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Abstract
Background Hepatocellular carcinoma represents a significant global burden in terms of cancer-related mortality, 
posing a substantial risk to human health. Despite the availability of various treatment modalities, the overall survival 
rates for patients with hepatocellular carcinoma remain suboptimal. The objective of this study was to explore the 
potential of novel biomarkers and to establish a novel predictive signature utilizing multiple transcriptome profiles.

Methods The GSE115469 and CNP0000650 cohorts were utilized for single cell analysis and gene identification. 
The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets were utilized in the 
development and evaluation of a predictive signature. The expressions of hepatocyte-specific genes were further 
validated using the GSE135631 cohort. Furthermore, immune infiltration results, immunotherapy response prediction, 
somatic mutation frequency, tumor mutation burden, and anticancer drug sensitivity were analyzed based on various 
risk scores. Subsequently, functional enrichment analysis was performed on the differential genes identified in the 
risk model. Moreover, we investigated the expression of particular genes in chronic liver diseases utilizing datasets 
GSE135251 and GSE142530.

Results Our findings revealed hepatocyte-specific genes (ADH4, LCAT) with notable alterations during cell 
maturation and differentiation, leading to the development of a novel predictive signature. The analysis demonstrated 
the efficacy of the model in predicting outcomes, as evidenced by higher risk scores and poorer prognoses in the 
high-risk group. Additionally, a nomogram was devised to forecast the survival rates of patients at 1, 3, and 5 years. 
Our study demonstrated that the predictive model may play a role in modulating the immune microenvironment 
and impacting the anti-tumor immune response in hepatocellular carcinoma. The high-risk group exhibited a higher 
frequency of mutations and was more likely to benefit from immunotherapy as a treatment option. Additionally, we 
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Introduction
Hepatocellular carcinoma (HCC) ranks as the sixth most 
prevalent cancer and the third leading cause of cancer-
related mortality on a global scale. HCC is the fifth most 
significant contributor to morbidity and mortality world-
wide, with a higher prevalence in males [1]. The main risk 
factors associated with HCC include chronic infection 
with hepatitis B virus (HBV) or hepatitis C virus (HCV), 
consumption of aflatoxin-contaminated food, alcohol-
ism, obesity, type 2 diabetes, smoking, and non-alcoholic 
fatty liver disease (NAFLD). These risk factors may vary 
in prevalence across different geographical regions [2]. 
The Barcelona Clinic Liver Cancer (BCLC) staging sys-
tem is currently the most widely accepted method for 
staging hepatocellular carcinoma. This system consid-
ers factors such as tumor burden, patient functional sta-
tus, liver function, and other relevant indicators to guide 
the selection of clinical treatment strategies and predict 
prognosis [3]. As research progresses, the comprehen-
sion of hepatocellular carcinoma advances, leading to 
the development of numerous innovative treatment 
modalities. Presently, a variety of non-pharmacological 
treatment options are available for HCC, such as liver 
resection, liver transplantation, transcatheter arterial 
chemoembolization (TACE), ablation, and chimeric 
antigen receptor T cells immunotherapy [4]. However, 
the selection of treatment strategies is predominantly 
influenced by the tumor’s stage and the presence of 
associated complications [5]. Chemotherapy is a signifi-
cant therapeutic modality for advanced HCC. Systemic 
chemotherapy involves the administration of drugs that 
circulate throughout the body via the bloodstream to 
impede the proliferation of tumor cells. Commonly uti-
lized drugs in this treatment approach include 5-fluo-
rouracil, capecitabine, and doxorubicin, among others. 
However, the efficacy of chemotherapy is constrained 
by tumor resistance and adverse toxicities [6]. Recent 
advancements in molecular targeted therapy and immu-
notherapy have demonstrated significant efficacy in treat-
ing patients with advanced HCC. The “T + A regimen” 
involving Atezolizumab and bevacizumab (Atezo-Bev) is 
currently the preferred first-line treatment for advanced 
HCC, offering greater benefits to patients compared to 
sorafenib [7]. The investigation of individualized therapy 

utilizing genome sequencing in patients with advanced 
HCC is currently underway [8]. Despite the availabil-
ity of numerous treatment options for HCC, the overall 
survival rates remain suboptimal. Consequently, there is 
a critical need to delve deeper into identifying sensitive 
biomarkers for early detection and prognostic prediction 
in order to enhance the prognosis and treatment out-
comes for individuals with HCC.

The liver, being a multifunctional organ, plays a crucial 
role in various physiological processes including bio-
synthesis, metabolism, and detoxification. The exposure 
of the liver to toxins often results in tissue damage and 
cell death [9], while chronic damage can also be caused 
by hepatotropic virus infections. Compensatory prolif-
eration of hepatocytes is essential for the regeneration 
and maintenance of liver function following such dam-
age and cell death [10]. The robust regenerative capac-
ity of normal liver tissues is advantageous for restoring 
histological integrity, yet it facilitates the progression of 
HCC in the presence of abnormal liver conditions [11]. 
This transition from hepatocytes to HCC may signify a 
tumorigenic mechanism characterized by the loss of nor-
mal hepatocyte function and the subsequent compensa-
tory upregulation of regeneration, inflammation, fibrosis, 
among other processes, ultimately promoting malignant 
transformation [12]. Consequently, investigating the pro-
cess by which hepatocytes transform into cancer cells is 
essential for gaining novel insights into tumorigenesis.

Over the last ten years, high-throughput sequenc-
ing technology has significantly influenced the field of 
biology and altered its trajectory. While bulk RNA-seq 
technology has been extensively employed to analyze 
gene expression patterns at a population level, it is lim-
ited in its ability to capture individual variations within 
cells, potentially obscuring biologically significant dif-
ferences [13]. The advent of single-cell RNA sequencing 
(scRNA-seq) has enabled researchers to investigate gene 
expression profiles at a cellular level. Single-cell RNA 
sequencing technology is a high-throughput sequenc-
ing method utilized for the examination of gene expres-
sion at the individual cell level. This technology offers the 
advantage of enabling a detailed analysis of gene expres-
sion in each cell, as opposed to traditional RNA sequenc-
ing methods which provide a collective analysis of gene 
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the differentiation of hepatocytes into cancer cells. Additionally, we have created a unique predictive signature based 
on genes specific to hepatocytes.

