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Abstract

Background: Numerous studies have used microarrays to identify gene signatures for predicting
cancer patient clinical outcome and responses to chemotherapy. However, the potential impact of
gene expression profiling in cancer diagnosis, prognosis and development of personalized
treatment may not be fully exploited due to the lack of consensus gene signatures and poor

understanding of the underlying molecular mechanisms.

Methods: We developed a novel approach to derive gene signatures for breast cancer prognosis
in the context of known biological pathways. Using unsupervised methods, cancer patients were
separated into distinct groups based on gene expression patterns in one of the following pathways:
apoptosis, cell cycle, angiogenesis, metastasis, p53, DNA repair, and several receptor-mediated
signaling pathways including chemokines, EGF, FGF, HIF, MAP kinase, JAK and NF-kB. The survival
probabilities were then compared between the patient groups to determine if differential gene

expression in a specific pathway is correlated with differential survival.

Results: Our results revealed expression of cell cycle genes is strongly predictive of breast cancer
outcomes. We further confirmed this observation by building a cell cycle gene signature model
using supervised methods. Validated in multiple independent datasets, the cell cycle gene signature
is a more accurate predictor for breast cancer clinical outcome than the previously identified
Amsterdam 70-gene signature that has been developed into a FDA approved clinical test

MammaPrint®.

Conclusion: Taken together, the gene expression signature model we developed from well
defined pathways is not only a consistently powerful prognosticator but also mechanistically linked
to cancer biology. Our approach provides an alternative to the current methodology of identifying
gene expression markers for cancer prognosis and drug responses using the whole genome gene

expression data.
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Background

DNA microarray technology has created a new paradigm
for understanding cancer biology by simultaneous meas-
urement of tens of thousands of genes in malignant or
normal cells. Gene expression profiles have been utilized
to identify gene signatures for cancer diagnosis and prog-
nosis [1]. Motivated by the lack of accurate outcome pre-
diction with the best clinical predictors of metastasis
including lymph-node status and histological grade,
numerous studies sought to utilize microarray technology
in order to identify gene expression patterns that could be
used to distinguish between patients who had the same
stage of disease but different responses to treatment and
hence different overall clinical outcomes. For example, a
70-gene expression signature, often referred to as the
Amsterdam signature, was developed from gene expres-
sion profiles of 117 breast tumors and was strongly pre-
dictive of a short interval to distant metastases in patients
with tumors that were lymph node negative [2]. The 70-
gene signature was further validated in a follow-up study
of 295 breast cancer patients [3]. These studies showed
that gene-expression-based biomarkers were more power-
ful predictors of outcome than traditional clinical criteria.
Recently, microarray-based gene expression signatures
have also been developed to predict patient responses to
therapeutic agents [4,5].

However, there are two major concerns among biologists
and physicians regarding gene expression signatures
obtained from microarray data as prognosis markers or
predictors for drug responses [6]. First, gene signatures
reported by different studies have little overlap. For exam-
ple, a subset of 64 genes was identified from gene expres-
sion profiling data of 159 population-derived breast
cancer patients to give an optimal separation of patients
with good and poor outcomes [7]. Only three of the 64
genes were among the 70-gene prognosis signature [2]. In
another study, a 76-gene signature was developed from
Affymetrix array data of 286 lymph node negative breast
cancer patients for risk assessment [8]. Similarly, upon
comparison of this 76-gene signature with the Amsterdam
70-gene signature, only 3 genes overlapped. There are sev-
eral additional prognostic models with various number of
genes derived from microarray gene expression data
including the intrinsic subtype model [9-11], the wound
response model [12], the recurrence score model [13] and
the two-gene-ratio model [14]. The gene overlap between
these models is minimal. Fan and colleagues compared
five models in a single dataset and found four of the five
models to be concordant in their outcome prediction
[15]. While this result suggested that different prognostic
gene signatures may track a common set of biological
characteristics, the question remains that why there is a
lack of consensus gene expression models for prognosis.
The van't Veer dataset, for which the 70-gene signature
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was derived from [2], was analyzed retrospectively [16]. It
was found that different genes can be identified as prog-
nosis markers depending on which subset of patient sam-
ples is selected as the training dataset [16], further casting
the doubt on the current methodology of developing
prognostic gene signatures from the whole genome tran-
scription profiles. Second, the gene expression signatures
for prognosis or drug responses are often difficult to inter-
pret with respect to the underlying biology. Up to 30% of
the signature genes have unknown function while the rest
of them are associated with various unrelated biological
pathways. Ultimately, finding gene signatures that can be
linked to the molecular mechanisms of cancer develop-
ment is critical for translating these markers into the
clinic. Recent controversy in deriving gene expression pat-
terns from microarray data to predict whether tumors will
respond to chemotherapy [17] is a reflection of these two
issues.

