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Abstract 

Background  Statistical epistasis, or “gene–gene interaction” in genetic association studies, means the nonadditive 
effects between the polymorphic sites on two different genes affecting the same phenotype. In the genetic associa-
tion analysis of complex traits, nevertheless, the researchers haven’t found enough clues of statistical epistasis so far.

Methods  We developed a statistical model where the statistical epistasis was presented as an extra linkage disequi-
librium between the polymorphic sites of different risk genes. The power of statistical test for identifying the gene–
gene interaction was calculated and then compared in different hypothesis scenarios.

Results  Our results show the statistical power increases with the increasing of interaction coefficient, relative 
risk, and linkage disequilibrium with genetic markers. However, the power of interaction discovery is much lower 
than that of regular single-site association test. When rigorous criteria were employed in statistical tests, the iden-
tification of gene–gene interaction became a very difficult task. Since the criterion of significance was given to be 
p-value ≤ 5.0 × 10–8, the same as that of many genome-wide association studies, there is little chance to identify 
the gene–gene interaction in all kind of circumstances.

Conclusions  The lack of epistasis tends to be an inevitable result caused by the statistical principles of methods 
in the genetic association studies and therefore is the inherent characteristic of the research itself.
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Background
Gene interaction, or epistasis, is an important concept in 
biochemical genetics, population genetics and quantita-
tive genetics [1]. The specific definitions of gene interac-
tion are different in different fields, but its basic concept 

is the interaction among genetic loci in their effects on 
phenotypes or fitness [2].

Gene interaction plays an important role in molecu-
lar genetics and quantitative genetics [1, 3]. The type of 
gene interaction determines the functional relationship 
between genes, genes and pathways, and the correspond-
ing gene products [4, 5]. The degree and nature of gene 
interactions are also important for the theoretical expla-
nation of the selective advantage of sexual reproduction 
[6, 7]. In addition, gene interaction has a profound effect 
on quantitative genetics since it plays an important role 
in many evolutionary processes, and may be involved in 
the reproductive isolation of species, the additive genetic 
variance caused by population bottlenecks, the evolu-
tion of trait mutation stability, adaptive gene complexes, 
sexual reproduction, and genetic system structures [3, 8].
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Ronald A. Fisher explained the gene interaction from 
a statistical perspective for the first time and described 
gene interaction as a non-additive statistical effect 
between genetic polymorphic sites on two different genes 
which affect the same biological phenotype [9]. The mod-
ern quantitative genetics proposed by Cockerham et  al. 
further developed the definition of gene interaction and 
regarded it as an interaction term in the regression of 
allelic effects [10]. The statistical gene interaction of two 
genes suggests that they also have physiological gene 
interaction, which may be caused by direct interactions 
between proteins or indirect interactions of gene product 
interaction networks. Therefore, statistical gene inter-
action can provide insights into the genetic structure of 
complex phenotypes, which may help to improve the sta-
tistical power of genetic association analysis.

In the past ten years, genome-wide genetic associa-
tion studies (GWAS) have gradually emerged, and a large 
number of research results on genetic markers about 
polygenic phenotypes have also emerged in abundance. 
For example, 45 lung cancer susceptibility loci have been 
reported with different strength of evidence, highlighting 
suspected causal genes at each locus [11]. However, the 
influence of a single genetic marker is limited and cannot 
fully explain the corresponding phenotypic genetic vari-
ance. Therefore, investigators tried to combine multiple 
genetic markers for statistical analysis, hoping to enhance 
the statistical power of genetic association analysis 
through "gene interaction", and find the source of unex-
plained genetic variance and more undiscovered genetic 
markers and achieve scientific breakthroughs [12]. The 
first and only genome-wide two-locus interaction analy-
sis about lung cancer performed so far by Minjie Chu 
et  al. revealed a significant interaction between SNPs 
rs2562796 and rs16832404 with a small sample size (858 
cases and 1115 controls). Since small sample size may 
easily result in false positives, further studies with large 
sample size are needed to validate their findings [13]. In 
large-scale genetic association analysis, gene interactions 
with statistical meaning have not yet been found.