Keywords Hepatocellular carcinoma, Single-cell RNA sequencing, Hepatocyte-specific genes, Prognosis, 
Differentiation trajectory



Page 3 of 19He et al. BMC Medical Genomics          (2024) 17:103 

expression in an entire tissue sample. Consequently, 
single-cell RNA sequencing technology allows for a 
more precise identification of variations between indi-
vidual cells [14]. By investigating potential intratumoral 
genetic heterogeneity (ITGH), this technology facilitates 
a novel approach to exploring the mechanisms underly-
ing tumor initiation and progression [15]. Furthermore, 
single-cell RNA sequencing plays a crucial role in iden-
tifying various cell types and states, thereby offering 
significant utility in the examination of cellular differen-
tiation, development, metabolism, and disease. Utilizing 
algorithms, researchers can effectively visualize inter-
cellular communication and reconstruct dynamic cell 
trajectories in relation to differentiation or cell cycle pro-
gression [16]. Some scholars contend that reconstructing 
cell trajectories and pseudotime order using scRNA-seq 
data enables the identification of dynamic alterations in 
gene expression during developmental processes [17]. 
By comparing variations in molecular features, research-
ers can assess the potential for tumor progression and 
potentially aid in the early formulation of intervention 
strategies [18]. Given the inadequacy of studies examin-
ing gene expression profiles of HCC at the hepatocyte 
level, further investigation is warranted to elucidate the 
correlation between alterations in hepatocyte-specific 
gene expression and prognosis, diagnosis and treatment. 
This study utilized single-cell RNA sequencing data to 
delineate the evolutionary path of hepatocytes transition-
ing into cancer cells, with the aim of elucidating altera-
tions in gene expression profiles specific to hepatocytes 
throughout cellular maturation and differentiation. The 
study also sought to identify novel biomarkers and con-
struct a predictive signature using bulk RNA sequencing 
data, with the ultimate goal of offering insights for early 
diagnosis, prognosis prediction, and treatment selection 
for patients afflicted with HCC.

Materials and methods
Preparation of data
The GSE115469 cohort was downloaded from the pub-
licly available Gene Expression Omnibus (GEO) database, 
which includes five normal liver tissue samples. Twelve 
cohorts of primary hepatocellular carcinoma samples 
(P08, P09, P10, P11, P12, P13, P14, P15, P16, P17, P18, 
and P19) were obtained from the China National Gene 
Bank database (CNGBdb: CNP0000650), with nine of the 
cohorts consisting of both cancerous and adjacent tis-
sue samples. The construction of the predictive signature 
utilized bulk RNA-sequencing data and corresponding 
clinical data from patients with hepatocellular carcinoma 
sourced from The Cancer Genome Atlas (TCGA) data-
base, encompassing 374 tumor samples (TCGA-LIHC) 
and 50 adjacent samples. Furthermore, the validation 
cohort consisted of 240 tumor samples and 202 normal 

samples (ICGC-LIRI-JP) obtained from the Interna-
tional Cancer Genome Consortium (ICGC) cohort. 
Additionally, the GSE135631 cohort (n = 30) from the 
GEO database was utilized to confirm the expressions of 
hepatocyte-specific genes in tumor and adjacent samples. 
Finally, the cohorts GSE135251 (n = 216) and GSE142530 
(n = 28) from the GEO database were acquired to inves-
tigate the expressions of hepatocyte-specific genes in 
chronic liver diseases.

Single-cell data analysis
The “seurat” package was utilized to conduct quality con-
trol (QC) on normal and tumor samples separately [19]. 
Specifically, for normal samples, genes with a count of 
more than 200 and less than 6000 per cell were filtered, 
along with a requirement for mitochondrial gene expres-
sion to be less than 10%. In contrast, tumor samples 
were subjected to a filtering process where genes with 
a count of more than 1500 and less than 12,000 per cell 
were retained, with a stipulation for mitochondrial gene 
expression to be less than 5%. Subsequently, the samples 
were normalized individually using the “NormalizeData” 
package, and the top 2,000 highly variable genes were 
identified using the “FindVariableFeatures” function. The 
batch effect among samples was mitigated through the 
application of the “IntegrateData” function within the 
“seurat” package [20]. Utilizing the top 20 principal com-
ponents and the top 2,000 variable genes, a total of 20,571 
pooled single-cell data were obtained for further analysis, 
comprising 10,049 cells derived from normal tissue and 
10,522 cells derived from tumor tissue. Following this, all 
genes were standardized using the “ScaleData” function, 
and dimensionality reduction was performed on the top 
2,000 variable genes using the “RunPCA” function. The 
study utilized the top 30 principal components for cell 
clustering, employing the “FindNeighbors” and “Find-
Clusters” functions with a resolution of 0.4 to identify 22 
distinct cell clusters. Subsequently, t-distributed stochas-
tic neighborhood embedding (t-SNE) [21] was applied for 
further dimension reduction using the top 30 principal 
components. Differential gene expression analysis within 
each cell cluster was conducted using the “FindAllMarks” 
function, with cell annotation facilitated by referencing 
the CellMarker database and analyzing marker genes of 
cell subsets in available hepatocellular carcinoma data 
[22] and normal liver data [23].

InferCNV analysis
The “InferCNV” package was utilized to assess chromo-
somal copy number variation in single-cell data from a 
subset of hepatocytes, with normal hepatocytes serving 
as a reference set. Subsequently, the copy number varia-
tion (CNV) of HCC cells was inferred and calculated. 
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The human genetic information was obtained from the 
https://data.broadinstitute.org/Trinity/CTAT/cnv/.

Pseudotime analysis
To investigate the differentiation trajectory of hepa-
tocytes, the “Monocle2.0” package was employed for 
pseudo-chronological analysis of HCC cells and normal 
cells. Monocle, a prominent tool for pseudotemporal 
analysis, utilized explicit principal graphs to character-
ize the data and reconstructed single-cell trajectories by 
embedding inversion graphs to improve the robustness 
and accuracy of predicted trajectories [24]. Cells were 
ranked according to pseudotime along the trajectory, 
leading to the identification of differentially expressed 
genes that influenced distinct differentiation trajectories 
at critical branch nodes. Heatmaps were generated for 
the genes surrounding these key nodes.

Identification of the hepatocyte-specific genes
The “VennDiagram” package was used to obtain the 
intersection of the top 500 HCC prognostic genes 
obtained from the GEPIA2.0 website with branch-spe-
cific genes. The expression specificity of the intersecting 
genes in hepatocyte subsets was assessed individually 
to determine hepatocyte-specific prognostic genes. The 
“DEseq2” package was utilized to establish and filter dif-
ferential gene conditions based on criteria of| log2 (FC)| 
>1 and FDR < 0.05. Subsequently, the “EnhancedVolcano” 
package was employed to confirm the differential gene 
status of specific hepatocyte subsets. Following this, the 
“survminer” package was utilized to conduct survival 
analysis on Alcohol Dehydrogenase 4 (ADH4), Lecithin-
Cholesterol Acyltransferase (LCAT), and Complement 
C8 Beta Chain (C8B) using data from TCGA and ICGC 
datasets, demonstrating their prognostic significance in 
HCC. Finally, the differential expressions of these specific 
genes were futher investigated at protein levels between 
tumor and normal tissues using the Human Protein Atlas 
(HPA) database (http://www.proteinatlas.org/).