In this report, we attempted to address the above-men-
tioned two issues by developing a novel approach to iden-
tify gene signatures for cancer prognosis in the context of
known biological pathways. Due to the nature of high
dimensional data spaces in microarray studies where the
number of measurements (> 10,000 mRNA transcripts) is
greatly higher than the number of samples, data over-fit-
ting is an inevitable issue [18]. Therefore, our rationale
was if we attempt to identify gene signatures within well
defined pathways, not only does this approach alleviate
the dimensionality problem, but the mechanism-based
gene signatures should also be more biologically relevant
than the signatures derived from the entire human tran-
scriptome. Unsupervised hierarchical clustering analysis
was first used to divide cancer patients into separate
groups based on expression patterns of genes in a known
pathway. Patient survival in the different groups was then
compared. If a specific pathway plays a critical role in
tumor progression and metastasis, patients with distinct
gene expression patterns in the pathway may have very
different clinical outcomes. The results presented here
indicate that the pattern of gene expression in the cell
cycle pathway can indeed serve as a powerful biomarker
for breast cancer prognosis. We further built a predictive
model for prognosis based on the cell cycle gene signature
and found our model to be more accurate than the
Amsterdam 70-gene signature when tested with multiple
gene expression datasets generated from several patient
populations.

Methods

Data source

Five different gene expression profiling datasets on breast
cancers were analyzed in this study. Multiple datasets were
used to demonstrate repeatability of the analysis. Specific
details on each dataset are summarized in Table 1. For
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Table I: Breast cancer gene expression profiling datasets analyzed in this study.

Reference Study summary Sample Size Microarray platforms Data download How dataset was used in
this study

Van de Vijver et al. [3] Demonstrated that a 70- 295 Inkjet Oligo http://www.rii.com/ Initial unsupervised analysis
gene expression signature publications/2002/ to identify outcome
is a more powerful nejm.html associated pathways.
predictor for outcome than
standard clinical and
histological criteria in 295
primary breast cancer
patients

Wang et al. [8] Developed a 76-gene 286 UI33A http:// Initial unsupervised analysis
signature to predict distant www.ncbi.nlm.nih.gov/ to identify outcome
metastasis using gene geo/query/ associated pathways;
expression profiling data in acc.cgi?acc=GSE2034 Training dataset to build
286 node negative primary prognostic gene signature
breast cancer tumors models.

Miller et al. [22] Identified a 32-gene 251 UI33A http:// Initial unsupervised analysis
signature from 251 primary www.ncbi.nlm.nih.gov/ to identify outcome
breast cancers to geol/query/ associated pathways;
distinguish p53-mutant and acc.cgilacc=GSE3494 Independent dataset for
wild-type tumors and to validating the prognostic
predict prognosis. gene signature models.

Pawitan et al. [7] Identified a subset of 64 159 UI33A http:/ Initial unsupervised analysis
genes from gene www.ncbi.nlm.nih.gov/ to identify outcome
expression profiles in 159 geol/query/ associated pathways;
primary breast cancers that acc.cgi?lacc=GSE 456 Independent dataset for
give an optimal separation validating the prognostic
of good and poor gene signature models.
outcomes.

Bild et al. [21] Developed gene expression 171 U95Av2 http:// Initial unsupervised analysis
signatures for oncogenic www.ncbi.nlm.nih.gov/ to identify outcome
pathways and geo/query/ associated pathways.

demonstrated these
signatures are predictive of
clinical outcomes in lung,
breast and ovarian cancers.

acc.cgi?lacc=GSE3143

each gene expression dataset, 20 molecular pathways were
analyzed. The 20 pathways were assembled from the Inge-
nuity Pathway databases http://www.ingenuity.com/ and
the SuperArray cancer pathway array annotations http://
www.superarray.com/home.php. The list of 20 pathways
and genes within each pathway are provided in additional
files [see additional file 1].

Data preprocessing

For each array study based on Affymetrix oligonucleotide
platforms, we downloaded the .CEL files and generated
gene expression values using the Affymetrix MAS5 algo-
rithm with trimmed mean values normalized to 500. A
trimmed mean is the average value after removing the
lowest 2% and the highest 2% of all expression values on
the array. Prior to analysis, each data set was preprocessed
with a log, transformation and subsequently expression
of each gene was standardized using median-centering.
Data transformation and standardization were performed
using scripts written in the R statistical programming lan-
guage. When a gene is represented by multiple probe sets

on Affymetrix oligonucleotide arrays, the average expres-
sion value was used for further analysis.

