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Abstract
Background This study aimed to explore the clinical significance of immunogenic cell death (ICD) in acute myeloid 
leukemia (AML) and its relationship with the tumor immune microenvironment characteristics. It also aimed to 
provide a potential perspective for bridging the pathogenesis of AML and immunological research, and to provide a 
theoretical basis for precise individualized treatment of AML patients.

Methods Firstly, we identified two subtypes associated with ICD by consensus clustering and explored the 
biological enrichment pathways, somatic mutations, and tumor microenvironment landscape between the ICD 
subtypes. Additionally, we developed and validated a prognostic model associated with ICD-related genes. Finally, 
we conducted a preliminary exploration of the construction of disease regulatory networks and prediction of small 
molecule drugs based on five signature genes.

Results Differentially expressed ICD-related genes can distinguish AML into subgroups with significant differences 
in clinical characteristics and survival prognosis. The relationship between the ICD- high subgroup and the immune 
microenvironment was tight, showing significant enrichment in immune-related pathways such as antibody 
production in the intestinal immune environment, allograft rejection, and Leishmaniasis infection. Additionally, the 
ICD- high subtype showed significant upregulation in a variety of immune cells such as B_cells, Macrophages_M2, 
Monocytes, and T_cells_CD4. We constructed a prognostic risk feature based on five signature genes (TNF, CXCR3, 
CD4, PIK3CA and CALR), and the time-dependent ROC curve confirmed the high accuracy in predicting the clinical 
outcomes.

Conclusion There is a strong close relationship between the ICD- high subgroup and the immune 
microenvironment. Immunogenicity-related genes have the potential to be a prognostic biomarker for AML.
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Introduction
Acute myeloid leukemia (AML) is a common blood dis-
ease which derived from abnormal growth of bone mar-
row cells, which has a high degree of specificity in human 
populations [1, 2], and the research on the pathogen-
esis of AML has not yet been fully clarified [3]. With the 
improvement of chemotherapy, hematopoietic stem cell 
transplantation and other treatments, the prognosis of 
AML patients has been improved to a certain extent [4, 
5], but in general, AML is characterized by poor overall 
efficacy, high recurrence rate and poor long-term sur-
vival prognosis, and there is a long way to go for the long-
term survival of AML patients [6].

Immunogenic death (ICD) is one of the modes of regu-
latory cell death, and ICD can induce adaptive immunity 
against dead cell antigens by mediating the complex con-
nection between the immune system and dead tumor 
cells, thus improving the sensitivity and efficacy of immu-
notherapy [7, 8]. Immunogenicity-related genes play a 
prominent role in cancer. These genes encode the pro-
teins required by the immune system in the body, includ-
ing antigen-presenting molecules, lymphocyte receptors, 
and cytotoxic proteins. By regulating the expression level 
of these immunogenic genes, the immune system can 
recognize and eliminate abnormal cells, thereby prevent-
ing the occurrence and development of cancer. Hence, 
investigating the role of immunogenic genes in cancer 
is of great significance for understanding the interaction 
between the immune system and cancer, and develop-
ing immunotherapy strategies. By regulating the expres-
sion of immunogenic genes, the immune system’s ability 
to attack cancer cells can be enhanced, and thus treat-
ment effectiveness can be improved [9]. As a specific 
form of cell death that activates tumor-specific immune 
responses to exert anti-tumor effects, immunogenic cell 
death has been a hot topic in oncology research in recent 
years [10, 11]. However, there is limited in-depth research 
on ICD-related genes (ICDGs) in AML.

In recent years, the rapid development of high-
throughput sequencing technology has greatly facili-
tated the in-depth exploration of disease characteristics, 
pathogenesis, and risk stratification while providing a 
scientific basis for individualized treatment, therapeu-
tic efficacy and prognostic judgment of patients [3, 12, 
13] .Therefore, we intend to comprehensively investigate 
the clinical significance of immunogenic death in AML 
and its relationship with tumor immune microenviron-
ment characteristics, to provide a novel perspective for 
in-depth pathogenesis and immunobiological studies of 
AML, and to provide a theoretical basis for the precise 
treatment and management of AML patients through the 

construction of a prognostic prediction model related to 
immunogenic death.