Construction and evaluation of predictive signature based 
on hepatocyte-specific genes
The TCGA dataset was utilized as the training cohort 
and the ICGC dataset served as the independent vali-
dation cohort. To refine the gene selection process and 
enhance predictive accuracy, the “glmnet” package was 
employed to conduct Lasso Cox regression analysis using 
the training cohort [25], and the optimal genes were 
assessed through 10-fold cross validation. Subsequently, 
a multivariate Cox regression analysis was conducted to 
optimize the prognostic gene signature, resulting in the 
identification of the 2 most predictive genes. Risk scores 
were computed using linear combinations of specific gene 
expression and associated risk coefficients to construct a 

predictive signature. Patients were stratified into low-or 
high-risk categories based on the median cut-off value. 
Subsequently, the prognostic impact of the signature was 
assessed by generating survival curves for high-and low-
risk groups in various cohorts, comparing gene expres-
sion patterns between the two groups using heatmaps, 
and plotting risk curves. To further validate the stability 
and accuracy of the signature, the “timeROC” package 
was applied to calculate the area under the curve (AUC).

Both univariate and multivariate Cox regression anal-
yses were conducted to assess the potential of the risk 
score as an independent prognostic factor. The “ggallu-
vial” package was utilized to create an alluvial diagram 
illustrating the associations between various risk groups 
and pertinent clinical characteristics (such as clinical 
stage, sex, age) and survival outcomes. Additionally, the 
“rms” package was employed to develop a nomogram 
integrating multiple clinical variables for predicting the 
prognosis of patients with HCC. The calibration curve 
was utilized to assess the concordance between actual 
and predicted overall survival (OS) by the nomogram. 
Additionally, the “ggDCA” package was employed to eval-
uate the clinical applicability of the nomogram. Subse-
quently, Kaplan-Meier survival analysis was conducted to 
determine the OS of low-risk and high-risk groups across 
various clinical stages, with statistical significance set at 
P < 0.05.

Immune infiltration analysis and immunotherapy response 
forecast based on the risk score
The “GSVA” and “GSEABase” packages were utilized to 
investigate variations in 13 immune functions and 28 
immunocyte infiltrations among different risk groups 
within the TCGA-LIHC cohort. The Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm was uti-
lized to assess the potential response to immunotherapy 
among HCC patients across varying risk categories [26], 
with the TIDE data retrieved from http://tide.dfci.har-
vard.edu/. Additionally, a selection of common immune 
checkpoint-related genes linked to immunotherapy were 
examined to evaluate their differential expression in dis-
tinct risk groups. Subsequently, data pertaining to an 
immunotherapy cohort involving cytotoxic T lympho-
cyte-associated antigen-4 (CTLA-4) inhibitors and pro-
grammed death-1 (PD-1) inhibitors was acquired from 
the https://tcia.at/ website for sensitivity analysis of dif-
ferent immune methods for patients with HCC in differ-
ent risk groups.

Analysis of the somatic mutation frequency, tumor 
mutation burden (TMB), and drug sensitivity based on 
the risk score

The gene mutation data of patients with HCC was 
obtained from the TCGA database. The ‘maftools’ pack-
age was utilized to visualize the mutations of the top 20 

https://data.broadinstitute.org/Trinity/CTAT/cnv/
http://www.proteinatlas.org/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://tcia.at/
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genes in a waterfall plot and to compare mutation pro-
files among distinct risk groups [27]. Additionally, the 
tumor mutational burden (TMB) was calculated, and 
Kaplan-Meier survival analysis was conducted to assess 
survival disparities across risk groups. Subsequently, the 
“pRRophetic” package was employed to predict the half 
inhibitory concentration (IC50) for various drug treat-
ments, enabling an analysis of differences in drug treat-
ment sensitivity among different risk groups.

Bioinformatics analysis
The Metascape website was utilized for conducting dif-
ferential gene functionality analysis of branch trajectories 
and mapping the network. Additionally, the “clusterPro-
filer” package was employed for performing functional 
enrichment analysis of differential genes in various risk 
groups, encompassing Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomics (KEGG). Subse-
quently, Gene Set Enrichment Analysis (GSEA) [28] was 
employed to compare functional disparities among dif-
ferent risk groups.

Statistical analysis
Data analysis and figure plotting were carried out using 
R (version 4.1.1). This study utilized the Wilcoxon rank-
sum test to compare differential expression between 
two independent samples, and the Kruskal-Wallis test to 

compare among multiple groups of independent samples. 
Survival analysis was conducted using the Kaplan-Meier 
method and the log-rank test, while multivariate Cox 
regression analysis was employed to investigate the prog-
nostic value of the risk score and various clinical features. 
All statistical tests were two-sided, with a significance 
level set at P < 0.05.

Results
Single-cell transcriptome analysis to identify the cell types
This study utilized two single-cell datasets, one consisting 
of cancerous liver samples and the other of normal liver 
samples. The cancer dataset included 12 samples of HCC 
and 9 corresponding adjacent samples. Prior to analysis, 
quality control measures were implemented to exclude 
low-quality cells from influencing the results (Fig. S1A-
C). As the sources of normal, adjacent, and HCC samples 
were all derived from 10X genomics analysis, we sub-
sequently employed Seurat technology to integrate the 
samples. Following batch correction, the samples suc-
cessfully mitigated technology-induced variation while 
preserving biological diversity, thereby enhancing the 
ability to identify distinct cell types. A total of 20,571 cells 
were obtained with gene expression profiles for further 
analysis after data integration and filtering, including 
10,522 from tumor samples, 1,614 from adjacent tis-
sues, and 8,435 from normal tissues (Fig.  1A). Principal 

Fig. 1 Cell-type classification of single-cell samples. (A) T-SNE plot is classified by sample source. (B) T-SNE plot of 22 cell clusters. (C) T-SNE plot shows cell 
types in single-cell samples. Cell types are annotated by the marker genes. (D) The proportion of cell types in tumor and normal tissues. (E) Heatmap of 
the top three marker genes in each cell cluster

 



Page 6 of 19He et al. BMC Medical Genomics          (2024) 17:103 

Component Analysis (PCA) was conducted to determine 
data dimensions (Fig. S1D and S1E), followed by the divi-
sion of cells into 22 clusters through unsupervised clus-
tering analysis (Fig. 1B). A total of nine major cell types 
were identified in this study, including hepatocytes, chol-
angiocytes, endothelial cells, and hepatic stellate cells 
(HSCs), as well as various immune cells such as T cells, 
myeloid cells, NK cells, B cells, and plasma cell (Fig. 1C). 
Notably, the main cell types expressed in tumor tissues 
were T cells and myeloid cells, while in normal tissues, 
liver parenchymal cells were predominant (Fig.  1D and 
Fig. S1F). The top 3 highly expressed genes of each clus-
ter were mapped on the heatmap, revealing significant 
differences in differential gene expression among various 
cell clusters of hepatocyte subsets, potentially indicating 
heterogeneity within these subsets (Fig. 1E).