Hierarchical Clustering

Each pathway specific data set was analyzed by hierarchi-
cal average-linkage clustering. The clustering was per-
formed using Gene Cluster 3.0 http://bonsai.ims.u-
tokyo.ac.jp/~mdehoon/software/cluster/ or using R pro-
grams. The resulting numerical output was used by Java
Treeview v1.1 http://jtreeview.sourceforge.net/ to gener-
ate the associated heatmaps and clustering dendrograms.

Kaplan-Meier Survival Analysis

In addition to gene expression data, clinical information
for each primary tumor sample is provided by the authors
in each array study we analyzed (Table 1). The clinical
data included survival and/or relapse time and censoring
status. Using the available clinical outcome data, Kaplan-
Meier analysis was performed on the patient groups
defined by the hierarchical clustering analysis. An out-
come curve for each cluster was produced using GraphPad
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Prism 4. The associated p-values generated from log-rank
test in Kaplan-Meier analysis was used to represent the sta-
tistical significance of differential survival probabilities
between the two patient groups.

Supervised learning analysis

The PAM (Prediction Analysis for Microarray) algorithm
[19] was used as the classification method. The analysis
was implemented in the R programming language. A 10-
fold cross validation was used by dividing the training
dataset into 10 approximately equal-sized groups. The
model was fitted on the 90% of the samples and tested on
the remaining 10%. The procedure was repeated 10 times
so each of the 10 groups was used as the testing samples
and contributed to the overall error rate. The amount of
shrinkage was chosen to minimize the error rate.

Results

Gene expression profiling datasets and the analyzed
pathways

Although there are dozens of breast cancer microarray
studies, the available datasets that we could utilize in our
study are limited. First, to ensure statistical power, we
selected datasets with at least 100 patient samples. In
addition, both gene expression data and patient clinical
data such as survival time and status needed to be availa-
ble. To obviate fundamental difference inherent in differ-
ent array platforms, we focused mainly on gene
expression data based on Affymetrix oligonucleotide

http://www.biomedcentral.com/1755-8794/1/39

arrays, particularly more advanced platforms such as
U95Av2 or U133 series. We also included the 295-sample
dataset that served as the basis for the development and
validation of the original Amsterdam 70-gene prognostic
signature [3]. As indicated in Table 1, five datasets on pri-
mary breast tumors were analyzed.

The datasets in Table 1 were analyzed using 20 molecular
pathways that were compiled from Ingenuity Pathway
databases http://www.ingenuity.com/ and the SuperArray
cancer pathway array annotations http://www.superar
ray.com/home.php. These pathways are involved in can-
cer development by directly regulating angiogenesis or
metastasis processes, by regulating cell cycle, apoptosis,
DNA repair, or by mediating cell signaling events (Table
2). The genes in each pathway were assembled manually
from literature information as of February 2007. In addi-
tion, we included the Amsterdam 70-gene signature as a
control in our analysis. We also included a breast cancer
gene set that contains 264 genes as known molecular
markers in the prognosis and diagnosis of breast cancer.
These genes were derived from literature as well as from
previous microarray studies [2,3,13,20]. The 70-gene sig-
nature is a subset of the 264 breast cancer gene model.
Listed in additional file 1 are the pathway names and
genes associated with each pathway [see additional file 1].

Table 2: Gene expression in specific pathways as prognosis markers.

Dataset
Pathways Van de Vijver [3] Wang [8] Miller [22] Pawitan [7] Bild [21]
The 70-gene signature 5.1E-07* 0.0059* 0.00020* 0.00049* 0.038*
Angiogenesis 0.069 0.30 0.12 0.0023* 0.711
Apoptosis 0.50 0.23 0.0017* 0.19 0.055
Breast cancer 3.2E-08* 0.0035* 2.4E-04* 4.7E-05* 0.050*
Chemokines 0.16 0.28 0.064 0.00045* 0.64
Cell Cycle 9.9E-09* 0.0035* 0.0017* 9.5E-05* 0.037*
DNA damage 2.2E-05* 0.055 0.036* 0.0062* 0.2
EGF 3.5E-06* 0.25 0.0049* 0.00099* 0.013*
FGF 4.9E-06* 0.033* 0.0047* 2.1E-06* 0.14
GI_S 0.0014* 0.00098* 0.0037* 0.0027* 0.21
G2_M 0.10 0.080 3.5E-04* 0.016* 0.19
HIF 0.0035* 0.030%* 0.19 0.44 0.011*
JAK 0.67 0.37 0.061 0.084 0.029*
MAPK 0.0069* 0.94 0.0059* 0.25 0.76
Metastasis 0.35 0.015% 2.9E-04* 0.00037* 0.44
NER 0.92 0.80 0.27 0.16 0.64
NF-xB 0.88 0.91 0.49 0.47 0.11
p38 0.078 0.35 0.84 0.054 0.077
p53 9.2E-06* 0.066 0.0065* 5.9E-06* 0.013*
DNA Repair |.7E-08* 0.0076* 0.047* 0.023* 0.22
Cell surface signaling 0.045* 0.13 0.025* 4.9E-05%* 0.55

