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Abstract

Background: The rexinoid bexarotene (LGDI1069, Targretin) is a highly selective retinoid x
receptor (RXR) agonist that inhibits the growth of pre-malignant and malignant breast cells.
Bexarotene was shown to suppress the development of breast cancer in transgenic mice models
without side effects. The chemopreventive effects of bexarotene are due to transcriptional
modulation of cell proliferation, differentiation and apoptosis. Our goal in the present study was to
obtain a profile of the genes modulated by bexarotene on mammary gland from three transgenic
mouse mammary cancer models in an effort to elucidate its molecular mechanism of action and for
the identification of biomarkers of effectiveness.

Methods: Serial analysis of gene expression (SAGE) was employed to profile the transcriptome of
p53-null, MMTV-ErbB2, and C3(1)-SV40 mammary cells obtained from mice treated with
bexarotene and their corresponding controls.

Results: This resulted in a dataset of approximately 360,000 transcript tags representing over
20,000 mRNAs from a total of 6 different SAGE libraries. Analysis of gene expression changes
induced by bexarotene in mammary gland revealed that 89 genes were dysregulated among the
three transgenic mouse mammary models. From these, 9 genes were common to the three models
studied.

Conclusion: Analysis of the indicated core of transcripts and protein-protein interactions of this
commonly modulated genes indicate two functional modules significantly affected by rexinoid
bexarotene related to protein biosynthesis and bioenergetics signatures, in addition to the targeting
of cancer-causing genes related with cell proliferation, differentiation and apoptosis.
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Background

The American Cancer Society estimates that 212,920 new
cases of invasive breast cancer and 40,970 deaths were
expected to occur in the United States in 2006 [1].
Approximately two-thirds of all breast cancers are ERa (+)
at the time of diagnosis and expression of this receptor is
determinant of a tumor phenotype that is associated with
hormone-responsiveness. Patients with tumors that
express ERa have a longer disease-free interval and overall
survival than patients with tumors that lack ERa expres-
sion [2]. Despite the effectiveness of anti-estrogen selec-
tive ER modulators (tamoxifen and raloxifene) for ERa
(+) breast cancer treatment, there is a clear need
to develop agents for the prevention and treatment of ERa
(-) breast cancer.

Genetically engineered mouse mammary cancer models
are defined by a known genetic background and develop
tumors after a predictable time course [3]. Importantly,
mammary tumors arising in transgenic mice are generally
ERa (-) providing a useful system for testing chemopre-
ventive agents against hormonally non-responsive
tumors.

Retinoids are biologically active derivatives of vitamin A
that play essential roles in embryonic or adult cell behav-
ior modulating cell proliferation, differentiation and
apoptosis. Signal transduction is mediated by two classes
of nuclear receptors retinoid-dependent transcriptional
activators: the retinoic acid receptor (RARa, f, y) and the
retinoid x receptor (RXRa, B, 7). These ligand-depended
transcription factors bind to response elements (RAREs or
RXREs) in the promoter region of modulated genes [4].
The RXR protein can also dimerize with other nuclear hor-
mone receptors such as vitamin D receptor, thyroid hor-
mone receptors, PPAR (o, y) and orphan receptors
conferring rexinoids responsiveness to additional subset
of target genes [5].

We previously analyzed the chemopreventive effective-
ness of a highly selective RXR agonist, the rexinoid bexar-
otene (LGD1069) in three different transgenic mouse
mammary models [6,7]. These studies showed a signifi-
cant decrease in mammary tumorigenicity when MMTV-
ErbB2, p53-null and C3(1)-SV40 tag mammary gland
recipient virgin mice were treated with bexarotene (100
mg/kg dose). Although, bexarotene is more effective
against c-erbB2 induced mammary tumors than against
p53-null or SV40Tag mammary tumors; this data demon-
strated that bexarotene is effective against the early stages
of premalignant development independently of the
genetic model assessed. More importantly, if specific gene
expression signatures modulated by bexarotene across
mammary cancer models could be identified, they might
point to core transcriptional program/s on which atten-
tion should be focused.

http://www.biomedcentral.com/1755-8794/1/40

In an effort to elucidate the molecular mechanism of
action of chemopreventive rexinoid bexarotene and to
identify potential biomarkers of significance, here we
report a comparative transcriptome profiling of three
mouse mammary cancer models by Serial Analysis of Gene
Expression (SAGE). We focused our analysis on untreated
mammary gland and on rexinoid bexarotene treated
mammary gland at time periods prior to the histopatho-
logic identification of premalignant progression. These
studies identified a series of rexinoid-regulated genes and
molecular pathways that may be critical for the cancer pre-
ventive activity of bexarotene.