Some investigators attributed this problem to the limi-
tations of linear models. The linear model plays an impor-
tant role in modern genetic epidemiology because of its 
solid theoretical foundation and widespread usage in dif-
ferent software packages [14]. Despite the advantages of 
using linear models, they do have limitations for explain-
ing genetic models of disease due to limited ability to 
detect nonlinear patterns of genetic interaction [15]. The 
limitations of statistical models have promoted the devel-
opment of calculation methods such as machine learning 
and data mining. The methods reviewed by Cordell [16] 
include novel approaches such as combinatorial parti-
tioning [17], logic regression [18], and machine learning 

approaches such as random forests [19]. Based on logistic 
regression model, Cordell et al. carried out comprehen-
sive analyses for detecting gene–gene interactions and 
obtained generally decent power under specific scenarios 
[20]. These novel methods, nevertheless, have limitations 
in their application. For example, multifactor dimen-
sionality reduction (MDR), a significant new method for 
detecting and characterizing patterns of statistical epista-
sis in genetic association studies, was feasible only for 
examining two-locus interactions in a filtered data set or 
for examining higher-level interactions in an even further 
reduced data set [16]. GWAS poses greater challenges to 
computational methods. As summarized by Ritchie [21] 
and Moore [22], combinatorial assessment of SNPs in a 
GWAS is not computationally feasible beyond explor-
ing two-way and three-way combinations. Analysis tools 
and software that can detect statistical gene interaction 
quickly and accurately are lacking yet [14].

Research on the detection of gene interaction in genetic 
association analysis is fruitful, and there are continuous 
innovations in technical means, but there are also short-
comings, that is, too much attention is paid to modeling 
and calculation methods, and little attention is paid to the 
fundamental question of whether gene interaction exists 
in genetic association analysis. To overcome these limi-
tations, we established an additive genetic effect model 
with two alleles and developed a measure of interaction 
between two unlinked disease alleles under the frame-
work of LD analysis to investigate whether there exists 
statistical epistasis in genetic association studies. We 
then calculated the power of statistical testing methods 
to detect gene interactions in different genetic scenarios. 
As a reference, we conducted a regular single-site genetic 
association study between the marker gene and the dis-
ease under different genetic scenarios, and obtained 
decent statistical power with reasonable parameters. For 
exploring the possible solution for the interaction identi-
fication, we evaluated the statistic power in investigation 
of interaction between two unlinked loci under param-
eters as same as the aforementioned single-site genetic 
association study and concluded with a reasonable theo-
retical explanation for the phenomenon of "missing gene 
interaction" in genetic association analysis.

Methods
Case‑control model
To investigate the LD pattern generated by gene–gene 
interaction, we assume that the disease-susceptibility 
loci are in Hardy–Weinberg equilibrium (HWE) in the 
population. Let X1 and X2 be the two independent dis-
ease genes located on the same chromosome. We give 
P(X1|D) and P(X2|D) as the probabilities of carrying 
the disease gene X1 and X2 by the affected individual, 
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respectively. When P(X1,X2|D) is the probability of 
carrying both X1 and X2, the LD between X1 and X2 in 
the affected individuals due to their interaction can be 
obtained in D = P(X1,X2|D)− P(X1|D) · P(X2|D).

When there is a gene–gene interaction between X1 
and X2, the coefficient of interaction could be defined in 
the disease case–control study as K =

f11D
f1∗Df∗1D

− 1 , where 
f1∗D , f∗1D , and f11D is frequency of chromosomes in 
affected individuals that carrying X1, X2, and both of 
them, respectively. The notation ‘*’ indicates any allele of 
‘0’ or ‘1’ at the current site, i.e. f1∗D = f11D + f10D.We 
assume that the relative risks of X1 and X2 are RX1 and 
RX2, respectively. We follow the definition of relative 
risks in the literature [23]. RX1 is the ratio of the inci-
dence of individuals carrying X1 in the population to the 
incidence of individuals without X1. In the same way, we 
can define RX2. The aforementioned frequencies in 
affected individuals are assumed as f1∗D =

RX1f1∗
RX1f1∗+(1−f1∗)

 , 
f∗1D =

RX2f∗1
RX2f∗1+(1−f∗1)

 , and f11D= (1+K ) · f1∗Df∗1D , where 
f1∗ and f∗1 is frequency of chromosomes in the popula-
tion that carrying X1, X2, respectively. It is clear that the 
interaction coefficient K indicates the extra LD between 
X1 and X2 due to their non-additive (multiplicative) risk. 
Similarly, we can obtain the frequencies f1∗d , f∗1d , and 
f11d for the chromosomes in unaffected individuals.