The numbers represent the log-rank test P values in Kaplan-Meier analysis in two patient groups defined by hierarchical clustering. *P < 0.05.
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Overall analysis strategy

Ilustrated in Figure 1 is a flow chart describing the overall
analysis. For each dataset, we first extracted expression
data of genes involved in a specific pathway, followed by
an unsupervised two-way hierarchical clustering analysis.
If the hierarchical clustering analysis resulted in several
distinct patient groups, then patient outcome in these dis-
tinct groups were compared using the Kaplan-Meier anal-
ysis. Our rationale is that if a specific pathway plays a
critical role in tumor progression and metastasis, patients
with distinct gene expression patterns in the pathway may
have very different clinical outcome. This process was
repeated for each of the 20 pathways we assembled.

The five datasets in Table 1 were analyzed as demon-
strated in Figure 1 for the 20 pathways. For each hierarchi-
cal clustering, cancer patients were separated into two
distinct groups that Kaplan-Meier analysis was applied to.
Summarized in Table 2 are the log-rank test P values of the
Kaplan-Meier survival analysis. A P-value of less than 0.05
suggests that the two patient clusters have significantly
differential survival probabilities.

Gene expression profiling data

i

Data pre-processing

i

Gene filtering by pathways

i

Group patients by hierarchical clustering

i

Kaplan-Meier analysis

i

Identify pathways associated with clinical outcome

i

Build prognostic predictor using supervised methods

«—

Figure |

Analysis strategy. Hierarchical clustering using gene expres-
sion in specific pathways followed by Kaplan-Meier survival
analysis. The pathways exhibiting strong correlation between
gene expression and clinical outcome were further examined
using supervised methods to build predict models.

http://www.biomedcentral.com/1755-8794/1/39

Identify pathways with gene expressions correlated with
clinical outcome using unsupervised clustering

We first tested the Amsterdam 70-gene signature and the
breast cancer gene set including 264 genes as known
molecular markers in the prognosis and diagnosis of
breast cancer. Our goal was to examine if patients with dif-
ferential expression patterns of these markers exhibited
distinct survival probabilities as one would expect. This is
a proof-of-concept test and served as the positive control
in our study. As demonstrated in Table 2, there is indeed
a significant difference in clinical outcome between the
two patient groups with distinct expression patterns of
genes in the 70-gene signature or in the 264 breast cancer
gene set. This result is reproducible in all of the five data-
sets (P < 0.05). We would like to emphasize that the five
array datasets we analyzed were generated from different
patient cohorts that included a total of 1,162 breast tumor
samples. Figure 2A depicts a heatmap of the breast cancer
gene marker expressions in 159 samples of one dataset
[7]. The column dendrogram revealed these 159 patients
were clustered into two groups with opposite expression
patterns. The two groups exhibited a markedly different
survival as revealed by the Kaplan-Meier analysis (Figure
3A).

We next investigated if gene sets based on any of the well
known pathways [see additional file 1] could be used as
cancer prognosis markers. As shown in Table 2, breast
cancer patients with differential gene expressions in cell
cycle had significantly different clinical outcome shown in
all of the five datasets (P < 0.05), suggesting that the cell
cycle pathway may be functionally important in breast
cancer progression and that the genes in this pathway
could be used as prognosis markers. EGF, FGF, G1-S and
p53 pathways exhibited significant correlation between
gene expression and survival in 4 datasets. This is some-
what expected given that G1-S transition is a part of the
cell cycle pathway and significant roles of EGF, FGF and
p53 pathway genes in regulating cell cycle. Figure 2B illus-
trates in one breast cancer array study [7], tumor samples
can be separated into two groups with distinct expression
patterns of cell cycle genes, and the two groups had signif-
icantly different survival probabilities (Figure 3B). In con-
trast, patients with distinct expression patterns of genes in
the NF-xB pathway (Figure 2C) have similar outcomes
(Figure 3C).

