-, 3-, and 5-year in the training cohort (left) 
and test cohort (right). (B) Heatmap of the correlation between clinical features (TNM, stage, grade, gender, age) and risk score (*p < 0.05, **p < 0.01, 
***p < 0.001). (C) Nomogram comprised of risk score and clinical traits (TNM, stage, grade, gender, age). (D) Calibration plots of nomogram. (E) ROC curves 
based on clinical traits and risk score in the training cohort (left) and test cohort (right). (F) Univariate analysis of risk score as an independent prognostic 
factor in patients with HCC in the training cohort (left) and test cohort (right). (G) Multivariate analysis of risk score as an independent prognostic factor 
for HCC patients in the training cohort (left) and test cohort (right)
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(Fig.  5E). The waterfall diagram of somatic mutation 
distribution was drawn to explore genes with the high-
est mutation frequency in the two risk groups (Fig. 5F). 
Results showed a significantly higher frequency of TP53 
and ZFHX4 mutations in the high-risk group compared 
to the low-risk group. The heatmap of correlation analy-
sis via GSVA showed that the high-risk score correlated 
more with specific hallmark pathways such as PI3K-
AKT-MTOR signaling, glycolysis, DNA repair, and so on 
(Fig. 5G).

Single-cell RNA sequencing (scRNA-seq) analysis of HCC 
patients from GSE18993
A total of 106,742 single cells from GSE18993 were 
successfully classified into seven cell types (T cells, 
Macrophages, B cells, Hepatocytes, Fibroblasts, Endo-
thelial cells, and Plasma cells), 35 groups, and 15 clus-
ters by UMAP algorithm (Fig.  6A). Markers of T cells, 

Macrophages, B cells, Hepatocytes, Fibroblasts, Endo-
thelial cells, and Plasma cells were plotted (Fig. 6B). The 
expression of 18 signature genes across seven cell types 
was shown in Fig. 6C.

Correlation between signature genes and hypoxia/
glycolysis/lactate
We further explored the correlation between signature 
genes and hypoxia/glycolysis/lactate at the single-cell 
level. Firstly, we scored the signature gene set/hypoxia 
gene set/glycolysis gene set/lactate gene set, and we 
found that the risk score and glycolysis score were the 
highest expressed in hepatocytes, hypoxia score was the 
highest expressed in fibroblasts, and the highest lactate 
metabolism score was the highest expressed in plasma 
cells (Fig.  7A). We hypothesized that hepatocytes/fibro-
blasts/plasma cells may play an important role in the 
association of signature genes and hypoxia/glycolysis/

Fig. 5 Immune cell infiltration, immune function, TIDE score, somatic mutations, and correlation analysis based on risk score. (A) Analysis of immune 
cells infiltration under different risk groups. (B) Analysis of immune function under different risk groups. (C) A graph showing the correlation between 
TIDE score and risk score. (D) Comparison of the immunotherapy response proportion between different risk groups. (E) ROC curves of immunotherapy 
response of patients with HCC. (F) Waterfall diagram of genes with most frequent somatic mutations under different risk groups. (G) Heatmap of correla-
tion analysis between risk score and hallmark pathways. ***p < 0.001; **p < 0.01; *p < 0.05

 



Page 9 of 13Qin et al. BMC Medical Genomics           (2024) 17:88 

lactate. Then we calculated the CellChat-count and the 
CellChat-weight of hepatocytes, fibroblasts, and plasma 
cells. We found that there was a crosstalk between 
the three cell types (Fig.  7B). We predicted the ligand-
receptor interactions of hepatocytes, fibroblasts, and 
plasma cells, with five pathways (APP-CD4, CD99-CD99, 
MDC-NCL, several Collagen ligand-receptors, and MIF-
(CD74 + CD44)) having strong interactions between the 
above three cell types (Fig. 7C). The expression of these 
five pathways are shown in Fig. 7D. Based on the PPI net-
work, we found that 8 risk genes (ADAMTS5, CDCA8, 
LDHA, YBX1, EIF5B, CBX2, RTN3, and GP6D) inter-
acted with the ligand-receptors of hepatocytes, fibro-
blasts, and plasma cells (Fig. 7E). Therefore, the above 8 
risk genes were involved in the process of hypoxia/glycol-
ysis/lactate metabolism through this PPI network.