Materials and methods
Data source and access
For training cohort, RNA-seq transcriptome information 
and matched baseline data were obtained from 151 AML 
patients from TCGA database (https://portal.gdc.can-
cer.gov/). Patient data with complete transcription and 
clinical information from dataset GSE37642 in the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/) were downloaded and included in the 
testing cohort. All eligible samples from TCGA were col-
lected according to the following inclusive criteria: (1) 
diagnosed AML specimen; (2) availability of transcrip-
tome data; and (3) availability of general survival infor-
mation and related clinical data. A total of 130 bone 
marrow samples on TCGA database were included in this 
study. The detailed pre-processing of microarray data of 
GSE37642 cohort was illustrated below: (1) The samples 
that lacked of corresponding follow-up information were 
eliminated; (2) The Gene Symbol format was obtained 
by converting the probe IDs; (3) Probes were removed 
because of their correspondences to multiple genes; (4) 
The average value was regarded as the gene expression 
while multiple probes were corresponded to one gene. 
In final, 140 bone marrow samples on GSE37642 cohort 
were included.

ICD classification through consensus clustering analysis
We used the Consensus Cluster Plus tool for clustering 
analysis through Sangerbox website (http://vip.sanger-
box.com) to identify molecular subtypes related to ICD. 
Subsequently, the optimal number of clusters was deter-
mined using empirical cumulative distribution function 
plots to ensure stable results. Finally, we use the heatmap 
tool to create cluster maps.

Identification of differentially expressed genes (DEGs)
Linear Models for Microarray Data (Limma) is a pack-
age in R language used for analyzing microarray data, 
including RNA Seq and other high-throughput sequenc-
ing data. It provides a series of powerful statistical mod-
els and methods for identifying differentially expressed 
genes, conducting common expression data analysis and 
visualization. In the study, the “limma” programme was 
utilized through Sangerbox website to determine the 
DEGs between C1 and C2 subtypes (by comparing dif-
ferent clusters), and the filtering thresholds were adjusted 
P < 0.05 and |log2 Fold change| > 2.
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Functional enrichment analysis
The functional enrichment analysis was performed 
by Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases, for the aim of 
comparing the differential signal pathway and biologi-
cal effects among the ICD low and high cohorts. The 
P-value thresholds was 0.05. Gene set enrichment analy-
sis (GSEA) was conducted to assess whether there were 
considerable variations in the set of genes expressed 
between the ICD low and high cohorts in the enrichment 
of the MSigDB Collection (c2.cp.kegg.v7.4.symbols.gmt), 
a P-value < 0.05 and FDR < 0.25 were considered statisti-
cally significant differences.

Somatic mutation analysis and characterization of the 
immune landscape between two ICD subgroups
Somatic mutation data of AML samples were obtained 
from the TCGA database, and the specific differences in 
somatic mutation data between two ICD subgroups sam-
ples were presented in waterfall plots through Sangerbox 
website. To analyzed immune cell infiltration and explore 
TME characteristics between the two ICD subgroups, 
immune infiltration analysis by multiple algorithms 
(XCell、quanTlseq、MCPCOUNTER and CIBER-
SORT) were conducted in the training and validation 
sets through online analysis websites (http://www.sxdyc.
com).

Construction of ICD-related risk features
Least absolute shrinkage and selection operator (LASSO) 
is a commonly used regression analysis method that com-
bines variable selection and regularization to improve the 
predictive performance and interpretability of the result-
ing statistical model. In this study LASSO regression 
analysis was used to identify independent risk factors for 
AML. The R programming language “RMS” was used to 
create a prognostic nomogram to determine its value in 
prognostic prediction. Subsequently, K-M survival analy-
sis was performed to explore the feasibility of construct-
ing the risk model under different clinical features.