Confirm prognostic gene signatures in cell cycle pathway
using supervised classification

Next we applied the PAM (Prediction Analysis for Micro-
array) method [19], a supervised learning algorithm to
confirm the predictive powers of cell cycle pathway genes
for breast cancer clinical outcome, and to build a gene sig-
nature prognostic model. We used the Wang study [8] as
the training dataset to build a classification model from
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Figure 2

Hierarchical clustering heatmap of breast cancers based on expression of genes in breast cancer gene marker set (A), cell cycle
pathway (B), and NF-kB pathway (C). The dendrograms indicated that patients are clustered into two groups (Group| and
Group2) according to their expression patterns of the specified gene set.

the Amsterdam 70-gene set, the breast cancer marker gene
set and the cell cycle pathway gene set, respectively, using
the PAM algorithm. The models were fitted on 90% of the
samples and tested on the remaining 10%. Each patient in
the 10% testing samples was classified into the good or
the poor prognosis groups based on the model developed
using the training data. The procedure was repeated 10
times so each of the 10 groups was used as the testing sam-
ples and contributed to the overall prediction accuracy.
Kaplan-Meier analysis of the predicted good and poor
prognostic groups was performed to assess the predictive
power of the models. We further carried out independent
validation in two other datasets based on the same
Affymetrix array platforms U133A (Table 1). The van de
Vijver dataset [3] and the Bild dataset [21] were based on
completely different microarray platforms, an InkJet oli-

gonucleotide array and Affymetrix U95Av2 array respec-
tively, and therefore were omitted in independent
validation analysis due to technical reasons (for example,
many genes in the prognostic models built on the Affyme-
trix U133A arrays are not represented on the InkJet oligo-
nucleotide array and Affymetrix U95Av2 array). The
patient samples in the two validation datasets [7,22] were
classified into the good and poor prognostic groups
respectively using the models developed from the Wang
study [8], subsequently followed by Kaplan-Meier analy-
sis. The significance of differential survival probabilities
between the two groups, represented by log-rank test P
values in the Kaplan-Meier analysis, were recorded as
shown in Table 3. Both the cell cycle signature we devel-
oped and the previously identified breast cancer gene sig-
nature performed well as prognostic biomarkers in the
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Kaplan-Meier survival analysis of breast cancer patient groups defined by the hierarchical clustering analysis shown in Figure 2
for breast cancer gene marker set (A), cell cycle pathway (B), and NF-xB pathway (C).

training dataset and two independent validation datasets.
However, the 70-gene Amsterdam signature was less accu-
rate, particularly when evaluated using independent data-
sets. A set of 26 gene transcripts in the cell cycle pathway

exhibited expression elevations greater than 2 fold in the
poor prognosis groups in our training dataset (Table 4)
and most of these genes have well documented roles in
cancer development.

Table 3: Evaluation of cell cycle gene expression signature as breast cancer prognosis markers by supervised methods.

Dataset

Gene signature model Number of genes used in the

classification model

Training and testing: VWang
dataset [8]

Independent validation:
Miller dataset [22]

Independent validation:
Pawitan dataset [7]

The 70-gene signature 51 6.1E-05 0.057 0.051
Breast cancer 232 2.6E-09 0.0012 0.0019
Cell Cycle 108 1.4E-06 0.0050 0.0046
Random 232 1.8E-13 0.14 0.52

The numbers represent the log-rank test P values in Kaplan-Meier analysis in the good and poor prognosis groups predicted by the Amsterdam 70-
gene signature, the breast cancer gene set, the cell cycle gene set classifier, and the randomly selected gene set respectively.
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Table 4: Expression of cell cycle genes in breast cancers.

Symbol ID Fold Description

BIRCS 332 4.25 Baculoviral IAP repeat-containing 5, antiapoptotic cell cycle regulator, expression in many cancers is associated with poor prognosis and mediates cancer cell resistance to taxol and
radiation; rat Birc5 is upregulated in response to acute pancreatitis

BRCA2 675 2.13  Breast cancer 2 early onset, a transcription coactivator that binds to RADS5 | and TP53, regulates cell proliferation, cell cycle progression, and DNA repair; mutations in the
corresponding gene are associated with Fanconi anemia and multiple cancers

CCNA2 890 3.1l Cyclin A2, a cyclin-dependent protein kinase regulator, promotes G2/M transition, progression through cell cycle, cell proliferation, and phosphorylation of proteins; upregulated in male
germ cell tumors and testicular tumors

CCNBI 891 243 Cyclin Bl, complexes with CDC2 to promote nuclear membrane and Golgi disassembly, chromosome condensation, and microtubule reorganization, aberrant expression is associated
with multiple neoplasms, increased expression correlates with Alzheimer disease

CCNB2 9133 3.28 Cyclin B2, a CDC2 kinase-associated cyclin that is involved in Golgi apparatus disassembly, may function in p53 (TP53)-mediated cell cycle arrest at the G2/M transition, may mediate cell
cycle arrest and is overexpressed in nonendometrioid carcinomas

CCNEI 898 3.0l Cyclin El, a CDK and histone deacetylase regulator, regulates mitotic G|-S phase transition and promotes cell proliferation, involved in peptidyl-threonine phosphorylation and aging,
aberrant mRNA and protein expression is associated with several cancers