Identification of malignant cells and pseudotime analysis 
of hepatocyte subsets
Previous studies have suggested that hepatocarcinogen-
esis is initiated by the transformation of hepatocytes 
[29], which can occur as a result of genetic and environ-
mental influences leading to alterations in their genetic 
makeup and subsequent uncontrolled cell proliferation. 
The alterations observed have the potential to progress 
towards the development of hepatocellular carcinoma by 
transforming hepatocytes into malignant cells. Our study 
involved conducting copy number variation (CNV) anal-
ysis on specific hepatocyte subsets based on their gene 
expression profiles within genomic regions to distinguish 
malignant cells. Using normal hepatocytes as the control 
group and malignant cells as the experimental group, we 
observed genome amplifications and deletions across 
multiple chromosomes in the malignant cells (Fig.  2A). 
By identifying chromosomal gene expression patterns, 
we were able to differentiate between hepatocytes and 
malignant cells within the subset of hepatocytes (Fig. 2B). 
A total of 3,541 normal hepatocytes and 1,821 malignant 
cells were utilized in the subsequent analysis following 
CNV correction. The composition of liver parenchymal 
cells and malignant cells in patient-derived samples was 
demonstrated through a histogram (Fig.  2C), revealing 
the distribution of cancer cells in liver cancer patients 
and hepatocytes in healthy donors, thereby mitigat-
ing potential biases in the data. Additionally, cell cycle 
scores were calculated to assess the cell proliferation 
levels across various sources (Fig.  2D). Our findings 
revealed that the majority of hepatocytes were found to 
be in the early DNA synthesis phase, while the primary 
malignant cells were observed in the late DNA synthesis 
and mitosis phases, suggesting a significant proliferation 
capacity. To simulate the differentiation process from 
normal hepatocytes to malignant cells, trajectory analy-
sis was conducted using single-cell sequencing data. The 

“Monocle2” package was utilized to visualize the cell dif-
ferentiation trajectory, resulting in the projection of all 
cells onto two roots and five branches (states) in a tree-
like structure (Fig. 2E). Our research revealed a cell dif-
ferentiation trajectory progressing from branch (state) 1, 
2, and 3 to branch (state) 4 and 5 (Fig. 2F), with branch 
(state) 3 containing both normal hepatocytes and malig-
nant cells (Fig. 2G), suggesting a potential for malignancy 
or varying degrees of tumor heterogeneity. As cells devel-
oped and differentiated, alterations in gene expression 
profiles occurred, ultimately leading to the malignant 
transformation of hepatocytes. Our study specifically 
examined differential gene expression within each branch 
of the root 1, as changes in these genes may influence the 
propensity for malignancy or predict outcomes.

Functional analysis of differential gene expression and the 
identification of specific genes
The genes were categorized into three clusters accord-
ing to the expression pattern observed in the branch 
heatmap (Fig. S2), with clusters 1 and 3 showing high 
expression levels in malignant cells, while cluster 2 
exhibited significantly decreased expression in malig-
nant cells. To elucidate the functional bias and biologi-
cal relevance of distinct cell populations, we chose the 
top 200 genes from each cluster for functional analysis 
using the Metascape website to investigate alterations in 
cellular differentiation. Our analysis revealed that cluster 
3 differential genes were predominantly enriched in the 
selenium micronutrient network, systemic lupus erythe-
matosus, cholesterol biosynthesis, drug metabolism, and 
RNA metabolism, among others (Fig.  3A). In contrast, 
cluster 1 differential genes showed significant enrichment 
in ribonucleoprotein complex biogenesis, mitotic cell 
cycle, chromosome organization, RNA metabolism, and 
regulation of DNA metabolic processes, as depicted in 
Fig. 3B. Additionally, cluster 2 differential genes exhibited 
significant enrichment in monocarboxylic acid metabo-
lism processes, biological oxidations, complement and 
coagulation cascades, carboxylic acid catabolism process, 
and acute-phase response, as illustrated in Fig.  3C. The 
differential genes identified in cluster 2 were found to be 
associated with normal hepatocyte function, which was 
observed to be suppressed in cancer cells. These find-
ings suggest that the progression of hepatocyte malig-
nancy may be characterized by the absence of normal 
hepatocyte function and heightened cellular prolifera-
tion. Furthermore, the changes in genetic, molecular, and 
mechanistic pathways may play a significant role in the 
initiation and progression of HCC. Subsequently, we con-
ducted an analysis to identify 98 differential genes with 
prognostic value in hepatocytes by intersecting the first 
500 differential genes with prognostic value in HCC from 
the GEPIA2.0 website and the differentially expressed 
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genes (DEGs) on both sides of the root point using a 
Venn diagram (Fig.  3D and Table S1). We individually 
assessed whether the intersecting genes were selectively 
expressed in hepatocyte subsets and pinpointed three 
marker genes (ADH4, LCAT, and C8B) located in cluster 
2, demonstrating their specific expression in hepatocyte 
subsets through t-SNE plots (Fig. 3E).

Validation of the expression and prognostic value of 
specific genes
The analysis revealed a significant reduction in the 
expression of three identified genes in malignant cells. 
Furthermore, differential expression of these genes in 
hepatocyte subsets was observed through the volcano 
plot, with notable changes in expression levels at posi-
tions of significance (Fig.  4A). Additionally, pseudotime 

analysis indicated a dramatic alteration in gene expres-
sion with changes in cell status, ultimately leading to 
a decrease in expression levels in the malignant stage 
(Fig.  4B). These findings suggest that the three genes 
undergo significant expression changes from normal 
hepatocytes to cancer cells, potentially playing a crucial 
role in tumorigenesis. Furthermore, the analysis of differ-
ential expression of the three genes in normal and tumor 
tissues revealed a high level of expression in normal tis-
sues (Fig. 4C). To validate the prognostic significance of 
these genes, Kaplan-Meier survival curves were gener-
ated for patients from TCGA-LIHC and ICGC-LIRI-JP 
cohorts, demonstrating a statistically significant asso-
ciation between decreased gene expression and poorer 
prognosis (Fig.  4D). Additionally, protein expression 
levels of these genes were investigated based on the 

Fig. 2 Further analysis of hepatocyte subsets. (A) Copy number variation in hepatocyte subsets. (B) Identification of chromosomal gene expression pat-
terns. (C) The histogram displays the composition of liver parenchymal cells and malignant cells in the source. (D) The cell-cycle ratio of hepatocytes and 
malignant cells. The hepatocyte differentiation trajectory is shown by pseudotime analysis, and it is colored based on the cell differentiation status (E), the 
cell differentiation timing (F), and tissue origin (G)

 



Page 8 of 19He et al. BMC Medical Genomics          (2024) 17:103 

immunohistochemical results from the HPA database. 
The results showed that ADH4 and C8B expression lev-
els were downregulated in tumor tissues compared with 
non-tumor tissues (Fig. S3). Unfortunately, there was 
a lack of data on LCAT protein expression in the HPA 
database.

