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Abstract

Background: MicroRNAs (miRNAs) are a class of approximately 22 nucleotide long, widely expressed
RNA molecules that play important regulatory roles in eukaryotes. To investigate miRNA function, it is
essential that methods to quantify their expression levels be available.

Methods: We evaluated a new miRNA profiling platform that utilizes lllumina's existing robust DASL
chemistry as the basis for the assay. Using total RNA from five colon cancer patients and four cell lines,
we evaluated the reproducibility of miRNA expression levels across replicates and with varying amounts
of input RNA. The beta test version was comprised of 735 miRNA targets of lllumina's miRNA profiling
application.

Results: Reproducibility between sample replicates within a plate was good (Spearman's correlation 0.91
to 0.98) as was the plate-to-plate reproducibility replicates run on different days (Spearman's correlation
0.84 to 0.98). To determine whether quality data could be obtained from a broad range of input RNA, data
obtained from amounts ranging from 25 ng to 800 ng were compared to those obtained at 200 ng. No
effect across the range of RNA input was observed.

Conclusion: These results indicate that very small amounts of starting material are sufficient to allow
sensitive miRNA profiling using the lllumina miRNA high-dimensional platform. Nonlinear biases were
observed between replicates, indicating the need for abundance-dependent normalization. Overall, the
performance characteristics of the lllumina miRNA profiling system were excellent.
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Background

First identified nearly 15 years ago [1], microRNAs (miR-
NAs) are a family of short RNA molecules that predomi-
nantly inhibit gene expression at the post-transcriptional
level in eukaryotes [2,3]. In the nucleus, genes encoding
primary miRNAs (pri-miRNA) are much longer than the
mature form. These primary transcripts are processed by a
nuclease (Drosha) and the double-stranded RNA binding
protein, DGCRS, to short 60-70 nucleotide stem-loop
structures (pre-miRNA). After export to the cytoplasm,
pre-miRNAs are processed by interaction with the endo-
nuclease Dicer. Mature miRNA are ~22 nucleotides in
length and guide the RNA-induced silencing complex
(RISC, the core components of which contain Argonaute
proteins) to the target sites, usually located in the 3'
untranslated region of gene transcripts[4]. Binding of the
RISC leads to suppression of translation and possibly deg-
radation of target mRNAs.

The manner in which suppression of translation is medi-
ated is poorly understood [5]. However, it is becoming
evident that this class of gene regulator controls the
expression of 20-30% percent of all human genes [6]. As
miRNAs regulate the expression of a large number of pro-
tein-encoding genes [7-10], a wide range of biological
processes are affected, such as metabolism, organogene-
sis, development, cell growth, cell death, and cell fate
determination. Altered expression of miRNAs has also
been associated with human disease, including cancer
[11-18]. Indeed, some miRNAs have been coined
"oncomirs", acting in the manner of oncogenes and
tumor suppressors [11,19], and oncogenes such as Myc
have incorporated miRNA regulation into their tumori-
genic potential [20].

There are now more than 541 human miRNAs identified
in version 10.1 of the miRBase http://micro
rna.sanger.ac.uk/. For the Illumina's human miRNA Bea-
dArray, 735 miRNA were incorporated into the beta ver-
sion based on miRBase version 9.1 (February 2007
release), plus an additional 265 miRNAs derived from the
literature [21]. Other than the miRNA sample prepara-
tion, the chemistry utilized by the miRNA BeadArray is
similar to that used in the DASL process (DNA Annealing,
Selection and Ligation). The assay is highly multiplexed,
using the universal Sentrix Array Matrices (SAM, Illu-
mina).