CCNE2 9134 2.75 Cyclin E2, a cyclin-dependent protein kinase regulator that binds CDK2 and CDK3, regulates cell cycle checkpoint; mRNA upregulation correlates with breast and lung cancer, mouse
Ccne2 is overexpressed in TPA-induced carcinomas and fore stomach cancers

CcDC2 983 2.87 Cell division cycle control protein 2, a cyclin-dependent protein kinase that acts in DNA damage checkpoint, inhibits apoptosis and EGFR signaling, expression is increased in Alzheimer
disease, viremia associated with HIV infection, and various cancers

CDC20 991 3.72 Cell division cycle 20, a mitotic checkpoint protein and transcriptional repressor, activates the mitotically phosphorylated form of the anaphase promoting complex as well as the mitotic
spindle checkpoint, overexpressed in gastric cancer

CDC25A 993 2.7 Cell division cycle 25A, protein tyrosine-threonine phosphatase, regulates G1-S and G2-M phase transitions, functions in apoptosis and oxidative stress response, activity increases in
Alzheimer's disease neurons, overexpressed in many cancers

CDC45L 8318 4.9 Cell division cycle 45 like, associates with ORC2L, MCM?7, and POLA2, predicted to be involved in the initiation of DNA replication; corresponding gene is located in a chromosomal
region frequently deleted in DiGeorge syndrome

CDCé 990 2.47 Cell division cycle 6, involved in DNA replication initiation, may regulate DNA licensing, pre-replicative complex formation and cell proliferation, upregulated in cervical intraepithelial
neoplasia and cervical cancer, downregulated in prostate cancer

CDKN2A 1029 2.13  Cyclin dependent kinase inhibitor 2A, interacts with CDK4 and CDKS®, involved in aging, anoikis, and cell cycle arrest, regulates transcription factor activity and cell proliferation,
aberrantly expressed in psoriasis and several types of cancer

CHEKI (A0 2.54 Checkpoint homolog | (S. pombe), protein kinase, required for mitotic G2 checkpoint in response to radition-induced DNA damage, inhibits mitotic entry after DNA damage via
mechanism involving CDC25, alternative form is associated with lung cancer

CKSIB 1163 2.08 CDC28 protein kinase regulatory subunit |B, essential for SKP2-mediated ubiquitination of CDKNIA and CDKNIB, regulate cell cycle progression, aberrant protein expression is
associated with several cancers

CKS2 1164 2.27 CDC28 protein kinase regulatory subunit 2, a protein that binds p34 CDC2 and may regulate cell cycle progression, upregulated in pancreatic cancer cell lines

E2FI| 1869 2.39  E2F transcription factor |, inhibits cell proliferation, aberrant expression correlates with several neoplasms and Alzheimer disease associated with Down syndrome; knockout of mouse
E2f| is associated with early onset of diabetes and Sjogren's syndrome

GTSEI 51512 2.61 G-2and S-phase expressed I, a cell cycle-regulated and microtubule-associated protein that acts in nuclear-cytoplasmic shuttling of p53 (TP53), may play a role in DNA-damage induced
apoptosis through regulation of p53 function during S and G(2) phases

KPNA2 3838 2.18 Karyopherin alpha 2, an NLS binding protein that acts in the nuclear transport of proteins and may play a role in V(D)) recombination, upregulated in breast cancer; human KPNA2 gene
map position correlates with fetal growth retardation

MAD2LI 4085 3 MAD2 mitotic arrest deficient-like | (yeast), mitotic spindle checkpoint complex component, inhibits anaphase-promoting complex activation, binds MADI LI, altered expression is linked
to several cancers and adult T-cell leukemia

MCM2 4171 2.88 Mini chromosome maintenance deficient 2, binds chromatin, regulates the onset of DNA replication, inhibits the helicase activity of the MCM 4,6,7 complex, expression is altered and is
prognostic in a number of cancers

MCM4 4173 2.82 Minichromosome maintenance deficient 4, forms a single stranded ATP-dependent DNA helicase with MCMé and MCM7, may monitor sites of unreplicated DNA, displacement from
replicated chromatin may ensure that DNA is only replicated once per cell cycle

MCM5 4174 2.39  Mini chromosome maintenance deficient 5, transcriptional coactivator that interacts with STAT |, enhances IFNG -induced and STAT | -dependent transactivation, localizes to
unreplicated chromatin, upregulated in anaplastic thyroid carcinoma

MCMé 4175 2.15 MCMé6 minichromosome maintenance deficient 6, a component of the heterohexameric MCM complex that has ATP-dependent DNA helicase activity, acts in DNA replication initiation,
upregulated in mantle cell lymphoma

MKlé67 4288 243 Ki-67 antigen, induces chromatin compaction, acts in cell proliferation, expression is altered in neoplasms including osteosarcoma and prostate, breast and esophageal cancer; gene is
mutated in cervical, colon and lung carcinoma cell lines