Methods

Rexinoid LGD 1069 and transgenic mouse mammary
models

The RXR-selective retinoid used in this study bexarotene
(LGD1069, Targretin) was obtained from Ligand Pharma-
ceutical, Inc (San Diego, CA).

Female MMTV-erbB2 mice [8], (obtained from The Jack-
son Lab., Bar Harbor ME) and C3(1)/SV40 T-antigen
strain mice [9] (obtained from The National Cancer Insti-
tute, Frederick, MD) were housed in the institutional ani-
mal facilities. Balb/c p53-null mammary epithelium
transplanted into the cleared mammary fat pads of three-
week old mice p53 wt Balb/c mice [10] were initiated and
maintained at BMC. Each group included age-matched
untreated controls and bexarotene-treated mice. All mice
were treated 6 days/week during 2 months starting at 8
weeks of age with bexarotene suspended in purified ses-
ame oil (Croda, Inc., Mill Hall, PA). The retinoid was
administered by gastric gavage using a 20-gauge gavage
needle in a volume of 0.1-ml containing vehicle 100 mg/
kg of bexarotene. Virgin animals were used to avoid con-
founding effects of hormonal surges during pregnancy. All
animal research was conducted in AAALAC accredited
facilities, following international guidelines and all
research was approved by the corresponding Institutional
bioethics committees.

SAGE methodology

The six mouse SAGE libraries were generated following
standard procedures as described previously [11]. Briefly
total RNA was extracted from frozen samples using TRIzol
(Invitrogen, Carlsbad, CA, USA). SAGE library construc-
tion was performed with the I-SAGE kit (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer's pro-
tocol and introducing only minor modifications. The
anchoring enzyme was Nlalll and the tagging enzyme
used was BsmFI. Concatemerized ditags were cloned into
PZERO-1 and sequenced with an ABI 3700 DNA Analyzer
(Applied Biosystems, Foster City, CA, USA). To decrease
the chances potential artifacts due to sample heterogene-
ity, each control or bexarotene treatment SAGE library
represents a pool of three mammary epithelial samples
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from three age-matched separate mice. For the studies on
the p53-null mammary cancer model we used mammary
epithelial enriched preparations as previously described
[12], for the MMTV-erbB2 and C3(1)/SV40 T-antigen
models we used total mammary gland preparations. SAGE
libraries were generated at an approximate resolution of
60,000 SAGE tags per library.

SAGE data processing and statistical analysis

SAGE tag extraction from sequencing files was performed
by using the SAGE2000 software version 4.0 (a kind gift of
Dr. Kenneth Kinzler, John Hopkins University, Baltimore,
MD). SAGE data management, tag to gene matching, as
well as additional gene annotations and links to publicly
available resources such as Gene Ontology (GO), Uni-
Gene, and Entrez gene ID, were performed using a suite of
web-based SAGE library tools developed by us. In our
analyses we only considered tags with single tag-to gene
reliable matches. To compare the control (vehicle) vs. bex-
arotene treatment SAGE libraries in each transgenic mice
model, we utilized the Audic and Claverie's significance
test [13]. Statistical analysis and scatter plot visualization
of SAGE libraries were done with the Discovery Space 4
software (Genome Science Centre, BC Cancer Agency,
Canada, Vancouver) http://www.bcgsc.ca/platform/bio

info/software/ds.

Bexarotene molecular signature determination

The main strategy of this analysis was to identify com-
monly deregulated genes by bexarotene treatment among
the different mammary cancer models tested (Figure 1).
Differentially expressed genes were compiled into one
Excel spreadsheet pivot Table for comparison of overlap-
ping data between p53-null, MMTV-erbB2 and C3(1)/
SV40 T-antigen transgenic mouse mammary models. Any
combination of two lists was compared for matching
gene-identity. The number and identity of genes com-
monly affected in two models (e.g. MMTV-erbB2 vs. p53-
null) was determined. We used the normal approxima-
tion to the binomial distribution as previously described
[14] to calculate whether the number of matching genes
derived from each pairwise comparison was of statistical
significance (p < 0.05). To enable illustration of the com-
monly deregulated genes between mammary cancer mod-
els, we used the TIGR MultiExperiment Viewer (MeV 3.0)
software. This tool was used for average clustering of
SAGE based on the fold change of tag counts for each tran-
script comparing bexarotene treatment to control (vehi-
cle) in each transgenic mice mammary model. For
automated functional annotation and classification of
genes of interest based on Gene Ontology (GO) terms, we
used the EASE [15] available at the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) [16].
All of the raw SAGE data reported as additional files in this
article are publicly available and also can be viewed at