Construction of miRNA-gene, TF-gene regulatory 
networks, identification of potential targeted drugs and 
drug sensitivity analysis
Networkanalyst software (https://www.networkana-
lyst.ca/) was used to predict miRNAs and transcription 
factors that interact with ICD-related genes, respec-
tively, and to construct regulatory networks to predict 
the interactions between miRNAs and genes, as well as 
TFs and genes. The Drug-Gene Interaction database 
(https://dgidb.org/) was used to search for potential tar-
geted drugs and attempt to find the relationship between 
drug-gene interactions. Considering that a great num-
ber of patients with acute myeloid leukemia have poor 

prognosis and may experience disease recurrence, drug 
resistance, and other conditions throughout the treat-
ment process, we conducted a drug sensitivity analysis 
in this study, aiming to provide more potential treatment 
strategies for the vast number of acute myeloid leukemia 
patients. The drug sensitivity analysis was conducted 
from cellminer database (https://discover.nci.nih.gov/
SclcCellMinerCDB/) and other comprehensive drug 
screening datasets (https://zenodo.org/records/7274740 
and https://biodev.github.io/BeatAML2).

Single-cell expression analysis and subcellular localization 
of biomarkers
On the basis of the HPA database (https://www.protein-
atlas.org/), single-cell data and transcriptional data were 
utilized to assess the expression of biomarkers in bone 
marrow cells. Based on the COMPARTMENTS database 
(https://compartments.jensenlab.org/), we also predicted 
biomarker protein subcellular localization. This web-
site serves as a prediction tool for proteins’ subcellular 
locations.

Statistical analysis
Comparison of continuous variables between two groups 
was performed using two independent samples t-test, 
and chi-square test was used for categorical data. The 
Kaplan–Meier method and log-rank test were used to 
estimate patient survival and plot survival curves. P value 
less than 0.05 was considered statistically significant.

The research process for this article is shown in Fig. 1.

Result
Identification of two ICD-related subtypes by consensus 
clustering
We identified ICD-related genes (TNF, CXCR3, P2RX7, 
CASP1, NLRP3, IL1B, LY96, CD4, CD8A, CD8B, PRF1, 
IFNG, IL17RA, HSP90AA1, EIF2AK3, PIK3CA, CASP8, 
ATG5 IL1R1, MYD88, IFNGR1, CALR, TLR4) by sum-
marizing the studies of Garg AD et al. [14] and we used 
the genemania database (http://genemania.org/) to 
reveal the interactions among these ICD-related genes 
(Fig.  2A). Next, we used consensus clustering analysis 
to determine the AML clusters related to ICD, where we 
divided the samples into two clusters (Fig. 2B-D). Then, 
we constructed a heatmap of the expression of ICD-
related genes in the C1 and C2 clusters (Fig. 2E). Survival 
analysis showed that different expressions of ICD-related 
genes led to statistically significant discrepancies in sur-
vival outcomes among subgroups (Fig. 2F).

Enrichment analysis and identification of signaling 
pathways
We identified key genes and signaling pathways in 
subtypes to understand the molecular mechanisms 
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Fig. 1 Flow chart of the study
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Fig. 2 Identification of ICD-associated subtypes by consensus clustering. (A) Construction of interactive functions between ICD-related genes; (B) Identi-
fication of two ICD-related subtypes by consensus clustering; (C, D) The delta area curve of consensus clusters represents the relative change of the area 
under the cumulative distribution function (CDF) curve from k = 2 to 10; (E) Heatmap of the expression of ICD-related genes in different subtypes. Red 
represents high expression; blue represents low expression; (F) Kaplan-Meier curves for different ICD subtypes
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associated with prognosis. There are 2,847 genes that 
differ significantly between ICD subgroups (p < 0.05), 
including 1577 up-regulated genes and 1270 down-
regulated genes (Fig.  3A). The top 50 significantly 
expressed genes were visualized in a heatmap (Fig.  3B). 
We then attempted to understand the molecular mech-
anisms underlying the regulation of disease prognosis. 
In Fig.  3C-E, functional enrichment analyses were per-
formed to determine the biological classification, func-
tion, and pathway of DEGs. GO analysis revealed that in 
the biological processes category(Fig.  3C), DEGs were 
enriched in protein folding in endoplasmic reticulum, 
regulation of small GTPase mediated signal transduction, 
regulation of cell death, cellular protein modification 
process and protein modification process. Meanwhile, 
in the cellular component category (Fig. 3D), DEGs were 
enriched in endoplasmic reticulum lumen, nuclear outer 
membrane, endoplasmic reticulum part, cytoplasmic 
vesicle, intracellular vesicle and endomembrane system. 
In the molecular function category (Fig. 3E), DEGs were 
enriched in oligosaccharyl transferase activity, kinase 
binding, purine ribonucleotide binding, nucleotide bind-
ing, nueleoside phiosphate binding, enzyme binding and 
small molecule binding activity. GSEA results showed 
that in ICD-high subgroup (C1 cluster), immune-related 
pathways such as antibody production in the intesti-
nal immune environment, allograft rejection and leish-
maniasis infection were significantly enriched. On the 
other hand, in ICD-low subgroup (C2 cluster), pathways 
related to genetic replication and biomolecular synthesis 
were significantly enriched (Fig. 3F). KEGG enrichment 
analysis revealed functional pathways related to protein 
synthesis and processing, polysaccharide biosynthesis, 
leukemia virus infection and antigen processing and pre-
sentation in human cytomegalovirus infection, among 
other variable expression genes (Fig. 3G).