RADSI 5888 2.13 RADSI homolog, a DNA binding ATPase that acts in apoptosis, cell proliferation, p53-mediated DNA damage response, and double-strand break repair via homologous recombination,

aberrant expression correlates with bloom syndrome and several neoplasms

The fold changes represent the ratio of expression in the poor prognosis group over that in the good prognosis group in the training dataset [8].
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We also randomly selected 232 genes, the number of
genes used in the breast cancer gene set signature, to build
prediction models and the random models were similarly
assessed in the training dataset and two independent data-
sets as described above. This random testing was repeated
100 times and the P-values in the Kaplan-Meier analysis
were the average of the 100 experiments. Interestingly, the
classification models based on randomly selected genes
performed exceptionally well in the training dataset using
the10-fold cross validation procedure (Table 3), suggest-
ing if one uses a large number of genes to build a predic-
tion model, some of the randomly chosen genes will be
differentially expressed between the good and poor prog-
nosis groups by chance and therefore provide prognostic
values. However, when analyzed in independent datasets
of different patient cohorts, the models with random
genes did not show predictive power (Table 3), demon-
strating that microarray based gene expression predictors
must be tested through multiple independent datasets to
validate their robustness, a practice that has failed to be
recognized by most published studies in the literature.

Discussion

Our analysis demonstrated that differential expression of
genes in the cell cycle pathway is associated with differen-
tial patient outcome in breast cancers, suggesting that cell
cycle regulation may be one of the most important factors
contributing to breast cancer progression. In fact, cell pro-
liferation markers have been extensively investigated for
their prognostic values [23,24]. A literature search has
revealed expressions of many cell cycle related genes are
correlated with breast cancer progression and patient sur-
vival as individual outcome predictors. Cyclins bind and
activate cyclin-dependent kinases to drive cell cycle pro-
gression. The prognostic role of cyclins has been retro-
spectively assessed in numerous studies. For example,
measurement of cyclin E by Western Blot and immuno-
histochemistry in 395 breast cancer patients showed that
higher level of total cyclin E is strongly correlated with
poor outcome [25]. Cyclin A, B and D also appeared to be
strong prognostic markers in some studies [26-28].
CDC25A is a protein tyrosine-threonine phosphatase and
regulates G1-S and G2-M transitions. Overexpression of
CDC25A is associated with poor prognosis in breast can-
cers [29]. Several independent reports demonstrated that
high level E2F1 expression correlates with reduced dis-
ease-free survival in node-negative breast cancer patients
[30-32]. Ki-67 (MKI67) antigen induces chromatin con-
densation and is a well known cell proliferation marker. A
recent review summarized that Ki-67 expression assayed
by IHC showed prognostic values in 15 studies where a
total of more than 5000 tumor samples were analyzed
[24]. While these cell cycle related genes have been indi-
vidually linked to breast cancer outcome, the multi-gene
signature we applied in our analysis may provide a more

http://www.biomedcentral.com/1755-8794/1/39

accurate predictor, and more importantly these genes are
mechanistically implicated in breast cancer progression. A
close examination of gene identities in the cell cycle path-
way, the Amsterdam 70-gene signature, and the control
breast cancer gene signature revealed that the Amsterdam
signature only included one cell cycle gene (cyclin E2). In
contrast, the 232-gene breast cancer signature and the
108-gene cell cycle pathway have a 25-gene overlap
including several cyclins (cyclin B1, B2, D1, E1, E2), cyc-
lin-dependent kinases (CDK2, CDK4), tumor suppressors
p53 and RB1, and the proliferation marker Ki-67, suggest-
ing that predictive power of the control breast cancer sig-
nature may be due to the presence of these cell cycle
related genes.