http://www.biomedcentral.com/1755-8794/1/40

Intra-model analysis of bexarotene treatment
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Differentially expressed genes from each mouse mammary models

Inter-model analysis of bexarotene treatment

Commonly differentially expressed genes among transgenic mice

Infering molecular mechanism of action
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Common core of gene expression and
pathways modulated by bexarotene

Figure |

Candidate genes and pathways modulated in normal
mammary epithelium by rexinoid bexarotene in
three different transgenic mice mammary cell mod-
els were identified through a three-stage process:A.
Identification of differentially expressed genes in mammary
gland as a result of treatment with bexarotene comparing
with vehicle control, in each of the mammary cancer models
B. Inter-model comparison for the identification of overlap-
ping gene expression profiles. C. ldentification of associated
functional modules and pathways affected by bexarotene
treatment.

http://sciencepark.mdanderson.org/labs/gge
SAGE_Proj_14.htm.

In order to identify the molecular pathways that are
mainly affected by the rexinoid bexarotene, we look for
protein/gene interaction networks in the common core of
modulated genes. The protein-protein interaction net-
work associating genes of the three transgenic mouse
mammary models was generated using the database
STRING ('Search Tool for the Retrieval of Interacting
Genes/Proteins') http://string.embl.de/[17]. The database
STRING aims to collect, predict and unify most type of
protein-protein associations, including direct and indirect
associations. STRING runs a set of prediction algorithms,
and transfers known interactions from model organisms
to other species based on predicted orthology of the
respective proteins [18]. In order to identify each gene in
the database, we used both mouse gene name and Entrez
gene ID in the 'protein-mode' application. The analysis
input options were 'co-occurrence', 'co-expression’,
‘experiments', 'databases’, and 'text mining' data at high
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confidence level of predicted human orthology groups.
Pathways are discriminated by different colors based on
up-modulated (red node) or down-modulated (green
node) transcripts in order to indicate protein-protein net-
works modulated by bexarotene across mammary cancer
models.

Results and discussion

RXR-selective rexinoids inhibit the proliferation of
normal, pre-malignant and malignant breast cells sup-
pressing mammary tumor development in MMTV-erbB2,
p53-Null, and C3(1)/SV40 T-antigen transgenic mice
models [[6,7] and Medina et al., unpublished]. The
chemopreventive effects of bexarotene are likely due to
transcriptional modulation of genes related to repression
of cell proliferation and stimulation of apoptosis and cell
differentiation [19].

In order to identify rexinoid-regulated biomarkers, we
generated six mouse SAGE libraries corresponding to
mammary gland samples from control and bexarotene
treatment from three transgenic mouse mammary cancer
models: p53-Null [10], MMTV-erbB2 [8] and C3(1)/SV40
T-antigen [9]. This resulted in the sequencing of 360,000
tags (60,000 tags per library), thus monitoring the behav-
ior of more than 20,000 transcript tags. Our statistical
analyses revealed 236 transcripts differentially regulated
by bexarotene treatment in mammary epithelium from
p53-null background, 283 transcripts in mammary gland
from the MMTV-erbB2 model, and 290 transcripts in the
C3(1)/SV40 T-antigen transgenic mice mammary model
(Figure 2A; see Additional file 1). Table 1 shown the most
highly bexarotene deregulated transcripts from each trans-
genic mice mammary cancer model (Fold change > 7;
p<0.01).