Somatic mutations and tumor microenvironment 
landscapes in ICD subtypes
We found distinct somatic mutation profiles in ICD 
subtypes and observed that gene mutations such as 
DNMT3A, FLT3, RUNX1, and NPM1 occurred at 
higher frequencies in AML patients’ somatic muta-
tions. However, their relative frequencies differed 
between subgroups (Fig.  3H). In view of the impor-
tant biological role of ICD in antitumor immune 
response, the microenvironment of tumors between 
subgroups was carefully studied by multiple algorithms 
(XCell、quanTlseq、MCPCOUNTER and CIBER-
SORT) in the training and validation sets. We compared 
the expression of different immune cells between sub-
groups and found that B_cells, Macrophages_M2, Mono-
cytes, and T_cells_CD4 were significantly upregulated 
in the ICD- high subtype (C1 cluster), while NK_cells 

were significantly downregulated (Fig. 4A-B). The above 
results exposed the close relationship between ICD pro-
file and tumor microenvironment.

Construction and validation of ICD risk signature
Five prognostic genes (TNF, CXCR3, CD4, PIK3CA and 
CALR) were detected as predictive model-related genes 
in LASSO regression analysis (Fig. 5A). Figure 5B showed 
the relationship between risk scores and survival status, 
overall, the low-risk cohort had more survivors than the 
high-risk cohort. We found that the nomogram con-
structed by risk scores and patients’ clinical data showed 
higher predictive value compared to most clinical infor-
mation (Fig. 5C). Next, we used ROC and Kaplan Meier 
curves to evaluate the prognostic ability of these 5 ICD-
related genes. Time-dependent ROC curves indicated 
good predictive performance of the model (AUC for 
training cohort at 1 year, 3 years, and 5 years were 0.75, 
0.77 and 0.87, respectively; while AUC for testing cohort 
at 1 year, 3 years, and 5 years were 0.67, 0.71 and 0.71, 
respectively) (Fig.  5D-E). Compared with several other 
published signatures and popular biomarkers, ICD-
related signature had the highest AUC for either 3-year 
or 5-year survival (Fig. 5F).

Clinical application of ICD-risk signature
To evaluate the utility of constructing the ICD risk sig-
nature, we firstly analyzed the correlation between risk 
scores and the expression levels of immune cells. Inter-
estingly, we found a significant positive correlation 
between the expression levels of immune cells such as B_
cells, T_cells_CD8, T_cells_CD4, Macrophages_M2 and 
the risk scores, while the expression levels of immune 
cells such as NK_cells, cells_Treg showed an opposite 
trend with the risk scores (Fig. 6A). Next, we generated 
a complex heatmap to visualize the correlation between 
the expression levels of ICD risk genes and clinical infor-
mation (Fig.  6B). We then compared the differences in 
the number of individuals between subgroups in terms of 
clinical data such as morphology classification, age, gen-
der, cytogenetics and survival events (Fig. 6D) in order to 
demonstrate the successful construction of the ICD risk 
signature and its value for clinical application. We finally 
conducted subgroup survival analysis on patients with 
FLT3 mutation positive, adverse outcome in EIN 2017 
risk stratification and other parameters (gender, age et 
al.) based on ICD-signature to verify the feasibility of this 
prediction model. (Fig. 6F).