Discussion
HCC is the most common type of liver cancer and a lead-
ing cause of death worldwide [26]. The high molecular 
heterogeneity of HCC has complicated the understanding 

of hepatocarcinogenesis and limited the clinical efficacy 
[27, 28]. HCC is widely reported to be metabolically het-
erogeneous, and the intervention of metabolic disorders 
has been used for HCC treatment [29]. According to 
metabolomics, HCC can be divided into four molecular 
subtypes, each with different metabolic preferences [30]. 
Therefore, we tended to explore a metabolic prognostic 
signature to predict the prognosis of HCC patients.

Hypoxia can enhance the glycolytic metabolism of 
cancer cells, aiding in energy generation and facilitating 
tumor metastasis [9]. Targeting glycolytic enzymes is a 
potential approach to treating HCC, and several drugs 
have been under investigation [31, 32]. Meanwhile, it is 
reported that lactate, produced by anaerobic glycolysis, 
could enhance ferroptosis resistance in HCC cells and 
contribute to tumor growth [33]. In the present study, we 
collected hypoxia, glycolysis, and lactate-related genes 
from the MSigDB database and investigated the correla-
tion between those genes and HCC. Through consensus 
cluster analysis, we divided HCC patients into two sub-
types and found the difference in clinical traits between 

Fig. 6 Overview of single-cell analysis from GSE18993. (A) UMAPs of the 7 cell types, 35 groups, and 15 clusters. (B) Expression of cell surface and intracel-
lular markers in each cell type. (C) Feature plots showing the signature gene expression across the 7 cell types (T cells, Macrophages, B cells, Hepatocytes, 
Fibroblasts, Endothelial cells, and Plasma cells)
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the two subtypes. GO and KEGG analysis of DEGs 
between the two subtypes showed that DEGs were mainly 
enriched in cell activation, glycosaminoglycan binding, 
collagen-containing extracellular matrix, and metabolic 
pathways. The extracellular matrix (ECM) is a dense net-
work of proteins and carbohydrates around cells, and gly-
cosaminoglycans are one of the main components of it. 

Researchers at UCLA have found that ECM could regu-
late the movement of breast cancer cells in the body by 
regulating glucose consumption [34], providing insights 
into the potential role of ECM in the regulation of HCC.

We furthermore screened out candidate prognostic 
genes among DEGs and constructed an 18-gene pre-
diction model. Among the eighteen genes, CDCA8, 

Fig. 7 Correlation between signature genes and hypoxia/glycolysis/lactate (A) Scores and differential analysis of signature gene set/hypoxia gene set/
glycolysis gene set/lactate gene set. (B) CellChat-count and the CellChat-weight of hepatocytes, fibroblasts, and plasma cells. (C) Bubble plot of ligand-
receptor interactions with hepatocytes, fibroblasts, and plasma cells. (D) Expression of five pathways (APP-CD4, CD99-CD99, MDC-NCL, several Collagen 
receptors and ligands, and MIF-(CD74 + CD44)). (E) PPI network of risk genes
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CBX2, PDE6A, MED8, DYNC1LI1, PSMD1, EIF5B, 
GNL2, SEPHS1, CCNJL, LDHA, G6PD, YBX1, RTN3, 
ADAMTS5, UCK2 were upregulated and SOCS2, 
CLEC3B were downregulated in high-risk score group. 
Research has shown that SOCS2 and CLEC3B were 
tumor suppressor genes [35, 36], which may potentially 
explain the above trend. Notably, all these signature 
genes have been reported in HCC, although investiga-
tions into specific mechanism in the disease remained 
limited. For instance, CDCA8 has been associated with 
promoting cancer progression by binding with NF-YA 
and has been considered a potential therapeutic target 
for HCC patients [37]. Increased SEPHS1 expression 
has been linked to poor prognosis in HCC patients [38]. 
The expression of LDHA was regulated by MYC through 
microRNA-122-5p to potentiate glycolysis in HCC [39]. 
YB1 could regulate miR-205/200b-ZEB1 axis to promote 
the progression of HCC cells [40]. UCK2 could induce 
cell cycle arrest and improve the immune response of 
HCC [41].