In order to identify co-occurring differentially expressed
genes among the three transgenic mice analyses, we per-
formed an inter-model comparison between the above-
described SAGE datasets (Figure 1). Among the three mice
mammary models, a total of 711 transcripts were identi-
fied as deregulated by the rexinoid bexarotene treatment.
Eighty-nine genes were identified in more than one mam-
mary cancer model (Figure 3A; see Additional file 2).
Interestingly, nine of these 89 genes were deregulated by
bexarotene in mammary gland tissue from all three trans-
genic models: Muc15 (Mucin 15), Cdo1 (Cystein dioxyge-
nase 1), Rps8 (Ribosomal protein S$28), Rps27
(Ribosomal protein S27), Rps24 (Ribosomal protein
S24), Hspa5 (Heat shock 70 kD protein 5), Csrpl
(Cysteine and glycine-rich protein 1), Npm1 (Nucleo-
phosmin 1), and Cycs (Cytochrome c somatic). Gene
Ontology annotation of the 89 deregulated genes that
were common in any two models showed that approxi-
mately 18% of the transcripts are involved in tricarboxylic
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acid cycle/oxidative phosphorylation, 14% are related to
signal transduction/transcriptional regulation, 14% are
related to protein metabolism and 12% are related to cell
proliferation/differentiation and apoptosis.

A probabilistic analysis showed that 56 genes were co-
deregulated in MMTV-erbB2 and C3(1)/SV40 T-antigen
mice models, representing a non-random significant
number of overlapping genes based on normal approxi-
mation to the binomial distribution (p < 0.001) (Figure
3B). Thirty-five genes were identified as co-deregulated in
MMTV-erbB2 and p53-null mice models (p < 0.001). The
set of 16 genes overlapping between p53-null and C3(1)/
SV40 T-antigen were not statistical significant, i.e. the
overlapping could be simply by chance (p > 0.05) (Figure
3B). In other words, it appears that a better correlation
was observed between MMTV-ErbB2 with the other two
models, than between p53-null and C3(1)-SV40 tag trans-
genic mouse mammary gland models. These data suggest
that mammary tumors derived from different primary
oncogenic pathways could respond differently to the same
chemoprevention agent. In addition, these results indi-
cates that transcripts modulated by bexarotene in the
MMTV-ErbB2 mammary gland share almost all the com-
mon features among the transgenic mouse models ana-
lyzed. As mentioned above, we have previously shown
that bexarotene suppresses mammary tumor develop-
ment in the MMTV-ErbB2, p53-null and C3(1)-SV40 tag
transgenic mouse mammary gland models [6,7]. Interest-
ingly, the specific response of these three transgenic
mouse mammary models to bexarotene treatment varies
with the genetic background assessed. For instance, the
bexarotene treatment is much more effective against
MMTV-ErbB2 induced mammary tumors than against
C3(1)-SV40 or p53-null mammary tumors [Medina et al.,
unpublished]. In the MMTV-ErbB2 mammary gland, bex-
arotene reduced tumor incidence by 75% and lengthened
median tumor latency from 234 days to over 420 days [7].
However, in the p53-null and C3(1)-SV40 mammary
gland where p53 or p53/Rb activities are affected respec-
tively, bexarotene treatment showed modest chemopre-
vention activity. Both these molecules exert primary
functions downstream of the CDKs, loci of targets activity.
In this sense, human breast cancer is a complex disease
caused by dysregulation of many different oncogenes,
tumor suppressor genes and growth factor pathways. The
MMTV-ErbB2, p53-null and C3(1)-SV40 tag mouse mam-
mary gland cancer models are valuable tools for the eluci-
dation of the mechanisms of mammary tumorigenesis
[3]. However, it is important to recognize that no one
model represents the heterogeneity of human breast
cancer.

We present in Figure 4 a protein-protein interaction net-

work associating the common core of non-random bexar-
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Table I: Most highly deregulated transcripts in mammary gland induced by bexarotene treatment on each transgenic mice mammary
cancer model (Fold change > 7; p < 0.01).