When the disease-susceptibility loci are usually unde-
tectable, genetic association studies are employed with 
marker genes. In this study, we assume that the marker 
gene M1 is in LD with X1 and that the marker gene M2 is 
in LD with X2. Furthermore, we assume that X1 and M2 
are unlinked and that X2 and M1 are unlinked.

Parameters of the model
For the case–control study, we have ND chromosomes 
in the affected group and Nd chromosomes in the con-
trol group. According to their carrying alleles of the M1 
and M2 genes, the affected group and control group can 
be further categorized into more subgroups (Table 1). For 
example, the affected group with alleles ‘1’ of M1 and ‘0’ 
of M2 have a size of N10D; the control group with alleles 
‘0’ of M1 and ‘1’ of M2 have a size of N01d.

The numbers of chromosomes carrying different 
genetic markers follow a multinomial distribution with 
the given sample sizes (ND and Nd) and frequency vector, 
i.e. [p00D, p01D, p10D, p11D]T and [p00d , p01d , p10d , p11d]T . 
For simplicity, in this study, we assumed the cases and 
controls have the same size, i.e. ND = Nd. The frequencies 
of different chromosomes in affected or unaffected indi-
viduals can be obtained with the disease prevalence, the 
relative risks of disease alleles, the interaction coefficient, 
LDs and allele frequencies of suspect, and marker genes 
in the general population. For example, the expected 

frequency of chromosomes carrying allele ‘1’ at both M1 
and M2 genes can be calculated for the affected individu-
als as below.

 where the notation p indicates the frequencies of genetic 
markers (M1 and M2) and the notation f notes the fre-
quencies of disease genes (X1 and X2). LD between the 
gene makers and disease genes is presented in D. Assume 
that D1’ is the Lewontin’s linkage disequilibrium value 
between X1 and M1 and D2’ is the Lewontin’s linkage dis-
equilibrium value between X2 and M2. More details of 
the calculation for different groups can be found in the 
Additional file 1.

Expectation and variance of effect size
We cited the LD-based definition of genetic interaction 
of Zhao et al. [12] in this research. The LD between the 
marker genes M1 and M2 for the affected and unaffected 
individuals are defined as βD = p11D − p1∗Dp∗1D and 
βd = p11d − p1∗dp∗1d , respectively. Then β̂ = β̂D − β̂d 
is the estimated effect size of gene–gene interaction in a 
case–control study.

As the case and control samples are collected indepen-
dently, the expectation of estimated effect size can be 
calculated as E(β̂) = E(β̂D)− E(β̂d) . It is easy to obtain 
expectations.

The covariance between p̂1∗D and p̂∗1D are defined as 
Cov(p̂1∗D, p̂∗1D) , and the covariance between p̂1∗d and 

p11D =
(p1∗f1∗ + DX1,M1)(p∗1f∗1 + DX2,M2)f11D

f1∗f∗1
+

[p1∗(1− f1∗)+ DX1,M1](p∗1f∗1 + DX2,M2)f01D

(1− f1∗)f∗1
+

(p1∗f1∗ + DX1,M1)[p∗1(1− f∗1)+ DX2,M2]f10D

f1∗(1− f∗1)
+

[p1∗(1− f1∗)+ DX1,M1][p∗1(1− f∗1)+ DX2,M2]f00D

(1− f1∗)(1− f∗1)

E(β̂D) = p11Dp00D − p10Dp01D − Cov(p̂1∗D, p̂∗1D)

E(β̂d) = p11dp00d − p10dp01d − Cov(p̂1∗d , p̂∗1d)

Table 1  Grouping table of disease population and general 
population on M1 and M2 Alleles

Markers Affected group Control 
population

M1 = 0, M2 = 0 N00D N00d

M1 = 0, M2 = 1 N01D N01d

M1 = 1, M2 = 0 N10D N10d

M1 = 1, M2 = 1 N11D N11d

Total size ND Nd
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p̂∗1d are defined as Cov(p̂1∗d , p̂∗1d) , which can be calcu-
lated as.