Adjuvant therapy and hormonal treatment of breast can-
cer patients have been demonstrated to improve survival.
However, these treatment regimens are costly and could
have serious side effects, therefore, should only be recom-
mended to high risk patients. Traditional prognostic fac-
tors such as lymph node status, tumor diameter and
histological grades do not accurately predict clinical
behaviors of the breast tumors and as a result, patients can
be over-treated or under-treated depending on the clin-
icpathological guidelines. Identification of additional
prognostic markers is important for clinicians to select the
most appropriate systemic treatments for individual
patients according to their risks of relapse or death. Cell
proliferation is a key feature of breast tumor progression
and has been widely evaluated as a prognosis factor.
Although many proliferation markers have been estab-
lished as robust prognosticators, they have not been
applied in clinic due to various technical barriers. For
example, 3H-thymidine labeling index (TLI) was one of
the first methods developed to evaluate proliferative activ-
ity through measuring 3H-thymidine uptake by tumor
cells undergoing DNA synthesis [33-35]. However, it has
never been adopted as a standard prognostic marker
because the experiment requires fresh tumor tissue and a
complex and time consuming radioactive assay for in vivo
administration of labeled substances. Measurement of
DNA content by flow cytometry has provided a reliable
approach to determine tumor cell proliferative activity
represented by S-phase fraction (SPF) [36], but the lack of
standardized procedure to prepare and analyze tumor
samples precluded use of this method as a routine assay
[37]. Application of proliferation antigen Ki-67 is ham-
pered as the Ki-67 monoclonal antibody could only be
used on fresh or frozen tissue since fixation greatly
reduced immunostaining [38]. The predictive power of
abovementioned cell cycle regulators such as cyclins has
not yet proved definitive since in some studies the corre-
lation between protein level and clinical outcome is not
significant [23]. The Amsterdam 70-gene expression sig-
nature as breast cancer prognosis marker has been vali-
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dated in follow-up studies [39,40], and a clinical assay
MammaPrint® has recently been cleared by FDA. How-
ever, the two issues associated with the current gene
expression signature markers for prognosis, i.e. the lack of
a consensus gene set and the difficulty to understand
underlying mechanisms, may prevent them from being
widely accepted. The cell cycle gene signature we identi-
fied in this study has provided a prognostic gene expres-
sion marker that not only performed better than the
Amsterdam 70-gene signature but is also mechanistically
linked to breast cancer progression.

There have been recent reports to incorporate biological
pathway information into classification models by using
a network analysis approach [41] or to identify functional
gene sets from various sources including Gene Ontology
to distinguish two different biological phenotypes
[42,43]. In this study, we assembled 20 pathways that are
known to be involved in cancer development and progres-
sion, and then extracted expression data of genes only in
these pathways in order to identify a mechanistic gene sig-
nature biomarker for breast cancer prognosis. We first
selected pathways according to their classification powers
based on unsupervised analysis, followed by building
prognostic gene signature models using the standard
supervised methods. The signature developed after pre-
selecting relevant pathways should be more reliable and
generally applicable as demonstrated by our validation
when applied to multiple independent datasets. This is
not surprising since the signature is derived from the cell
cycle pathway and it has been well documented that cell
cycle control plays a critical role in determining breast
cancer outcomes.

We also recognize the limitation of our study. While the
cell cycle gene signature derived from a training dataset
[8] performed well in prognosis prediction in two inde-
pendent validation datasets [7,22], we did not specifically
examine how stable the signature is by building multiple
signatures in different datasets in the context of cell cycle
pathway and then comparing these signatures for the
extent of overlap. We reasoned that there could be signif-
icant overlap simply due to a much smaller gene set that
we started with in signature model building. Furthermore,
we did not attempt to understand the cell cycle signature
at the individual gene level to interpret the role of each
gene in disease progression based on the numerical coef-
ficients in the signature model because these numerical
parameters are heavily impacted by technical variations.
Nevertheless, our pathway oriented approach and the
analysis results strongly suggest a critical role of the cell
cycle pathway in breast cancer progression, which is also
consistent with what has been known from a rich collec-
tion of literature information.

http://www.biomedcentral.com/1755-8794/1/39

Conclusion

Post-genomic technologies have provided a new para-
digm in developing tailored therapeutic strategies for
treating complex diseases. One notable example is the
development of gene expression signatures based on
microarray data to predict prognosis and responses to
chemotherapy in cancers [5]. Several studies have revealed
that multiplex gene expression markers are more powerful
in predicting clinical outcomes than the traditional clini-
cal criteria. However, the promise of applying these gene
signature biomarkers in clinic is hampered because the
underlying biology of gene signatures in cancer develop-
ment is not well understood. Furthermore, different stud-
ies often report different gene expression predictors for
the same cancer type and as a result, many biologists and
physicians remain skeptical of the gene signature concept.
In this study, we developed a novel approach to derive
gene expression signatures for cancer prognosis in the
context of known biological pathways. Our analysis not
only generated mechanism based gene signature predic-
tors, but also shed light on the role of different molecular
pathways in cancer development. To our knowledge, the
current study is the first effort to integrate gene expression
profiling data and well known pathway information to
develop pathway specific gene expression signatures for
cancer prognosis, and our approach will likely provide a
new direction in the Oncogenomics field to develop gene
signature biomarkers. The predictive power of the cell
cycle gene signature for breast cancer prognosis as demon-
strated in the present study warrants further investigation
such as prospective clinical trials to explore its utility in
clinic. Moreover, the methodology we developed could be
utilized to identify gene signature biomarkers to guide
clinical development of novel cancer therapeutic agents.

Note Added in Proof

While this manuscript was in preparation, using a com-
pletely different approach, Mosley and Keri described a
similar observation that cell cycle genes dictate the power
of breast cancer prognostic gene list [44].
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