Tag Gene Description Entrez Gene  Fold Change*
p53-null

GTTTGCTGTA Serpinbba Serine (or cysteine) peptidase inhibitor 20719 17.0
AGTCTCGAGG Slcla5 Solute carrier family | 20514 12.0
GGTTTGGGGG Jup Junction plakoglobin 16480 1.0
TGCGTGCTGG Timp2 Tissue inhibitor of metalloproteinase 2 21858 11.0
TTGAAATTAC BC061494 CDNA sequence 381832 1.0
GATTTCTTTG Gpc3 Glypican 3 14734 10.0
TAACCAAAAA Itgb4 Integrin beta 4 192897 10.0
CCCAGTCCCT Ltbp4 Latent transforming growth factor bindin. prot. 4 108075 8.0
GACTCTATAT Csn2 Casein beta 12991 -15.0
CAATAAAACA Sarlb SAR! gene homolog B (S. Cerevisiae) 66397 -11.0
GCAGCGATTC Nme2 Expressed in non-metastatic cells 2 18103 -10.0
TGTTCTATGG Laptm5 Lysosomal-associated protein transmembrane 5 16792 -9.0
GTGTTTTGCT Al451557 Expressed sequence 102084 -9.0
CTAGGTGGTG Glycam| Glycosylation dependent cell adhesion molecule | 14663 -8.8
TAAAGTCAAT Mucl5s Mucinl5 269328 -8.0
TCAGAGTGAG Igh-6 Immunoglobulin heavy chain 6 16019 -7.5
MMTV-erbB2

AGACCCTGTC Pnpla3 Patatin-like phospholipase domain containing 3 116939 44.0
TATGAGATAG Timm?9 Translocase of inner mitochondrial membrane 9 30056 15.0
AGCCCTCGGA Acads Acyl-Coenzyme A dehydrogenase 11409 12.0
ACCGGGCTGG Elovi6 ELOVL family member 6 170439 12.0
TGACAGAAGA Tnnc2 Troponin C2 21925 10.0
TCTCTCAGTC Anxa5 Annexin A5 11747 9.0
CACAGAACCA 0610031J06 RIKEN ¢DNA 0610031J06 gene 56700 7.0
CCTGCAGCAG 2900073H19 RIKEN ¢DNA 2900073H19 gene 68205 7.0
GCCACTTAAG Cd79a CD79A antigen (immunoglubulin-associated alpha) 12518 -15.0
AGCCATCATA 2610042014 RIKEN cDNA 2610042014 gene 66460 -13.0
AGCGAAATAA Gmfg Glia maturation factor gamma 63986 -11.0
CTGCAGCCTA Stx5a Syntaxin 5A 56389 -11.0
TTACAAGCCT Ckslb CDC28 protein kinase |b 54124 -10.0
GTGGACTCAA Ifitm | Interferon induced transmembrane protein | 68713 -10.0
CATAGTTTAA Nol7 Nucleolar protein 7 70078 -10.0
AAGTTCTTCA Csnls2a Casein alpha s2-like A 12993 -9.0

C3(1) SV40 T-antigen

AGCAGTGCTT Cedc3 Coiled-coil domain containing 3 74186 13.0
CAGTTTGTAA Pdhal Pyruvate dehydrogenase El alpha | 18597 10.0
AATGTGTATG Abca8a ATP-binding cassette sub-family A (ABCI) 217258 9.0
ATTCCCTGTT Krtap8-1 Keratin associated protein 8-1 16703 8.0
CCGAAAAAAA Pink | PTEN induced putative kinase | 68943 7.0
ACTCTAAAAA Tmem55b Transmembrane protein 55b 219024 7.0
CTGTAGTGTC Ltf Lactotransferrin 17002 7.0
CTGTCCAAGG Bhlhb2 Basic helix-loop-helix domain containing class B2 20893 7.0
GAAAATAAAA Fndc3a Fibronectin type Ill domaing containing 3a 319448 -20.0
TAAATTAAGA Hexb Hexosaminidase B 15212 -16.0
TTAGAAGTGA Savl Salvador homolog | (Drosophila) 64010 -15.0
GGGGGTGAGG Hisppd| Histidene acid phosphatase domain containing | 227399 -15.0
TAACAAAGGA Ahcyll S-adenosylhomocysteine hydrolase-like | 229709 -14.0
GATTAAAACA 4931406120 RIKEN cDNA 4931406120 gene 66743 -11.0
TTAACACTGT Rab35 RAB35, member RAS oncogene family 77407 -10.0
CAGATTAAAA Gbpé Guanylate binding protein 6 229900 -9.0

*Up-regulated transcripts in bexarotene treatment are represented by positive fold changes and down-regulated transcripts are represented by
negative fold changes.
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otene modulated genes across transgenic mouse
mammary models. The graph was generated employing
the STRING on-line resource based on high confidence
data related with 'co-expression/co-ocurrence’, 'experi-
mental/biochemical data' and ‘'association in curated
database/text mining' [17]. STRING is a comprehensive
tool integrating protein association information with the
capability to transfer known interactions from model
organisms to other species (e.g.: from mouse to human
orthology genes/proteins) based on predicted orthology
of the respective proteins. The generated graph (Figure 4)
indicates strong interactions among a set of 33 proteins
transcriptionally modulated by bexarotene. Furthermore,
the network architecture suggests the existence of two
functional modules in this figure, involving the down-
modulation of genes related with protein biosynthesis path-
way, and up-modulation of genes related with tricarboxylic
acid cyclefoxidative phosphorilation pathways.