More details could be found in the Additional file 1.
As both the sample size ND and Nd are large enough, 

the above mentioned covariance is ignorable. We there-
fore calculate the expectation of effect size as of below.

We have Var(β̂) = Var(β̂D)+ Var(β̂d) . As the calcula-
tion of variance is complicated, we cited the results from 
the reference [12] directly as below.

Statistical test and power calculation
We propose the statistic as below.

 when the distribution of effect size can be approximated 
in a normal distribution. We gave the null hypothesis 
(H0) β = 0 that there is no interaction between X1 and X2 
and the alternative hypothesis (H1) β  = 0 , that is, there 
exists an interaction between X1 and X2. Under the null 
hypothesis, the statistic S follows a central chi-square 
distribution with a degree of freedom 1. The statistical 
power of the hypothesis testing can be obtained for dif-
ferent scenarios with different parameters. Details of the 
statistical test and power calculation were given in the 
Additional file 1.

Results
Expectation and variance of the effect size
Effect size presents the magnitude of differences found in 
the genetic analysis of various scenarios. To investigate 
how the gene–gene interaction coefficient K and rela-
tive risk Rx (RX1 and RX2) affect the effect size, we calcu-
lated expectation of effect size E(β) with varying K and 
Rx. In this evaluation, we keep other parameters constant. 
Assume that the X1 and M1, X2 and M2 are fully linked 

Cov(p̂1∗D, p̂∗1D) =
p11D − p1∗Dp∗1D

ND

Cov(p̂1∗d , p̂∗1d) =
p11d − p1∗dp∗1d

Nd

E(β̂) = (p11Dp00D − p10Dp01D)− (p11dp00d − p10dp01d)

Var(β̂D) =
1

ND

(p11D + p10D)(1− p11D − p10D)(p11D + p01D)(1− p11D − p01D)+

(1− 2p11D − 2p10D)(1− 2p11D − 2p01D) · (p11Dp00D − p10Dp01D)−

(p11Dp00D − p10Dp01D)
2

Var(β̂d) =
1

Nd

(p11d + p10d)(1− p11d − p10d)(p11d + p01d)(1− p11d − p01d)+

(1− 2p11d − 2p10d)(1− 2p11d − 2p01d)(p11dp00d − p10dp01d)−

(p11dp00d − p10dp01d)
2

S =
β̂2

Var(β̂)

(i.e. D1’ = 1, D2’ = 1). The risk allele frequencies of all 
genes (X1, X2, M1, and M2) are assigned to be 0.05 when 
the disease prevalence is given as 0.1.

Our results show the expectation of effect size lin-
early inflate with the increasing of interaction when 
relative risks of both disease genes are 1.5, 2.0, and 2.5, 
respectively (Fig.  1A). When the interaction coefficient 
is only 1.0, the effect sizes are 2.04 × 10–3, 4.62 × 10–3, 
and 7.68 × 10–3, respectively. However, the effect sizes 
increase to 4.07 × 10–3, 9.25 × 10–3, and 1.54 × 10–2 when 
the interaction coefficient was improved to 2.0. The 
higher the risk, the greater the increasing rate of effect 
size.

Being different from the aforementioned linear rela-
tionship, the effect size shows an exponential increase 
with higher relative risk (Fig.  1B). The effect sizes are 
1.02 × 10–3, 2.04 × 10–3 and 4.07 × 10–3 for the interaction 

of 0.5, 1.0, and 2.0 when the relative risks of both disease 
genes are given as 1.5. Alternatively, with the twofold 
higher relative risks (Rx = 3.0), the effect sizes become 
5.56 × 10–3, 1.11 × 10–2, and 2.23 × 10–2, respectively. It 
indicates a nonlinear relationship of impact factors.

It is critical to accurately estimate effect size in the 
genetic analysis. We therefore calculated the variance 
with varying sample sizes to discover their relationship. 
In this study, we give the interaction coefficient K = 1.0 
and relative risks of both disease genes Rx = 2.0 when 
the other parameters are the same as that of before. Our 
results show the variance of effect size rapidly decline 
with the increasing of sample size when the risk allele fre-
quencies of X1 are 0.05, 0.1, and 0.15, respectively (Fig. 2). 
With the sample size N = ND = Nd = 5000, the variances 
are 1.14 × 10–5, 1.12 × 10–5, and 1.09 × 10–5, respectively. 
When the size are the twofold large (N = 10000), the vari-
ances become 5.71 × 10–6, 5.58 × 10–6, and 5.45 × 10–6, 
respectively. It indicates a nonlinear relationship between 
the variance and sample size.