Identification and validation of a predictive signature 
based on hepatocyte-specific genes
The TCGA-LIHC dataset was utilized as the training 
cohort for the development of a predictive signature. Ini-
tially, a univariate survival analysis revealed significant 
associations between three genes and survival outcomes 
(Fig.  4D). Subsequently, Lasso regression analysis was 
performed for further investigation (Fig. S4A and S4B), 
confirming the relevance of the three genes. Finally, a 
gradual multivariable Cox regression analysis was con-
ducted to refine the prognostic signature, ultimately 
identifying the two most predictive genes, “ADH4” 

and “LCAT”, and calculating the risk score of the sig-
nature. The risk score was calculated using the formula 
h0(t)*e(expADH4*-0.0002325 + expLCAT*-0.0028485
), with a constant value of 0.398272 for lnh0(t). Patients 
were stratified into low- and high-risk groups based on 
the ranked risk scores. To evaluate the predictive per-
formance, external validation was conducted using the 
ICGC-LIRI-JP cohort. The risk score was recalculated for 
each patient in the validation cohort using the same for-
mula, and patients were categorized into low-and high-
risk groups based on the median risk score in the training 
cohort. The K-M survival curve was utilized to illustrate 
the disparity in prognosis between high-risk and low-risk 
patient groups, as depicted in Fig.  5A. Analysis of both 
cohorts revealed a correlation between higher risk scores 
and increased mortality rates among HCC patients, 
accompanied by downregulation of HCC prognosis pro-
tective genes (ADH4, LCAT) as shown in Fig. 5B and C. 
To evaluate the predictive performance of the signature, 

Fig. 3 Functional analysis of differential gene expression and identification of specific genes. Genes were divided into 3 clusters according to the ex-
pression pattern of the branch heat map, and the functional analysis of the top 200 differential genes in cluster 3 (A), cluster 1 (B), and cluster 2 (C) were 
performed using the Metascape website. (D) Wayne diagram for the identification of differential genes. (E) The t-SNE plots for the distribution of specific 
genes
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Fig. 4 Validation of the expression and prognostic value of specific genes. (A) The volcano plot shows the differential expression of specific genes in 
hepatocytes and malignant cells. (B) The violin plots displays the expression changes of specific genes under pseudotime analysis. (C) Validation of differ-
ential expression of specific genes in normal liver and HCC tissues utilizing TCGA-LIHC, ICGC-LIRI-JP and GSE135631 cohorts. (D) Validation of the survival 
analysis by using the TCGA-LIHC and ICGC-LIRI-JP cohorts respectively. * P < 0.05, ** P < 0.01, *** P < 0.001, ns: The difference is not significant
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the time-dependent area under the ROC curve of the 
predictive model was calculated. With satisfactory 
results, the area under the ROC curve for the 1-, 3-, and 
5-year overall survival rates was found to be 0.687, 0.660, 
and 0.614, respectively, in the training cohort (Fig.  5D). 
In the validation cohort (Fig. 5E), the corresponding val-
ues for the 1-, 2-, and 3-year overall survival rates were 
0.737, 0.649, and 0.621.

Additionally, an analysis was conducted to assess the 
influence of the risk score and five clinical factors (tumor 
stage, body mass index, sex, race, and age) in the training 
cohort on prognosis, in order to determine the indepen-
dent prognostic value of the two-gene predictive signa-
ture in clinical practice. In univariate Cox regression 
analysis on the training cohort, which displayed that the 
risk score and clinical stage were independent prognos-
tic factors (Fig. 6A); multivariate Cox regression analysis 

Fig. 5 Construction and evaluation of the predictive signature. (A) Analysis of the overall survival of patients with HCC from TCGA, ICGC, and summary 
cohorts. (B-C) The distribution of patient’s survival and gene expression in the high-and low-risk groups was analyzed by utilizing the training cohort 
(TCGA-LIHC) and the validation cohort (ICGC-LIRI-JP). (D) The ROC curve for the training cohort (TCGA-LIHC). (E) The ROC curve for the validation cohort 
(ICGC-LIRI-JP). Differences were considered statistically significant at P < 0.05
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Fig. 6 Development of a predictive signature based on specific gene expression of hepatocytes. The forest plots were established based on the univari-
ate (A) and multivariate (B) Cox regression analysis in the TCGA-LIHC cohort. (C) The Mulberry plot was constructed based on risk groups, clinical stages, 
sex, age, and survival status. (D) The nomogram was established by combining risk groups with clinicopathological features in the TCGA-LIHC cohort. 
(E) The calibration curve was applied to assess the predictive accuracy of the nomogram. (F) Decision curve analysis of nomogram (1-, 3-, 5- year). (G) 
The K-M curves for different clinical stages were built using the TCGA-LIHC cohort. * P < 0.05, ** P < 0.01, *** P < 0.001, ns: The difference is not significant
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indicated that the risk score and clinical stage had prog-
nostic value independent from other clinical factors 
(Fig. 6B). In addition, we also performed univariate and 
multivariate regression analysis on the validation cohort, 
and the results showed that the risk score, clinical stage, 
and gender had prognostic value apart from other fac-
tors (Fig. S4C and S4D). In addition, a Mulberry plot was 
created to visually represent the relationship between 
various risk groups based on clinically relevant character-
istics such as clinical stages, sex, and age, as well as sur-
vival status (Fig. 6C). Disparities in survival status among 
the different risk groups were analyzed (Fig. S4E), and 
it was demonstrated that the risk scores associated with 
varying survival statuses were statistically significant, 
indicating that a higher risk score was correlated with a 
poorer prognosis (Fig. S4F). Subsequently, a nomogram 
was developed utilizing risk groups and clinicopatho-
logical features within the TCGA-LIHC cohort to fur-
ther forecast patient survival at 1-, 3-, and 5-year. As 
depicted in Fig. 6D, the survival rates at 1-, 3-, and 5-year 
were found to be 0.859, 0.694, and 0.554, respectively, 
when the total score reached 127 points. Additionally, a 
calibration curve was constructed to assess the predic-
tive accuracy of the nomogram for survival (Fig.  6E). 
Subsequently, decision curve analysis (DCA) was per-
formed on the nomogram model (Fig. 6F). Furthermore, 
a nomogram was developed based on the risk groups and 
clinical factors of the validation cohort, and DCA was 
carried out accordingly (Fig. S4G and S4H). Collectively, 

the establishment of the risk signature demonstrated 
clinical utility and potential prognostic benefits. Fur-
thermore, survival disparities were observed among risk 
groups across various clinical stages, with the low-risk 
group exhibiting notably superior outcomes compared to 
the high-risk group in both early and late stages of HCC 
(Fig. 6G).