Protein biosynthesis signature

A common observation in cancer gene expression profil-
ing is the systematic up-regulation of ribosomal genes
among the most abundant transcripts in human and
mouse mammary carcinomas compared with normal tis-
sues [20-24]. The up-regulation of ribosomal genes was
significantly correlated with variation in the cell doubling
time in vitro, supporting the notion that these genes are
up-regulated in relation to the increase of cell prolifera-
tion rate or growth rate during malignant transformation.
Interestingly and in an opposite manner, bexarotene treat-
ment cause in 'normal' mammary gland the down-regu-
lated expression of more than 10 genes related to protein
biosynthesis including numerous ribosomal proteins
(Rpl19, Rpl37, Rpsdx, Rps8, Rps24, Rps27, Rps29), Eefl1b2
(Eukaryotic translation elongation factor 1 beta 2), Eif2s3x
(Eukaryotic translation initiation factor 2), Fau (Finkel-Biskis-
Reilly murine sarcoma virus) and Tpt1 (tumor protein, trans-
lationally-controlled 1). The inhibition of mRNA synthesis
for genes encoding ribosomal proteins has been suggested
as a mechanism that could reprogram the cancer cell to
recover some of its normal functions in a tumor reversion
process [25].

Tptl (also known as Tctp) encodes a GDP dissociation
inhibitor protein of the translation elongation factor
eEF1A [26]. The human TPT1 gene is overexpressed in
cancerous cell lines compared with cell lines derived from
normal tissues. Tuynder et al. (2002) demonstrated that
the expression levels of TPT1 were strongly down-regu-
lated at the mRNA and protein levels during tumor rever-
sion/suppression. MCF7 and T47D cell lines transfected
with Tptl siRNA showed a more organized ductal-like
structures similar to those generated by down-regulation
of B1 integrin [25]. Here we observed that bexarotene sig-
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nificantly dowregulated expression of Tptl in mammary
epithelium.

Bioenergetics signatures

More than 50 years ago, Warburg proposed that malig-
nant phenotype might be caused by a decrease in mito-
chondrial energy metabolism paralleled by increased
glycolytic flux [27]. Increasing evidence is in line with this
hypothesis suggesting a close link between metabolic and
genetic changes observed during malignant growth
[28,29]. Recently it has been demonstrated that impaired
bioenergetic function of mitochondria is a hallmark of
carcinogenesis in breast, gastric, lung and oesophageal
cancer [30,31]. Moreover, Schulz et al. (2006) showed
that induction of mitochondrial oxidative metabolism
efficiently suppresses malignant growth in vitro and in
vivo. Interestingly, we identified a systematic up-regula-
tion of transcripts related to oxidative phosphorylation
induced by bexarotene treatment in mammary gland (Fig-
ure 4). The transcripts commonly up-regulated by bexaro-
tene treatment in at least two of the models were Atp5b
(ATP synthase F1 complex beta subunit), Atp5e (ATP synthase
F1 complex epsilon subunit), Cycl (Cytochrome c-1), Cycs
(Cytochrome c¢ somatic), Cox5b (Cytochrome c oxidase, subu-
nit Vb), Cox7b (Cytochrome c oxidase subunit VIIb), Cox8a
(Cytochrome c oxidase, subunit Villa), Ndufal (NADH dehy-
drogenase 1 alpha subcomplex), Ndufcl (NADH dehydroge-
nase 1), Ndufb8 (NADH dehydrogenase 1 beta subcomplex 8),
Ndufall (NADH dehydrogenase 1 alpha subcomplex 11) and
Ugqcrh (Ubiquinol-cytochrome ¢ reductase hinge protein) (see
Additional files 1 and 2). Consistent with a significant
increase of oxidative phosphorylation enzymes, we
observed that Atpifl gene (ATPase inhibitory factor 1) was
significantly down-regulated by bexarotene treatment in
the MMTV-erbB2 and C3(1)/SV40 T-antigen transgenic
mice models. In this sense, Isidoro et al. (2005) showed
that down-regulation of ATPase B-F1 per se allowed the
identification of a subgroup of breast cancer patients with
significant worse prognosis. Finally, is important to note
that mitochondrial oxidative phosphorylation is required
for efficient execution of apoptosis. Cells which are una-
ble to carry on oxidative phosphorylation have a resistant
apoptotic phenotype [32]. Overall, these findings suggest
the oxidative phosphorylation induction (prevention
impaired bioenergetic function) as a novel mechanism of
bexarotene's chemopreventive effects.