To better understand the important physiological func-
tions of miRNAs, high-throughput, miRNA microarray
techniques have been employed to determine and com-
pare global miRNA expression in different tissues and cell
types and under different conditions [22-29]. These meth-
ods typically require micrograms of input RNA and often
have a limited dynamic range. The Illumina miRNA pro-
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filing system has been described previously, showing the
accuracy of the platform by rt-PCR and digital sequencing
[21] using RNA from four cell lines (the same cell lines
were used in this report) and purchased human tissues
from Ambion. In this study, we evaluated the perform-
ance characteristics of this platform utilizing total RNA
from five colon cancer cases and from four well-character-
ized cell lines. There is no other publication to date
addressing reproducibility and performance of the Illu-
mina miRNA profiling platform. We believe it to be highly
relevant to evaluate the platform's reproducibility, and
this forms the primary focus of this report. More specifi-
cally, the goals of this study were to understand variability
due to plate, extraction, dilution and technical replication
using cell line and clinical samples.

Methods

RNA Extraction

This study was approved by the Institutional Review
Board of the Mayo Clinic (IRB 07-004516), and all
patients provided informed consent. Tumor tissue was
obtained from five patients with colon cancer. The sam-
ples were initially collected and stored in RLT buffer; total
RNA was extracted using Trizol® LS (Invitrogen, Corp.,
Carlsbad, CA). For each case, frozen tumor tissue was cut
on a cryostat to generate 10-micron-thick sections. The
equivalent of ~2.5-square cm of tissue at 10 microns was
placed into 400 pL of RLT buffer (QIAGEN, Chatsworth,
CA) including 4 pL of B-mercaptoethanol. The tube was
immediately flash frozen in liquid nitrogen and then
stored at -80° C until utilized for RNA extraction. 1.2 ml of
Trizol® LS was added to each of the vials containing the tis-
sue sections in 400 pul of RLT, and the vials were shaken
vigorously to thaw the tissue. After thawing, the 1.6 ml
RLT-Trizol® LS solution was divided between three 1.5-ml
tubes and homogenized for 10 sec/tube using a motor-
driven, disposable RNase/DNase free pestle (Thermo
Fisher Scientific, Inc., Chicago, IL). The three tubes were
then combined into two, resulting in 0.8 ml RLT-Trizol
tissue homogenate aliquots, and incubated at room tem-
perature for 5 min. Following the addition of 160 pl of
chloroform, the tubes were shaken vigorously for 15 sec,
incubated for 5 min at room temperature, followed by
centrifugation at 12,000 x g for 15 min at 4°C. From each
tube, 400 pl of the aqueous phase was transferred to a
fresh 1.5-ml tube, 400 pl of 100% isopropanol added,
mixed by vortex and incubated at room temperature for
10 min. The tubes were then centrifuged at 7,500 x g for
10 min at 4°C and the supernatant removed by pipette
and 1 ml of room-temperature 75% ethanol added. Fol-
lowing vortex mixing, the tubes were centrifuged at 7,500
x g for 10 min at 4°C. The supernatant was removed by
pipette, and the RNA pellet air dried for 5 min prior to
addition of 25 pl of RNase free water. Following resuspen-
sion, RNA was quantitated by UV spectrophotometry at
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260 nm, aliquoted and flash frozen in liquid nitrogen and
stored at -80°C until used. One pg was examined by aga-
rose gel electrophoresis followed by ethidium bromide
staining and visualized by UV light.

Total RNA from the four cell lines used in this study was
provided by Illumina. These cell lines were the following:
PC-3 (prostate adenocarcinoma), MCF-7 (breast adeno-
carcinoma), 293 (embryonic kidney), and Hela (cervical
adenocarcinoma).