Construction of regulatory networks, prediction of small 
molecule drugs and drug sensitivity analysis
Transcription factors (TFs) can bind to specific DNA 
sequences and regulate gene expression under specific 
conditions, while microRNAs (miRNAs) are a class of 
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Fig. 3 Identification of differentially expressed genes (DEGs) and potential signaling pathways in the subtypes. (A) Volcano plot showing the quantified 
DEG distribution between the ICD-high and the ICD-low subtype with threshold of |log2 Fold change| > 2 and P < 0.05 in TCGA cohort; (B) Heatmap 
shows the expression of DEG in different subtypes; (C, D, E) Biological Process, Cellular Component and Molecular Function in GO signaling pathway en-
richment analysis. The size of dots represents gene counts and the color of dots represents– log10 (p. adjust-value); (F) GSEA analysis identifies potential 
signaling pathways between subtypes; (G) KEGG pathway analysis; (H) Comparison of somatic mutations between subtypes
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endogenous short non-coding RNAs that can effectively 
mediate mRNA degradation. To gain a deeper under-
standing of the pathogenesis of AML, we used Networ-
kAnalyst software to predict the transcription factors 
and miRNAs that regulate ICD genes, and constructed 
transcription factor-gene and miRNA-gene regula-
tory networks. There are a total of 61 TFs and 157 miR-
NAs that exhibit complex regulatory relationships with 

ICD-signature genes (Fig.  6C). Meanwhile, we used the 
DGIdb database (Drug-Gene Interaction database) to 
retrieve targeted drugs for ICD genes and the drug-gene 
interactions, with the hope of providing theoretical refer-
ence for precise treatment of AML (Fig. 6E). At the same 
time, the correlation between drug score and prognos-
tic genes was analyzed, and the research results showed 
that chemotherapy drugs such as Lomustine. Tipifarnib, 

Fig. 4 Immune landscape between ICD subtypes. (A) Immune infiltration analysis by multiple algorithms in the training set; (B) Immune infiltration 
analysis by multiple algorithms in the validation set
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Fig. 5 Construction and validation of the ICD-risk signature. (A) Lasso analysis identified five genes most related to prognosis in TCGA dataset; (B) Risk 
scores distribution, survival status of each patient, and heatmaps of prognostic 5-gene signature in TCGA database; (C) Construction of the nomogram; 
Time-dependent ROC curves and Kaplan-Meier analysis in the TCGA cohort (D) and GSE37642 cohort (E). (F) Performance comparison between ICD-risk 
signature and other signatures based on receiver operating characteristic curve

 



Page 10 of 16Chen et al. BMC Medical Genomics          (2024) 17:107 

Fig. 6 Clinical application of the ICD-risk scores. (A) Correlation analysis of ICD- risk scores and expression of various types of immune cells (B cell, CD8 
T cell, CD4 T cell, Macrophages-M2, NK cell and Treg cells); (B) Correlation of ICD-risk genes and clinical information; (C) miRNA-gene and transcription 
factor-gene regulatory network was constructed to initially explore the pathogenesis of acute myeloid leukemia; (D) Different comparisons of number 
of patients in morphology classification, age, sex, cytogenetics and survival events between subgroups; (E) Identification of the targeted drugs for ICD 
prognosis genes; (F) Subgroup survival analysis
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Selenexor. etc. exhibited good therapeutic effects on the 
TNF gene. For the CXCR3 gene, chemotherapy drugs 
such as Sapitinib, Carboplatin, and Dabrafenib were 
more sensitive to it and had shown therapeutic poten-
tial. For the CD4 gene, potential therapeutic drugs such 
as TRAM-34 and Streptozocin had shown sensitive 
therapeutic effects, For the PlK3CA gene. chemotherapy 
drugs such as Vismodegib, CPI-613, and Altretamine 
were more sensitive to it. While the commonly used che-
motherapy drug venetoclax in clinical practice has poor 
response to the treatment of the PlK3CA gene. For the 
CALR gene, potential therapeutic drugs such as Cele-
coxib, PHA-793,887, and Fingolimod were more sensitive 
to it. Overall, the above findings were conducive to pro-
viding potential treatment strategies for AML patients 
(Fig. 7A).