Statistical power of a single test
Statistical power is the central issue for the discovery 
of gene–gene interactions in genetic association stud-
ies. To investigate how the relative risk Rx contributed 
the power, we calculated the statistical power with 
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varying Rx and the significant criterion p-value ≤ 0.05. 
The other parameters are the same as that of before 
if there lacks further statement. Our results show the 
substantial increase of statistical power with the inflat-
ing of relative risk Rx and the interaction coefficients 
K under the circumstance where the sample sizes of 
both case and control groups are 10,000 chromosomes 
(Fig.  3A). Since the interaction coefficient is as large 
as 2.0, the statistical power is 0.10 with Rx = 1.20 and 
0.83 with Rx = 1.80. The statistical power is significantly 

weak when the interaction coefficient was setback to 
1.0 or 0.5. Specifically, in the scenario with interaction 
coefficient 0.5, the power is only 0.05 for Rx = 1.20 and 
0.12 for Rx = 1.80, respectively. Because relative risk 
of disease gene is generally weak, the aforementioned 
results indicate the gene–gene interaction is difficult 
to identify in such circumstances. As sample size could 
be different in different studies, we further evaluate the 
power in scenarios with varying sample sizes and the 
interaction coefficient K = 1. When the sample sizes are 

Fig. 1  Interaction coefficient and relative risks contribute to effect size in case–control studies. A The relationships between E(β) and K 
with different Rx. B The relationship between E(β) and Rx under different K 

Fig. 2  Sample sizes contribute to variance in case–control studies



Page 6 of 10Ma et al. BMC Medical Genomics          (2024) 17:111 

1000, 5000, and 10,000, the statistical power are 0.09, 
0.28, and 0.49 with relative risk Rx = 2.0, respectively 
(Fig.  3B). The results show a great sample size is nec-
essary for identifying gene–gene interaction even if the 
relative risks of disease genes are enormously large.

To investigate how the interaction coefficient K affect 
the statistical power, we calculated power with varying 
K. In this evaluation, we keep other parameters the same 
as before. Our results show the power nonlinearly inflate 
with the increasing of interaction coefficient (Fig.  4A). 
When the interaction coefficient is weak (K = 1.0), the 
power is only 0.06 with Rx = 1.2, 0.49 with Rx = 2.0, and 
0.86 with Rx = 2.5, respectively. Alternatively, the power 

increases to 0.10, 0.96, and 0.99 when the interaction 
coefficient was improved to K = 2.0. Our results show the 
power approximate to 1.0 in the circumstances with the 
large relative risks and strong interactions. However, the 
circumstances could be rare in genetic association stud-
ies of real world.

We also investigated the statistical power with both 
varying interaction coefficient and different sample sizes 
(Fig. 4B). As that was expected, the power is weak when 
the sample sizes are limited. With the sample size being 
1000 and Rx = 2.0, the power is as small as 0.09 for K = 1.0, 
0.22 for K = 2.0, respectively.

Fig. 3  Relative risks contribute to power in case–control studies. A The relationships between power and Rx with different K. B The relationship 
between power and Rx under different sample sizes

Fig. 4  Interaction coefficient contributes to power in case–control studies. A The relationships between power and K with different Rx. B The 
relationship between power and K under different sample sizes
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Statistical power with multiple testing corrections
Genetic association studies usually involved tens of thou-
sands of genetic markers. It is therefore important to 
evaluate the statistic power for identification of gene–
gene interaction in such stricter criterion in statistical 
tests. To explore the possible solution for the interaction 
identification, we evaluated the statistic power with dif-
ferent LD and allele frequencies under varying significant 
criteria.

By assuming that the X1 and M1 are not fully linked but 
X2 and M2 are in complete LD (i.e. D1’ ≠ 1, D2’ = 1). We 
investigate how D1’ affects the statistical power under dif-
ferent levels of significance. In this evaluation, we keep 
other parameters constant. Among them, the risk allele 
frequencies of X2, M1, and M2 are assigned to be 0.2 
when the sample size are 10,000. We also have K = 1.0 
and Rx = 2.0 with the disease prevalence 0.1.