Analysis of the risk score with the immune status and the 
immunotherapy
The single sample gene set enrichment analysis (ssG-
SEA) method was utilized to assess immune function 
and immune cell infiltration levels in different risk groups 
within the TCGA-LIHC cohort, and compare the differ-
ences in immune status between different risk scores. 
The study revealed that the low-risk group exhibited 
heightened immune function in cytolytic activity, type 
I interferon response, and type II interferon response, 
while displaying lower levels of APC co-stimulation and 
MHC-I expression (Fig. 7A). Additionally, a positive cor-
relation was observed between the risk score and the 
abundance of activated CD4 + T cells, central memory 
CD4 + T cells, Th17, Th2, CD56bright NK cells, acti-
vated DCs, and pDCs, while an inverse correlation was 
found with the abundance of effector memory CD8 + T 
cells, γδT cells, eosinophils, and mast cells (Fig. 7B). Our 
hypothesis posited that the predictive signature could 
potentially modulate the immune microenvironment, 
thereby impacting the anti-tumor immune response in 

Fig. 7 Analysis of the immune status and the immunotherapy effect according to the risk score. Immune function and immune cell expression levels 
between different risk groups were observed by the heatmap (A) and the boxplot (B). (C) Differences in the TIDE score between different risk groups. 
(D) Differences in the relevant immune checkpoint levels between different risk groups. (E) Differences in the immunotherapy sensitivity to the PD1 
inhibitors, the CTLA-4 inhibitors, and their combination across distinct risk groups. * P < 0.05, ** P < 0.01, *** P < 0.001, ns: The difference is not significant
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HCC. The observed relationship between the risk score 
and immune status motivated us to delve deeper into the 
potential role of the risk score in immunotherapy. Sub-
sequent TIDE analysis revealed a lower TIDE score in 
the high-risk group (Fig. 7C). Further examination of the 
differential expression of common immune checkpoints 
across different risk groups revealed an upregulation of 
inhibitory checkpoints in the high-risk group, such as 
HAVCR2, PDCD1 and CTLA-4 (Fig.  7D). These mol-
ecules served as T cell depletion markers [30], suggesting 
a potential association between increased T cell deple-
tion in the high-risk group and evasion of the anti-tumor 
immune response, ultimately leading to a poorer prog-
nosis. Subsequently, we conducted a comparative analy-
sis of immunotherapy responsiveness to PD1 inhibitors, 
CTLA-4 inhibitors, and their combination across distinct 
risk groups (Fig. 7E). Our study revealed that PD1 inhibi-
tors or CTLA-4 inhibitors used individually demon-
strated greater treatment efficacy in the high-risk group, 
with no significant difference observed in combination 
therapy. These findings suggest that patients classified in 
the high-risk group may derive increased benefits from 
immunotherapy.

Analysis of the risk score with somatic mutation and drug 
treatment sensitivity
The majority of cancer mutations are somatic cell muta-
tions, with genomic instability playing a key role in the 
accumulation of mutations within cancer cells and the 
subsequent evolution of cancer genomes [31]. Somatic 
mutation analysis (Fig.  8A) indicated a gene mutation 
probability of 87.71% in the high-risk group and 83.98% 
in the low-risk group, suggesting that the high-risk group 
had more frequent mutations and may lead to adverse 
prognostic outcomes. Our study revealed that missense 
mutations were the predominant mutation type across 
various risk groups. Among the high-risk group, the top 
three genes with the highest mutation rates were TP53, 
TTN, and MUC16, while in the low-risk group, the top 
three genes were CTNNB1, TTN, and TP53. Notably, 
TP53 exhibited the most substantial disparity in muta-
tion frequency between the two groups, with a sig-
nificantly higher mutation rate in the high-risk group 
compared to the low-risk group (39% versus 18%). Subse-
quently, we conducted an analysis of the varying expres-
sion levels of TMB among distinct risk groups (Fig. S5). 
While the observed difference did not reach statistical 
significance, our findings indicated that individuals in 
the low TMB group exhibited a more favorable progno-
sis compared to those in the high TMB group (Fig. 8B). 
Intriguingly, our analysis revealed that individuals in the 
low-risk and low TMB group demonstrated markedly 
improved prognostic outcomes in comparison to those 
in the high-risk and high TMB group, when considering 

our predictive signature (Fig. 8C). Lastly, we explored the 
correlation between the risk score and sensitivity to drug 
treatment, and we explored that patients in the high-
risk group had lower IC50 for several anticancer drugs, 
including sorafenib, 5-fluorouracil, doxorubicin, mitomy-
cin C, bortezomib, and vinblastine (Fig. 8D), suggesting 
that the development of a predictive signature could aid 
in selecting appropriate drugs based on the clinical effi-
cacy of anticancer agents.

Differential enrichment analysis of the predictive signature
In order to gain further insight into the mechanisms 
underlying hepatocellular carcinogenesis, we conducted 
a differential gene enrichment analysis of the predictive 
signature. It was observed that the enriched pathways 
and functions varied significantly among the differ-
ent risk groups. Specifically, the low-risk group exhib-
ited enrichment in traditional KEGG and GO pathways 
related to normal hepatocyte functions, such as biosyn-
thesis, metabolism, and detoxification (Fig.  9A and B). 
Conversely, the high-risk group displayed marked enrich-
ment in pathways associated with cell division, cell prolif-
eration, pro-inflammatory responses, and tumorigenesis 
(Fig.  9C and D), suggesting that gene expression in the 
high-risk group may have adapted to malignant charac-
teristics. Furthermore, GSEA enrichment analysis was 
conducted, revealing that the low-risk group exhibited 
enrichment in various substance metabolic pathways 
and maintained normal hepatocyte metabolic func-
tions (Fig. 9E). Conversely, the pathways enriched in the 
high-risk group were largely non-significant (Fig.  9F), 
potentially attributed to a limited number of represented 
genes, indicative of non-specific pathway enrichment and 
significant tumor heterogeneity. These findings suggest 
pronounced genetic heterogeneity within and between 
high-risk groups, resulting in the impairment of normal 
hepatocyte functions.