lllumina RNA processing

The chemistry utilized by the miRNA BeadArray is similar
to that used in the DASL process [30], and the workflow is
available at http://www.illumina.com/downloads/Micro
RNAAssayWorkFlow.pdf. Varying amounts of total RNA
were polyadenylated and then converted to cDNA using a
biotinylated oligo-dT primer with a universal PCR
sequenced at its 5' end. This was followed by annealing of
a miRNA-specific oligonucleotide pool (MSO) which con-
sists of three parts: a universal PCR priming site at the 5'
end, an address sequence complementary to a capture
sequence on the BeadArray and a microRNA-specific
sequence at the 3' end. Extension of MSO was facilitated
by addition of a polymerase, but only if their 3' bases were
complementary to the cognate sequence in the cDNA tem-
plate. Common primers were used to amplify the cDNA
templates; the primer complimentary to the BeadArray
was fluorescently labelled. The single-stranded PCR prod-
uct was hybridized to the Sentrix Array Matrix (SAM),
where the labelled strand binds to the bead on the array
containing the complementary address sequence. The
SAMs were imaged using an Illumina BeadArray Reader,
which measures the fluorescence intensity at each
addressed bead location. Intensity files were analyzed
using BeadStudio version 3.1.1. Expression levels were
expressed as an average signal value.

Study design

The study used four SAMs to assess variability due to sep-
arate total RNA extractions, technical replicates of each
extraction and varying total RNA input (Figure 1). Total
RNA extracted from five patient samples (IDs 45, 165,
565, 919, 133) and RNA from four cell lines (HeLa, PC3,
293 and MCF-7) supplied by Illumina, was evaluated on
each of 4 SAMs. SAM 1 was hybridized in week one, SAMs
2 and 3 were hybridized in week two and SAM 4 (with cell
line RNA only) was hybridized in week three of the study.

Sample allocation on SAM 1 was designed to assess repro-
ducibility between two separate total RNA extractions,
between duplicate samples (technical replicates) and
between two input RNA amounts. Sample allocation on
SAM 2 was designed to assess technical reproducibility
and the effect of six input levels of total RNA. Sample allo-
cation on SAM 3 was designed to assess technical replica-
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tion. The four cell lines, but none of the 5 patient RNA,
were run on a fourth SAM. Reproducibility across all four
SAMs was also assessed.

Statistical Methods

The goals of this study were to understand variability due
to SAM, extraction, dilution and technical replication.
Note that normalization by definition removes systematic
variation from the data. Thus, we present an initial set of
analyses using un-normalized data in order to fully under-
stand the systematic effects of interest in this study. How-
ever, since most analyses will be performed only after
normalization, we also present results on normalized
data. The raw miRNA expression values were exported
from the BeadStudio software without background sub-
traction or normalization for all 735 probes. All data are
presented on the log base 2 scale, where a value of 1.0 cor-
responds to a 2-fold change.

A common method of evaluating agreement for microar-
rays is via scatter plot of all expression values for sample 1
versus all expression values for sample 2. A y = x identity
line is frequently overlaid on this plot along with a loess
smoother and the formula for the linear regression of
sample 1 on sample 2 with corresponding correlation
value. Another common method of evaluating agreement
is the Bland-Altman plot [31], commonly called MVA (for
Minus Versus Average) or MA [32] plot in the microarray
literature. For each probe, the difference between the
intensities on two arrays is plotted on the vertical axis and
the average of the two intensities is plotted on the hori-
zontal axis; there is a data point for each probe on the
array. While scatter plots and correlations are useful, it is
generally easier to visually detect and assess magnitude of
disagreement and whether the variability in disagreement
is a function of abundance in an MVA plot. If two repli-
cates yield identical results, all points will lie on they =0
horizontal line (indicated on the plots for reference). A
loess smoother, representing a moving average, is indi-
cated on the plots in addition to demonstrating the aver-
age bias curve as a function of average intensity. A
wholesale vertical shift away from zero indicates a global
mean shift between replicates. Nonlinearities in the aver-
age bias curve indicate that the bias is a function of abun-
dance. Axis scale is kept constant throughout all MVA
plots to enable comparisons of biases between plots.