Single cell analysis and subcellular localization of 
prognostic genes
To more accurately describe the expression of prognostic 
genes in human bone marrow tissue, we applied scRNA 
seq based on the HPA database to identify the cell popu-
lations expressed in the bone marrow. Nine subpopu-
lations of bone marrow cells were identified through 
clustering, as shown in the UMAP plot. The results fur-
ther revealed the main expression of TNF in T cells and 
B cells, CXCR3 was mainly expressed in macrophages 
and T cells and CD4 was mainly expressed in T cells, B 
cells and plasma cells. The main expression of PIK3CA 
in macrophages, T cells, and B cells as well as the main 
expression of CALR in plasma cells (Fig. 7B).

Proteins mark different biological functions, depending 
on their position in the cell. Based on the Compartments 

Fig. 7 (A) Drug sensitivity analysis of ICD prognosis genes; Single-cell expression analysis (B) and subcellular localization analysis (C) of hub genes

 



Page 12 of 16Chen et al. BMC Medical Genomics          (2024) 17:107 

database, we further predicted the protein subcellular 
localization of prognostic genes. TNF was mainly dis-
tributed on the plasma membrane, CXCR3 was mainly 
distributed outside the cell and in the plasma membrane, 
CD4 was mainly distributed on the plasma membrane, 
PIK3CA was mainly distributed on the cytoskeleton and 
in the plasma membrane, and CALR was mainly distrib-
uted on the cytoplasmic reticulum and in the plasma 
membrane (Fig. 7C).

GSEA of biomarkers and expressions of the five genes of 
the prognostic signature in acute myeloid leukemia
In the end, we used the GSEA to perform GO items to 
explore the possible roles of the chosen biomarkers in 
AML. As shown in Fig. 8A, high- expression group of the 
5 ICD-prognosis genes of the prognostic signature was 
mainly enriched to immune-related pathways. The above 
results indicated the close and complex relationship 
between the ICD prognosis model and the immune sys-
tem, which provided preliminary directions for further 
exploring the pathogenesis of AML in the future. Finally, 
expression levels of the five genes of the prognostic signa-
ture in acute myeloid leukemia were depicted in Fig. 8B.

Discussion
Acute myeloid leukemia is a common type of acute leu-
kemia, which is characterized by poor overall efficacy, 
high relapse rate and poor long-term survival prognosis 
[15]. Currently, the pathogenesis of AML is still unex-
plored, and accurate assessment of the prognosis of 
patients and appropriate treatment thus become needed. 
Therefore, it is necessary to construct a reasonable prog-
nostic assessment model. Immunogenic cell death is a 
complex process driven by stress, involving various sig-
naling molecules and cytokines, which can trigger a 
complete antigen-specific adaptive immune response by 
releasing danger signals or damage-associated molecular 
patterns (DAMPs) [16]. In-depth study of the molecu-
lar mechanisms of immunogenic cell death in leukemia 
is beneficial for providing new insights into the com-
prehensive treatment of the disease. Therefore, we have 
screened ICD-related genes to construct an AML prog-
nostic assessment model and attempt to explore its pos-
sible molecular mechanisms and clinical applications.