Validation of the specificity about the decreased 
expression of specific genes in tumor tissues
Given the specific expression of ADH4 and LCAT in 
hepatocytes, it is plausible to infer that their expres-
sion levels in hepatocytes may serve as a proxy for their 
expression in the entirety of liver tissues. Following the 
validation of the prognostic significance of ADH4 and 
LCAT in HCC, two cohorts were incorporated to inves-
tigate whether their expression levels were selectively 
diminished solely in HCC. One of these cohorts encom-
passed individuals with non-alcoholic fatty liver disease 
(NAFLD) and healthy controls, with NAFLD comprising 
non-alcoholic steatohepatitis (NASH) and non-alcoholic 
fatty liver (NAFL). In this study, we conducted a compar-
ison of gene expression levels in various disease groups 
and healthy controls, revealing no statistically significant 
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Fig. 8 Potential role of the risk score in mutation and drug therapy. (A) Frequency of somatic mutation in different risk groups. (B) Survival analysis of the 
tumor mutation burden. (C) Subgroup survival analysis of the tumor mutation burden and the risk score. (D) Sensitivity analysis to chemotherapy and 
targeted therapy in different risk groups (including sorafenib, 5-fluorouracil, doxorubicin, mitomycin C, bortezomib, and vinblastine). The above P < 0.05 
was considered statistically significant
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differences as illustrated in Fig. 10A and B. Similar find-
ings were observed across different stages of fibrosis 
in NASH as depicted in Fig.  10C and D. Furthermore, 
an additional cohort encompassing individuals with 

alcoholic hepatitis (AH), alcohol-related cirrhosis, and 
healthy controls was examined. Interestingly, a decrease 
in gene expression of ADH4 was observed in AH, while 
no significant difference was noted in alcohol-related 

Fig. 10 Comparison of specific gene expression in tissues from chronic liver diseases. (A-B) In comparison with differential expression of specific genes in 
patients with NASH, NAFL and controls. (C-D) Comparing differential expression of specific genes among different fibrosis stages in patients with NASH. 
(E-F) In comparison with differential expression of specific genes in patients with AH, alcohol-related cirrhosis (the sample name is denoted as EC) and 
controls. * P < 0.05, ** P < 0.01, *** P < 0.001, ns: The difference is not significant

 

Fig. 9 Differential enrichment analysis of the predictive signature. (A) KEGG enrichment analysis of differential genes in low-risk group. (B) GO enrich-
ment analysis of differential genes in low-risk group. (C) KEGG enrichment analysis of differential genes in high-risk group. (D) GO enrichment analysis 
of differential genes in high-risk group. (E) GSEA enrichment analysis of differential genes in low-risk group. (F) GSEA enrichment analysis of differential 
genes in high-risk group
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cirrhosis (Fig. 10E). This finding may be attributed to the 
involvement of ADH4 in alcohol metabolism signaling 
and its potential implications, and its alcohol metabolism 
function would be disturbed upon alcohol exposure [32]. 
However, gene expression of LCAT was not found to be 
statistically significant in either AH or alcohol-related 
cirrhosis, as shown in Fig. 10F. These studies suggest that 
the noticeable decrease in the expression of ADH4 and 
LCAT in HCC may be relatively specific. In cases where 
patients have no history of alcohol exposure, the reduced 
expression of ADH4 and LCAT could potentially indicate 
the presence of HCC to some extent, aiding in the early 
diagnosis of the disease.

Discussion
HCC represents a significant contributor to cancer-
related mortality globally, presenting a substantial risk 
to human life and well-being. Despite the availability of 
numerous molecularly-targeted agents and immunother-
apy strategies for HCC, a limited proportion of patients 
derive benefit from these treatments, largely due to the 
pronounced tumor heterogeneity characteristic of HCC 
[33]. Research has indicated that the intrinsic genetic 
diversity of tumor cells serves as the primary catalyst 
for this heterogeneity, exacerbated by the influence of 
the external microenvironment. This phenomenon ulti-
mately contributes to the ineffectiveness of targeted ther-
apy and immunotherapy, resulting in disease progression 
in patients with HCC [34]. The emergence of single-cell 
sequencing technologies represents a novel methodology 
for investigating tumor heterogeneity. Through scRNA-
seq analysis, the differentiation between healthy and can-
cerous cells at various stages of tumor progression can be 
discerned, enabling enhanced prognostic and diagnostic 
capabilities through the identification of potential bio-
markers and the formulation of optimal treatment strat-
egies for cancer [35]. In this study, scRNA-seq analysis 
was utilized to characterize the subset of hepatocytes and 
elucidate their differentiation trajectory, simulating the 
gradual transition of hepatocytes into malignant cells. 
This study aimed to explore transcriptomic changes dur-
ing cell differentiation by identifying hepatocyte-specific 
marker genes and constructing a predictive signature 
using a training cohort from TCGA-LIHC. The predic-
tive value of the signature was evaluated using both the 
training cohort and an ICGC-LIRI-JP validation cohort, 
revealing that patients in the high-risk group had sig-
nificantly poorer prognoses. Our study revealed higher 
levels of immune cell infiltration, immune checkpoints, 
and somatic mutation frequencies in the high-risk group, 
indicating a significant difference compared to the low-
risk group. Additionally, integrating transcriptomic anal-
ysis of chronic liver diseases helped confirm that reduced 

expression of specific genes may indicate the onset of 
HCC and aid in early diagnosis.

Tumor heterogeneity, encompassing cancer cell and 
microenvironmental diversity, plays a crucial role in the 
development of valuable biomarkers for HCC [36]. This 
study identified a predictive signature comprising two 
specific hepatocyte genes, ADH4 and LCAT, which have 
been linked to the prognosis of hepatocellular carcinoma 
(HCC) and are considered protective factors. The alcohol 
dehydrogenase 4 (ADH4) gene encodes the class II alco-
hol dehydrogenase 4 pi subunit, a member of the alcohol 
dehydrogenase family associated with conditions such as 
alcohol dependence [37] and cancer. Previous research in 
HCC has shown a significant down-regulation of ADH4 
mRNA and protein expression in tumor tissues, which 
shows a highly significant correlation with worse survival 
[38]. Contrarily, increased ADH4 expression has been 
linked to a more favorable prognosis in adenocarcinoma 
within non-small cell lung cancer (NSCLC) [39]. Our 
study additionally illustrated the heightened expression 
of ADH4 in hepatocytes, which was notably diminished 
in HCC, suggesting ADH4 may serve as an independent 
prognostic indicator. When compared to transcriptomic 
analyses of chronic liver diseases, our findings suggest 
that decreased ADH4 expression may have a unique pre-
dictive value for HCC, excluding cases involving alcohol 
exposure.