It is useful to evaluate variation about the average bias
curve. As noted above, the MVA plots clearly demonstrate
that variability in disagreement is a function of mean
abundance. Thus, the standard deviations (SD) of the dif-
ferences (the vertical axis on the MVA plots) are reported
separately for the probes in the bottom 50% of the abun-
dance distribution and the top 50% of the abundance dis-
tribution. The 50t percentile is generally around 9.5 to 10
on the horizontal axis. For comparison with other manu-
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Study design. Sample allocation for SAMs |—4. Five patient samples (IDs 45, 165, 565, 133 and 919) and four cell lines (Hela,
PC3, 293 and MCF-7) were utilized. Two replicates (200 ng) of each cell line RNA were assayed in SAM [—4 (last row in each
figure). In each SAM, patient IDs are shown above each column, and RNA input along each row. Blank wells contained other

RNA samples not used in the present analysis. The key beside each SAM indicates samples, extraction and RNA input used. In
SAM |, two separate RNA extractions of each of the colon cancer tumors were assayed in duplicate at both 100 ng and 200

ng. In Sam 2, 25 ng—800 ng (200-800 ng each in duplicate) RNA input from extraction | were run for two patient IDs (45 and
565), while 200 ng was run for the other patient IDs. In SAM 3, 200 ng was run for each of the 5 colon cancer samples, each in

duplicate. SAM 4 contained only the four cell line RNA.

scripts, Spearman's correlations between pairs of arrays
are displayed. The standard deviations and Spearman's
correlations showed essentially no change from pre- to
post-normalization; so only pre-normalization results are
shown. Hierarchical clustering with a simple Euclidean
distance metric was used as another measure of overall
agreement for patient samples.

Normalizations were performed using fastlo [33], a
model-based nonlinear normalization similar to cyclic
loess [32]. Fastlo can be conceptualized as a loess smooth
together with a simple linear model. Envision a residual
MVA plot for each sample where, for a given sample, the

horizontal axis corresponds to the mean over all samples
(the simplest linear model); the vertical axis corresponds
to the difference of this sample from the mean of all sam-
ples (i.e., residuals from this simple linear model). A loess
smooth fit to this residual MVA plot corresponds to the
mean bias which is subtracted out in the algorithm for
each probe, allowing the bias adjustment to be a function
of mean expression as recommended in Bolstad et al [34]
and justified by the data presented here. Like most nor-
malization algorithms, this algorithm assumes that most
probes are not differentially expressed and that there is
symmetry in the number of differentially expressed
probes. Ballman et al [33] show that this implementation
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is equivalent to the cyclic loess implementation in [32]
and that the computational time required is far less. The
linear model is easily tailored to allow normalization to
be performed within groups if most probes are expected to
be differentially expressed and/or to accommodate
labeled technologies [33,35] or other statistical experi-
mental designs. Thus, the strengths of fastlo include an
easily tailored, model-based estimation of intensity
dependent biases. However, it does require knowledge of
linear models in order to tailor the algorithm to specific
cases. As applied here, the patient samples were normal-
ized together since nearly all probes were expected to be
similarly expressed in the five patients and between tech-
nical replicates, and no global effect due to total input
RNA was observed; the cell line samples were normalized
together in a separate normalization.

The detection calls generated by Illumina BeadStudio soft-
ware were evaluated as part of the assessment of the effect
of dilution. These are intended to be a measure of whether
the signal for a probe is significantly greater than the aver-
age signal seen in the negative control probes. A cut-off of
p = 0.01 was used where p < 0.01 indicates the signal was
detected, as is commonly done. Venn diagrams and detec-
tion coverage plots were used to demonstrate detection
overlap between dilutions and to understand differences
in detection as a function of average probe abundance.