Our results show the statistical power generally 
increases with the increasing of D1’ (Fig.  5A, Power1). 

When the LD is moderate, say D1’ = 0.5, the power is 
only 0.18, 0.45, and 0.16 for the risk allele frequency of 
X1 being 0.1, 0.2, and 0.3. Alternatively, with D1’ = 1.0, 
the power was improved to 0.72, 0.95, and 0.87 for the 
different allele frequencies, respectively. To compare 
the aforementioned power of interaction identification 
with that of regular association test, we calculated the 
power of association test for the marker gene M1 in the 
same circumstances. Results show the power of regular 
association test is much higher than that of interaction 
discovery (Fig. 5A, Power2). When much stricter crite-
ria (sig.level ≤ 5.0 × 10–4, ≤ 5.0 × 10–6, and ≤ 5.0 × 10–8) 
were applied in our investigation, the identification 
of gene–gene interaction became more difficult than 
ever before (Fig.  5B, C, D). As the significance level 
was given the same as many genome-wide association 
studies, p-value ≤ 5.0 × 10–8, there is little opportunity 
to identify the gene–gene interaction in all kind of cir-
cumstances (Fig.  5D). However, as that was expected, 

Fig. 5  D1’ and level of significance contributes to power1 and power2. A-D The figures show the relationship between power1, power2, and D1’ 
under three groups of f1∗ when level of significance ≤ 5.0 × 10–2, ≤ 5.0 × 10–4, ≤ 5.0 × 10–6, and ≤ 5.0 × 10–8, respectively
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it still possible to discover the significant association 
between the marker gene M1 and the disease (Fig. 5D).

To investigate the effects of interaction coefficient 
K, both the power of interaction identification and the 
power of regular genetic association test were obtained 
for different interaction coefficients and different sig-
nificance levels. Here we gave D1’ and D2’ to be 0.5 and 
1.0 respectively, when other parameters were the same 
as that aforementioned. Our results show the statistical 
power of both of the tests increase with the increasing 
of K in general scenarios (Fig. 6). However, with the cri-
terion p-value ≤ 5.0 × 10–8, it is little of power to identify 
the gene–gene interaction even if the interaction coeffi-
cient is as large as 2.0 (Fig. 6D).

Discussion
Because the influence of a single genetic variant is lim-
ited, in order to find the source of unexplained genetic 
variance and more undiscovered genetic markers, 

investigators tried to combine multiple genetic mark-
ers in their analysis to enhance the statistical power of 
genetic association study through "gene–gene interac-
tion". Wu and Cui proposed a varying-coefficient model 
for the detection of nonlinear gene-environment interac-
tion with binary disease traits and got decent power in 
a variety of genetic settings given reasonable control on 
false positive rate [24]. However, no similar results have 
been found in the studies of gene–gene interaction, and 
the reasons of which have aroused many debates. Some 
investigators argued that this problem is caused by tech-
nical limitations, and a large variety of regularization 
models for interaction studies have been developed, 
including regression based, LD based, Bayesian, data 
filtering and machine learning methods, etc [25, 26]. 
Nevertheless, the progress of statistical theory and cal-
culation methods have not yet brought substantial help 
to solve the problem. Our study provided an alterna-
tive perspective to the long debates that the gene–gene 

Fig. 6  The interaction coefficient and level of significance contributes to power1 and power2. A-D The figures show the relationship 
between power1, power2, and K under three groups of f1∗ when level of significance ≤ 5.0 × 10–2, ≤ 5.0 × 10–4, ≤ 5.0 × 10–6, and ≤ 5.0 × 10–8, respectively



Page 9 of 10Ma et al. BMC Medical Genomics          (2024) 17:111 	

interaction may not be detectable due to the lack of sta-
tistical power.