Fatty acid metabolic signature

Lipid metabolism and the intracellular transport of bioac-
tive species is a critical component in the process by which
these molecules continuously stimulate proliferation
through interactions with nuclear receptors. Bexarotene
treatment of MMTV-ErbB2 and C3(1)/SV40 transgenic
mammary gland up-regulated various genes related with
lipid/fatty acid metabolism (Figure 4) such as: Fabp3
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(Fatty acid binding protein 3), Fabp4 (Fatty acid binding pro-
tein 4), Dgat2 (Diacylglycerol O-acyltransferase 2), Dbi
(Diazepam binding inhibitor), Hadhb (Hydroxyacyl-Coen-
zyme A dehydrogenase), Acca2 (Acetyl-Coenzyme A acyltrans-
ferase 2), and Cpt2 (Carnitine palmitoytransferase 2).
Interestingly, a family of cytoplasmic proteins known as
FABPs mediates transport and utilization of lipids, and
different FABP types have been implicated in control of
cell proliferation and cancer progression. Recently, FABP1
and FABP2 were shown to be up-regulated in breast can-
cer cell lines while FABP3 and FABP4 were down-regu-
lated in breast cancer cells [33]. Moreover, FABP4 is a
marker protein for differentiated mammary gland that is
expressed only in normal lactating cells and not in tumor
mammary cells. Transfection of cDNA clone of FABP4
into MCF7 cells results in growth inhibition and lower
tumorgenicity in nude mice [34].

Cell proliferation and apoptosis signatures

Rexinoid bexarotene down-regulated several genes related
with cell cycle/proliferation in mammary gland from the
different transgenic mice models (Figure 2A; see Addi-
tional files 1 and 2).

Among this functional group we find Npm1 (also known
as Nucleophosmin/B23) protein that belongs to a nuclear
chaperone family of phosphoproteins that take part in
various cellular processes such as cell proliferation and
transformation [35]. Human NPM1 is overexpressed in
various tumors types, and it has been proposed as a
marker for gastric, colon, ovarian and prostate carcinomas
[35]. NPM1 overexpression promotes cell survival in sev-
eral cell types through the inhibition of distinct pro-apop-
totic pathways [36]. We detected a systematic down-
regulation of Npm1 gene in mammary gland from Bexar-
otene treated mice on the three models studied (average
fold change = -2.6; p < 0.01). Interestingly, proteomic
analyses identified NPM1 as a protein associated with
acquired estrogen-independence in human breast cancer
cells [37]. Moreover, down-regulation of NPM1 mRNA
delay cell-cycle progression and the entry into mitosis
[38], whereas NPM1 overexpression decreases the sensi-
tivity of human leukaemia cells to retinoic-acid-induced
differentiation and apoptosis [39,40].

Another gene in this category includes Stmnl which
encodes an 18 kDa cytosolic phosphoprotein (also
known as Stathmin 1 or Oncoprotein 18) that is regulated
during cell cycle by transcriptional and posttranscrip-
tional mechanisms. STMN1 overexpression has been
demonstrated at mRNA and protein levels in a significant
proportion of human breast carcinomas (about 30%)
[41]. Moreover, STMN1 overexpression was correlated
with the loss of ERa and with histological grade III breast
carcinomas. STMN1 has been suggested as a key regulator

http://www.biomedcentral.com/1755-8794/1/40

of the cell division through its influence on microtubule
dynamics. We identified a statistical significant decrease
of Stmn1 expression (average fold change = -5.4; p < 0.05)
caused by bexarotene treatment in mammary gland from
MMTV-erbB2 and C3(1)/SV40 T-antigen mice. Interest-
ingly, we previously demonstrated that mouse Stmn1 and
human homologue STMN1 genes are overexpressed in
invasive breast carcinomas by northern and real time RT-
PCR analyses [24].