Validation of miRNA expression results

Quantitative PCR analysis of a select number of miRNA
targets was performed on the four aforementioned cell
lines by Illumina [21]. Twelve probes were selected,
including those with large and small differences in expres-
sion between the cell lines and those that had similar
expression levels (miR-100, 125a, 125b, 135a, 146a, 150,
17-3p, 221, 264, 31, 93 and 328). These data were pro-
duced independently from the miRNA array data and
were used for validation purposes. Association of raw
miRNA array expression (log2) versus the negative CT
value was explored via Spearman's correlation to assess
the absolute quantification capabilities of the array. All
pairwise differences (log2) or fold changes (raw) between
the four cell lines were also explored both within the array
and qPCR data. These differences were compared in order
to assess the relative quantification of the array.

Results

Four miRNA Bead Array Plates (SAMs) were used to assess
variability in patient and cell line samples due to separate
total RNA extractions, technical replicates of each extrac-
tion and varying total RNA input (Figure 1).

Scatter plots and the corresponding MVA plots are shown
in Figure 2 for three selected technical replicates (cell
lines) from SAM 1. These were chosen to provide exam-
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ples of bias curves and variability observed among our test
set, ranging from a low amount of scatter (overall SD
0.21) to a greater amount (overall SD 0.60). There is evi-
dence of some disagreement between technical replicates
in both the scatter and MVA plots since the points do not
all fall on the respective identity lines. While the average
bias smoother lies on the respective identity lines in pan-
els A/B indicating no evidence of average bias, panels C/D
and E/F show evidence of nonlinear bias with the curva-
ture of the smoother away from the respective identity
lines. Based on these plots, it is evident that the average
bias can be greater than 1.0 on the log base 2 scale, corre-
sponding to an average bias greater than 2-fold on the raw
scale. The maximum disagreement is less than 2-fold in
panels A/B, but is greater than 16-fold in panels E/F. The
clusters of points at the far left and right ends of the MVA
plot and likewise, the bottom left and top right corners of
the scatter plots, show a sideways "V" pattern indicating
floor or ceiling effects on the assay itself. The MVA plots
show clearly that the variability around agreement is high-
est in the mid-expression levels, above the floor and
below the ceiling, and provide a feel for the amount of
scatter in the points that correspond to the respective
standard deviations.

Reproducibility between technical replicates

Average bias curves for the within-plate cell line technical
replicates on all four SAMs (n = 16 curves) and then for
the 200 ng replicates of the first extraction for the five CRC
samples on the first three SAMs (n = 15 curves) are dis-
played in panels A and B, respectively, of the left set of six
plots in Figure 3. Post-normalization bias curves are
shown in the same panels of the right set of six plots in
Figure 3. Please note that Figures 3 and 4 have multiple
panels where each panel corresponds to a different type of
replication. The mapping of panels and labels to replica-
tion type is consistent for all of these figures for ease of
comparison. As variability in disagreement is a function of
mean abundance, the SD of the differences was calculated
for both the bottom half and the top half of the data with
respect to abundance. This corresponds to drawing a ver-
tical line on each MVA plot at the median average abun-
dance value. The median average abundance is generally
around 9.5 to 10. The actual data points would make the
plot illegible and are thus not shown. All MVA plots with
data points are in the supplementary figures (see Addi-
tional files A1, A2, A3, A4, A5, and AG). Results are shown
only for the 200 ng replicates and were similar for the 100
ng hybridizations. For many technical replicates the aver-
age bias is fairly linear and small indicating good repro-
ducibility. However, some bias curves show average bias
reaching approximately 1.0, corresponding to a 2-fold
change on the raw scale as well as nonlinearity indicating
the need for nonlinear normalization. As seen in the right-

Page 5 of 14

(page number not for citation purposes)



BMC Medical Genomics 2009, 2:57 http://www.biomedcentral.com/1755-8794/2/57

(A) (B)

16
]