Subsequently, a nomogram was drawn to predict the 
survival probability of patients at 1-year, 3-year, and 
5-year. The calibration plots and ROC curves in both 
training and test cohorts demonstrated that the nomo-
gram could predict the survival of patients with HCC 
accurately. Meanwhile, Univariate and multivariate Cox 
regression analyses confirmed that the risk score of the 
gene signature was an independent prognostic factor. 
Previous studies have found that hypoxia could acti-
vate specific signaling pathways to reshape the immune 
microenvironment, leading to immunosuppression 
and immune evasion [42]. Thus, we further analyzed 
immune cell infiltration and immune function enrich-
ment between high-risk and low-risk groups to investi-
gate the correlation between the risk scores and immune 
infiltrates. According to the results, there was an upregu-
lation of activated dendritic cells, macrophages, follicular 
helper T cells, and regulatory T cells in high-risk groups, 
whereas B cells, interdigitating cells, mast cells, NK cells, 
and T helper cells were downregulated. Immune func-
tion analysis indicated that the APC co-inhibition, check-
point, and MHC-class-I were significantly enriched in the 
high-risk group. In contrast, the low-risk group exhibited 
a significant enrichment in cytolytic activity, Type-I-IFN-
Response, and Type-II-IFN-Response. Meanwhile, the 
TIDE score assessed that patients in high-risk groups had 
decreased immune response, indicating a lower chance 
benefiting from immune therapy. The results from the 
waterfall diagram showed a significantly higher frequency 
of TP53 and ZFHX4 mutations in the high-risk group 
compared to the low-risk group. Notably, TP53 muta-
tions have been associated with multiple cancers [43] 
and ZFHX4 has been recently found to involve in ovarian 
cancer [44], esophageal squamous cell carcinoma [45], 

breast cancer [46], and glioblastoma [47]. The heatmap 
of correlation analysis between risk score and hallmark 
pathways showed that high-risk score correlated more 
with glycolysis, which is consistent with previous results. 
Single-cell analysis revealed that hepatocytes/fibroblasts/
plasma cells might play an important role in the interac-
tion between signature genes and hypoxia/glycolysis/lac-
tate metabolism, and there was a crosstalk between the 
above three cell types. We subsequently found that 8 risk 
genes (ADAMTS5, CDCA8, LDHA, YBX1, EIF5B, CBX2, 
RTN3 and GP6D) interacted with the ligand-receptors 
of hepatocytes/fibroblasts/plasma cells. The PPI net-
work indicated that CDCA8, LDHA, YBX1 might be the 
hub genes of the regulation of hypoxia/glycolysis/lactate 
metabolism in HCC.

Based on the above results, the hypoxia-glycolysis-lac-
tate-related gene signature we built can effectively divide 
HCC patients into two groups. The high-risk group has 
a poor prognosis, a low immune response, and a higher 
mutation frequency, suggesting that the treatment for the 
high-risk group may be unsatisfactory. Immune infiltra-
tion and immune function also differed in the high- and 
low-risk groups. The high-risk group interacted more 
with hypoxia/glycolysis/lactate metabolism and mainly 
with glycolysis, which is possibly due to the crosstalk 
between hepatocytes/fibroblasts/plasma cells. Therefore, 
to improve the survival of HCC patients, exploring drugs 
that target hypoxia/glycolysis/lactate metabolism, espe-
cially glycolytic enzymes, may be a promising strategy.

However, our study has certain limitations. Biases in 
sample selection and data collection methods should be 
addressed and we should analyze and evaluate the data 
more comprehensively in the future research, which can 
be conducted through machine learning [48, 49]. Fur-
ther investigation to validate the findings of our bioin-
formatics analysis was required. Our future research is 
supposed to focus on the mechanisms of signature genes 
especially CDCA8, LDHA, YBX1 that involved in the 
progression of HCC. Exploring the impact of these iden-
tified genes on the tumor microenvironment, the inter-
action between these genes and cells/signal pathways of 
the microenvironment, and the molecular mechanisms 
in HCC progression will be necessary for our future 
research. Last but not least, basic research on whether 
CDCA8, LDHA, and YBX1 regulate HIFs, glycolytic 
enzymes, and lactate metabolism in HCC cells will be the 
future key points of our study.

Conclusion
In conclusion, hypoxia/glycolysis/lactate metabolism 
correlate with the prognosis of HCC patients, and the 
above gene signature we bulit has promise in the progno-
sis estimation and precision treatment for HCC.
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