Numerous studies have shown that down-regulation of
p27Kipl, an inhibitor of cyclin-dependent kinase, is associated
with poor prognosis in many cancers such as: breast,
colorectal, prostate, and lung carcinomas. We previously
detected the overexpression of CDC28 protein kinase regu-
latory subunit 1B (Cks1b) in human and mouse mammary
tumors [24]. Interestingly, rexinoid bexarotene strongly
down-regulated Cks1b expression in the MMTV-erbB2
model (Fold change = -10.0; p = 0.006) (see Additional
file 1). Human CKS1B functions as an important adaptor
of SCF Skp2 ubiquitin ligase and facilitates SCF Skp2 tar-
geting of the cell proliferation inhibitor p27 (Kip1) for
ubiquitination and subsequent degradation [42]. It was
also suggested that CKS1B may be involved in p21 degra-
dation in a similar fashion [43]. Overexpression of CKS1B
has been observed associated to poorly differentiated
tumors (histological grade IIT) and with the loss of ER/PR
status [Slotky et al., 2005]. In addition, CKS1B overexpres-
sion was strongly and independently associated with poor
overall survival in human breast cancer [44].

On the other hand, bexarotene treatment up-modulated
two apoptotis related genes (Cidec and Cycs) in 'mormal’
mouse mammary gland from two of the models (Cidec)
and in all three models (Cycs) (Figure 3). Cidec (also
known as Fsp27) encode a novel family member of the
cell-death-inducing DFF45-like-effectors (CIDEs) [45].
Although, its well known that DFF45 is a subunit of the
DNA fragmentation factor that is cleaved by caspase-3
during apoptosis [46]. The molecular mechanism by
which Cidec induces apoptosis remains to be elucidated.

Cell adhesion and invasion signatures

During their metastatic conversion, epithelial cells acquire
the ability to invade the surrounding tissues and later dis-
seminate to secondary organs mostly via lymphatic ves-
sels. Epithelial cell adhesions, including intercellular
(junctional) and cell-extracellular matrix adhesions, are
critical to the maintenance of structural integrity, polarity,
and cell-cell communication. We detected a significant
decrease in Cldn3 (Claudin 3) (Average fold change = -6),
Glycam1 (Glycosylation dependent cell adhesion molecule 1)
(Average fold change = -7), Pscdbp (Pleckstrin homogy Sec7
binding protein) (Average fold change = -6) gene expression
modulated by bexarotene treatment among transgenic
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mice models. The Claudin genes (Cldn) encode a family of
proteins important in epithelial cell tight junction, which
are critical to the maintenance of cell polarity and perme-
ability [47,48]. Most Claudin genes appear with decreased
expression in cancer however CLDN3 and CLDN4 genes
have been found frequently up-regulated in ovarian,
breast, prostate and pancreatic cancers [49-52]. Recently,
has been suggested that Claudins may be envolved in sur-
vival and invasion of cancer cells [48]. We detected down-
regulation of Cldn3 gene in mammary gland from bexaro-
tene treated mice in the MMTV-erbB2 and C3(1)/SV40
models. The role of Gycam1 and Pscdbp genes in breast
cancer progression remains unknowns.

Conclusion

The present study showed that the rexinoid bexarotene
(LGD1069) exerts its chemopreventive activity by affect-
ing multiple cellular pathways, not only targeting cancer-
causing genes related with cell proliferation, differentia-
tion and apoptosis, but also by modulating protein bio-
synthesis and mitochondrial bioenergetics. Further
analysis and validation of the identified genes will be
required to determine the prognostic value as biomarkers
of bexarotene treatment response, and to determine
whether some of them and their protein products may
constitute novel candidates for additional targeted thera-
peutic interventions.

We have recently completed a Phase II biomarker modu-
lation trial in which women at high risk of breast cancer
were treated with placebo or bexarotene. Using breast tis-
sue from these high risk women, we are now studying
whether these newly identified rexinoid-regulated
biomarkers are also being modulated in human breast tis-
sue. Results from these human studies will reveal whether
these new biomarkers will be useful for predicting a can-
cer preventive response from rexinoids or as targets for
future therapies.
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