We firstly determined two ICD subgroups, Cluster 
1 and Cluster 2, based on consensus clustering using 
ICD-related gene expression. There were significant 
differences in clinical prognosis and immune infiltra-
tion levels between the ICD subgroups. The C1 sub-
type with higher ICD immune scores was associated 

Fig. 8 (A) Gene set enrichment analysis for the five-gene signature; (B)Expressions of the five genes of the prognostic signature in acute myeloid leukemia
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with numerous immune functional pathways, while the 
C2 subtype with lower ICD immune scores was closely 
linked to pathways such as genetic replication and bio-
molecule synthesis. We then attempted to compare the 
tumor immune microenvironment between different 
subtypes and identify potential mechanisms of AML 
pathogenesis and investigate the reasons for prognos-
tic differences between subtypes. Our research results 
showed that the C1 subtype with higher ICD scores had 
a higher proportion of immune cell infiltration (such as B 
cells, CD4 + T cells, macrophages and myeloid dendritic 
cells). The expression levels of immune cells such as B_
cellsT_cells_CD8, T_cells_CD4, and Macrophages_M2 
were significantly positively correlated with risk scores, 
while the expression levels of immune cells such as NK_
cells and cells_Treg were significantly negatively corre-
lated with risk scores. Based on our analysis of immune 
cell infiltration and previous literatures, we speculate that 
tumor cells can reshape the tumor microenvironment 
through several mechanisms. On the one hand, tumor 
cells can effectively evade immune surveillance by reduc-
ing the number of T_cells and B_cells [17]. On the other 
hand, tumor cells weaken NK_cell activity, further induc-
ing immune suppression in patients, ultimately leading 
to tumor progression and reshaping of the tumor micro-
environment [18, 19]. In summary, through the group-
ing of ICD, we have demonstrated the close correlation 
between the ICD- high subgroup and the immune micro-
environment, which may provide more accurate refer-
ence value for future immunotherapy in AML patients.

Gene mutations play a key role in the occurrence, pro-
gression, and treatment response of acute myeloid leu-
kemia. A deeper understanding of gene mutations helps 
to more accurately predict disease progression and prog-
nosis, and provides potential targets for developing new 
treatment strategies. Currently, it is widely believed that 
gene mutations mainly affect signaling pathways and 
hematopoietic regulatory transcription factors, ultimately 
leading to blockage of hematopoietic cell differentiation 
and subsequent inhibition of apoptosis, resulting in the 
occurrence of acute leukemia. In this study, through the 
construction of an immunogenicity-related prediction 
model, we found that the occurrence frequency of gene 
mutations such as DNMT3A, FLT3, RUNX1, and NPM1 
was relatively high. Based on published research results, 
we briefly summarized the impact of these genes on dis-
ease occurrence. DNMT3A is a DNA methyltransferase 
that plays a crucial role in maintaining hematopoietic 
stem cell homeostasis and promoting hematopoietic cell 
differentiation. Mutations in DNMT3A can significantly 
alter genome methylation levels, leading to changes in 
gene expression and epigenetic regulatory patterns [20], 
causing blockage of hematopoietic cell differentiation and 
excessive proliferation. In addition, DNMT3A mutations 

can also regulate the activation of mammalian target of 
rapamycin, mTOR, by affecting DNA methylation modi-
fications, thereby influencing the expression of the key 
cell cycle protein CDK1 and promoting hematopoietic 
cell proliferation. FLT3 is a receptor tyrosine kinase that 
plays a crucial role in hematopoiesis and lymphocyte pro-
liferation. Abnormal activation of FLT3 in acute myeloid 
leukemia is closely associated with disease occurrence 
and development. Approximately one-third of newly 
diagnosed AML patients have FLT3 activating mutations, 
which are associated with poor prognosis [21]. Muta-
tions in the FLT3 gene lead to overactive tyrosine kinase, 
promoting the growth and division of cancer cells [22]. 
RUNX1 is a transcription factor that plays a key role in 
hematopoietic cell differentiation and myeloid develop-
ment. On one hand, RUNX1 is part of the AML1-ETO 
fusion protein, which can directly inhibit the transcrip-
tion of tumor suppressor genes dependent on RUNX1, 
disrupting normal hematopoietic cell differentiation and 
promoting leukemia development. On the other hand, 
RUNX1 can inhibit the activity of other hematopoietic 
transcription factors such as PU1, GATA1, CEBPA, fur-
ther disrupting normal hematopoiesis [23]. NPM1 gene 
mutations play an important role in acute myeloid leuke-
mia. NPM1 mutations result in a stronger nuclear export 
signal than the nuclear localization signal, leading to 
abnormal cytoplasmic localization of the mutated NPM1 
protein, which is considered to play a crucial role in leu-
kemia occurrence [24].