The gene encoding lecithin cholesterol acyltransferase 
(LCAT) produces an extracellular cholesterol esterase 
primarily synthesized in the liver and released into the 
plasma, facilitating the esterification of cholesterol and 
the reverse transport of cholesterol esters to the liver 
[40]. LCAT has been extensively investigated as a poten-
tial biomarker for cancer, with studies indicating its asso-
ciation with invasive breast cancer as a common serum 
protein marker [41] and its decreased activity in patients 
with colorectal cancer [42]. The study found a significant 
decrease in LCAT expression in tumor tissue compared 
to non-tumor tissue, as confirmed by immunohisto-
chemical analysis in HCC [43]. Our research further 
revealed high expression of LCAT specifically in hepato-
cytes. Importantly, decreased LCAT expression in HCC 
was found to be negatively correlated with prognosis. 
The LCAT protein is a unique serum protein in hepato-
cytes, suggesting that serum levels of LCAT could serve 
as a convenient and useful non-invasive screening test for 
prediction of HCC.

In this research, a predictive signature was developed 
by combining two genes in the TCGA training cohort 
and subsequently validated using the ICGC validation 
cohort to assess its reliability and precision. Additionally, 
a nomogram was constructed based on the risk groups 
and clinicopathological characteristics in the TCGA-
LIHC cohort to forecast the 1-, 3-, and 5-year survival 
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rates of patients. The accuracy and practicality of the 
nomogram were confirmed through calibration curve 
and DCA, demonstrating its efficacy in predicting patient 
survival outcomes. Therefore, the integration of multiple 
factors into a nomogram demonstrated superior predic-
tive performance compared to univariate analysis.

The tumor microenvironment harbors a diverse array 
of immune cells, ligand receptors, chemokines, immune 
checkpoints, and other molecules. The level of immuno-
depression has been shown to significantly impact the 
prognosis of HCC [44], underscoring the importance of 
investigating immune profiles across various risk groups. 
We conducted a comparative analysis of various risk 
groups in HCC to provide a reference for personalized 
treatment selection. Our analysis included factors such as 
immune infiltration, TIDE score, immune checkpoints, 
immunotherapy sensitivity, somatic mutation frequen-
cies, TMB, and anticancer drug sensitivity. Our analysis 
of somatic mutation frequencies revealed TP53 muta-
tion as the most prominent difference between high- and 
low-risk groups. Our findings align with existing research 
showing that TP53 mutation, the most prevalent muta-
tion in cancer, is associated with increased tumor aggres-
siveness and poorer prognosis, particularly in HCC 
patients [45]. Compared to existing studies on HCC 
prognostic models utilizing bulk RNA-seq technology, 
such as those based on pyroptosis-related gene models 
[46] and immune infiltration-related gene models [47], 
there is a notable gap in research at the single-cell level. 
In contrast to the two current prognostic models incor-
porating HCC scRNA-seq data [48–49], our developed 
predictive model focuses on identifying hepatocyte-spe-
cific genes with significant expression changes from a 
cellular evolution perspective. This model demonstrates 
higher specificity for hepatocytes and HCC. In a word, 
our study investigated alterations in gene expression pro-
files and tumor heterogeneity during the progression of 
hepatocellular carcinoma, offering insights for identify-
ing precise biomarkers and targeted therapies.

In the research, We established a predictive signature 
with high accuracy, prompting further investigation into 
its mechanisms in HCC. Based on the findings of KEGG 
enrichment analysis, it was observed that the high-risk 
group exhibited significant enrichment of differential 
genes primarily associated with pathways related to cell 
proliferation (cell cycle), pro-inflammatory processes 
(cytokine-cytokine receptor interaction, TNF signal-
ing pathway), and pro-tumor mechanisms (Hippo signal 
pathway, IL-17 signaling pathway) [50–52]. Conversely, 
the low-risk group displayed enrichment of differential 
genes predominantly linked to essential liver function 
pathways (retinol metabolism, drug metabolism-cyto-
chrome P450, bile secretion, etc.). The results of the 
GO enrichment analysis revealed that genes exhibiting 

differential expression in the high-risk group were sig-
nificantly enriched in biological processes (BP) such as 
mitotic nuclear division and mitotic sister chromatid sep-
aration; in cellular components (CC) including the basal 
plasma membrane and basal part of cell; and in molecular 
functions (MF) such as cytokine receptor binding, signal-
ing receptor activator activity, and receptor ligand activ-
ity. Conversely, genes showing differential expression in 
the low-risk group were predominantly enriched in xeno-
biotic metabolic processes, response to xenobiotic stimu-
lus, and steroid metabolic process and other aspects in 
BP, plasma lipoprotein particle and lipoprotein particle in 
CC, and steroid hydroxylase and oxidoreductase activity 
in MF. Therefore, our findings suggest a strong correla-
tion between the active cell proliferation, cell division, 
pro-inflammatory, and tumor-promoting mechanisms in 
the high-risk group and its unfavorable prognosis. Addi-
tionally, the hepatocytes in the high-risk group displayed 
impaired functionality, heightened heterogeneity, and a 
propensity for malignant progression. Our study further 
demonstrates a high degree of congruence between the 
predictive signature group and the simulated hepatocyte 
differentiation trajectory in terms of specific gene expres-
sion patterns and alterations in cellular function.

Despite the valuable predictive signature that was 
established, there were limitations that must be 
addressed. Firstly, all studies conducted were retrospec-
tive, necessitating a significant number of prospective 
studies for validation. Secondly, the verification of gene 
expression in the signature was limited to the mRNA 
level, highlighting the need for further validation of 
protein expression in hepatocytes and exploration of 
the molecular mechanisms underlying carcinogenesis. 
Future research will focus on elucidating the potential 
mechanisms linking the expression of specific genes in 
hepatocytes to the prognosis and progression of HCC.

Conclusion
Throughout the process of hepatocyte transformation 
into HCC cells, notable alterations in specific genes, 
namely ADH4 and LCAT, were observed and found to be 
associated with the prognosis of HCC. The downregula-
tion of ADH4 and LCAT expression levels may serve as 
potential indicators for the onset of HCC, thus facilitat-
ing early detection of the disease. Our innovative predic-
tive signature, derived from hepatocyte-specific genes, 
offers a novel framework for early diagnosis, prognostic 
assessment, and personalized therapeutic interventions 
for individuals afflicted with HCC.
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