A large number of genetic markers in actual genetic asso-
ciation studies make it difficult to obtain decent statistical 
power. For controlling false positive results, multiple test 
corrections are required to be conducted. Taking the Bonfer-
roni method as an example, for a multiple test with around 
1.0 × 106 genetic markers, the declared significant threshold 
after Bonferroni correction is about 5.0 × 10–8. Our results 
showed that the power of testing gene–gene interaction 
is close to zero under such rigorous threshold. Kraft et  al. 
developed a joint test of marginal associations and showed 
that the joint test could have higher power than other joint 
tests for detecting the gene-environment association [27]. 
Their method is also helpful to detect the gene–gene inter-
action due to similar forms of statistical models of the gene-
environment and gene–gene interactions. However, as the 
size of hypotheses for detecting gene–gene interactions is a 
quadratic function of marker numbers, the chance of find-
ing statistical epistasis will be even lower in the genome-wide 
analysis with much rigorous significance criterion.

In genetic association studies, it is particularly impor-
tant to rationally define and measure gene interactions. 
However, there is no consensus on what values of inter-
action parameter or epistatic models are appropriate for 
human disease and investigators have divergent math-
ematical definition of gene interaction strength. In the 
study of Gauderman [28, 29], gene interaction strength 
was related with the interaction regression coefficient 
of logistic model, while Zhao [12] defined it as a meas-
ure of interaction between two unlinked loci associated 
with the penetrance of different genotypes at the disease-
susceptibility locus. In this study, we define coefficient 
of gene interaction as a concise ratio of allele frequen-
cies about two independent disease genes located on the 
same chromosome, and the magnitude of which reflects 
the strength of the interaction, thus providing a founda-
tion for developing statistics for detection of interaction.

An important benefit from investigating the genetics of 
human disease is to predict the risk that individuals may 
have of succumbing to a specific disease, the knowledge 
of which can then be used by the clinician in prevention, 
diagnosis, prognosis, and treatment [30]. That is why the 
relative risk is an important parameter in the studies of 
gene–gene interaction and it is significant to use reason-
able value of relative risk when conducting theoretical 
research. The relative risk of disease due to one allele is 
typically of the order of 1.1 to 2.0 in the real world [30, 31], 
and the values in this range has also been used in previ-
ous studies of gene–gene interaction [12]. In this study, we 
evaluated the statistic power with different LD, allele fre-
quencies and interaction coefficient under reasonable rela-
tive risks, ensuring the reliability of the results.

We selected the haplotype model as the research model 
for highlighting the main results. In the reference Hu 
et  al. [32], the authors mentioned three different defi-
nitions of genetic interaction as the penetrance-based 
definition, the logit-based definition, and the LD-based 
definition. They showed that the 3 definitions are equiva-
lent under the circumstances that linkage equilibrium 
holds in general population for the two loci dominant 
(or recessive) disease model. Since the framework of 
their genotype model researching gene–gene interaction 
applies as well in haplotype model when haplotype at two 
loci can be inferred from diplotype without uncertainty 
[32], our conclusions about gene–gene interaction apply 
to dominant and recessive inheritance patterns under 
Hardy–Weinberg equilibrium.

The aforementioned report [32] discussed the power 
of statistical tests to identify genetic interactions and 
emphasized the significance of the power in the specific 
circumstances. In our study, we assumed that the casual 
variants are not determined but in LD with the detected 
markers. Alternatively, the previous report gave the effect 
sizes of disease risk and interaction to the detected mark-
ers. The previous report may overestimate the power in 
general circumstances because there usually lacks a com-
plete association between causal variants and genetic 
markers. The primary difference explained the different 
results in our research and the previous studies.

The results in this article are preliminary. Interaction 
between high-order interactions among multiple loci 
have not been studied. Further research is required to 
investigate gene–gene interactions among multiple loci 
and explore the problem of missing statistical epistasis 
in genetic association analysis in a more in-depth and 
comprehensive manner, so as to lay a foundation for the 
optimization of genetic association analysis methods. In 
addition, this analysis is not applicable to general disease 
models with a total of nine genotypes since our research 
is based on haplotype model. For more general disease 
models, dominant coding or recessive coding for each 
of two loci [29, 32] can be employed to study gene–gene 
interactions as done in the previous reports.

Conclusions
This study provides a possible explanation for the long-
standing important question of "lack of epistasis" in 
genetic association studies. It points out that the lack 
of epistasis tends to be an inevitable result caused by 
the statistical principles of genetic association research 
methods and is the inherent characteristic of the research 
method itself. The results of this study suggest that look-
ing for epistasis from genetic association studies is an 
extremely tough task.
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