To specifically quantify the prognostic risk profile of 
ICD-related genes in AML, we constructed a prognostic 
risk score composed of five feature genes (TNF, CXCR3, 
CD4, PIK3CA and CALR). The results showed that the 
risk score derived from these five ICD-related genes 
could serve as an independent predictive factor, and 
patients in the high-risk subgroup had a poorer progno-
sis. The constructed Nomogram based on this had good 
predictive value, and the time-dependent ROC curve also 
confirmed the high accuracy of the risk score in predict-
ing the clinical outcomes of leukemia patients. At the 
same time, GSEA results revealed that prognostic genes 
were similarly relevant for disorders in immune signaling 
pathways, which provide insights for further exploration 
of the molecular mechanisms and disease management 
of AML.

We then attempted to achieve a preliminary explora-
tion of the pathogenesis of leukemia through the study 
of five prognostic genes (TNF, CXCR3, CD4, PIK3CA 
and CALR). It has been reported that TNF-α is highly 
expressed in leukemia stem cells (LSC), and its abundant 
expression is closely associated with poor clinical indica-
tors. In vitro studies have shown that knockout of TNF-α 
(+) expression can make leukemia cells more sensitive 
to chemotherapy and delay leukemia relapse (in mouse 
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models) [25]. CXCR3 is expressed on many effector cells 
in tumors, including CD4 + and CD8 + T cells and natural 
killer cells. Researcher from the University of California, 
Berkeley have elucidated the key role of Treg cell expres-
sion of CXCR3 in promoting cancer progression, reveal-
ing the mechanism by which CXCR3 targeting Treg 
promotes anti-tumor CD8 + T cell activity, and emphasiz-
ing that CXCR3 + Treg is a therapeutic target for cancer 
immunotherapy [26]. CD4 + T cells are central partici-
pants and coordinators of innate and antigen-specific 
immune responses. Moreover, they are also considered 
to be anti-tumor effector cells. The balance of pro-tumor 
and anti-tumor functions of CD4 + T cells largely deter-
mines the immunogenicity of the tumor microenviron-
ment [27]. PIK3CA is an oncogene expressed in various 
organs of normal individuals, such as the brain and diges-
tive tract. PIK3CA mainly plays a role in regulating the 
proliferation and differentiation of somatic cells. In most 
cases, this gene is in an inactive state. Once the gene 
undergoes mutation, PIK3CA is abnormally activated, 
leading to excessive protein expression and cell trans-
formation [28]. Calcium-binding protein (CALR) is a 
companion of the endoplasmic reticulum (ER) lumen, 
usually maintaining the homeostasis of the ER by acting 
as a Ca2 + buffer and assisting in protein folding. Exposed 
CALR plays a wide range of roles in coordinating innate 
immune surveillance in physiological and pathological 
environments [29]. The overall treatment effect of AML 
adult patients after traditional chemotherapy remains 
poor, and ultimately affects the prognosis and survival 
of these patients. Therefore, by mean of public database 
mining, we next screened anti-tumor targeted drugs 
based on risk characteristics and some drug sensitivities, 
so as to help specialist physicians provide potential treat-
ment options with clinical benefits. Our analysis may 
provide potential treatment strategies for AML patients 
and theoretical reference for precise treatment of AML. 
However, the validity of these results still requires further 
in vitro and in vivo experiments to confirm.

We consider the following advantages of our study. 
Firstly, Yan et al. [30] constructed a key prognostic gene 
in the AML immune microenvironment several years 
ago, but we further calculated the prognostic value of 
the model we constructed, tumor mutation burden, and 
explored the tumor microenvironment of different sub-
types of ICD. Secondly, compared to other signatures 
[31–35], our prognostic model (time-dependent ROC 
curve) (AUC of 0.75, 0.77, and 0.87 for 1 year, 3 years and 
5 years, respectively) is more meaningful for the progno-
sis evaluation of AML patients. But we must be awake to 
the fact that our research remains inadequate. The results 
in this study are based on bioinformatics analysis of pub-
lic databases and still need further validation using multi-
center clinical samples and experimental methods.
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