Spearman R = 0.982

|
| SD (bottom) = 0.224
| SD (top) = 0.201

14

Yo : o ‘ A **
| x "
v - |
1 o —
I I | I | [ [ [ | [
8 10 12 14 16 8 10 12 14 16
(C) (D)
I o -
A Spearman R = 0.944
o | SD (bottom) = 0.286 d
8 o~ - Lo ) SD (top) = 0.471 = &
r % g *
CR o7 o P o
".Q_) 5 * * i, ok Q
= o : ;*’ [O)
D (T 8 o * {_ & * m
I ;,,.:
T - 1
1 o —
T T | T T [ [ | [ [
8 10 12 14 16 g 10 12 14 16
(E) (F)
o _]
- I - _
N S R=0915
L SD (bottom) = 0.344 pearman .
o J . SD (top) = 0.769 T -
4 * *
< . o * *, il .
‘?‘ o _| * s *’ * ] }"* & * :
* gk ;*;:*ﬂ’:’:?’ *:'
¥ 1 X _
o
[ [ T I |
8 10 12 14 16 & 10 12 14 16
Mean Rep 1
Figure 2

MVA and scatter plots. MVA plots (panels A, C, E) and the associated scatter plots (panels B, D, F) for selected technical
replicates of lllumina cell line on SAM 1, chosen to demonstrate the nature of biases and variability seen in this study. All axes
are on the log base 2 scale where a value of 1.0 corresponds to a 2-fold change. Panels A, C, E: For the MVA plots, the vertical
axis is the difference in expression values between the two technical replicates for a given probe and the horizontal axis is the
average expression between the two technical replicates. The y = 0 reference line and a loess smoother indicating the average
bias as a function of abundance are indicated. The standard deviation of the differences (i.e., of the vertical axis values) is shown
for the bottom and top 50% of the data with respect to average abundance as an overall indicator of variation of the plotted
points. Panels B, D, F: For the scatter plots, the horizontal axis corresponds to relative expression in the first technical repli-
cate (Rep 1), and the vertical axis the same for the second technical replicate (Rep 2). The y = x reference line and a loess
smoother are indicated on the scatter plots, along with the correlation (Spearman's r) as an overall measure of agreement.

Page 6 of 14

(page number not for citation purposes)



BMC Medical Genomics 2009, 2:57

(A)

http://www.biomedcentral.com/1755-8794/2/57

(A) (B)

| o~ - o~ o |
[0]
¥ -4 - -
c
O o A o 5@( o -——ﬁé
=
(O]
= ‘ T T
o . o o~ o
T T T T T b T T T T b T T T T T T T T T
8 10 12 14 16 8 10 12 14 16 8 10 12 14 16 8 0 12 14 16
(E) (F) (E) (F)
o o o ~ o o A
o - é < % ° 9 o - 7—@4
T - T T T
o o~ o~ o ]
b T T T T " T T T T " T T T T e | T T T T
8 10 12 14 16 a 10 12 14 16 8 10 12 14 16 8 10 12 14 16
Mean
Figure 3

Average bias curves. Average bias curves (i.e. the loess smoothers) from MVA plots examining reproducibility in light of var-
ious systematic factors. The left set of six are pre-normalization; the right set of six are post-normalization. (A) Within plate
technical replicates for the four cell lines on all four SAMs (n = 16 curves). (B) Within plate patient technical replicates for 200
ng of extraction | on first three SAMs (n = I5 curves). (C) Cell line technical replicates between SAMs (n = 24 curves). (D)
Patient sample technical replicates between SAMs for 200 ng of extraction | (n = 15 curves). (E) Patient sample between
extraction technical replicate for 200 ng (n = 5 curves). Replicate | was chosen arbitrarily. (F) Patient samples from extraction
| comparing 25, 100, 400, 800 ng to 200 ng for two patients (n = |10 curves). Replicate | for 200 ng was chosen arbitrarily.

hand set of plots in Figure 3, the average bias has been
removed after normalization.

The standard deviations displayed in panels A and B of the
left box of Figure 4 summarize the variability of the points
corresponding to the MVA plots for the technical repli-
cates. The low-abundance probes (left columns) consist-
ently have lower variation than the high-abundance
probes. Many of the low-abundance probes may not be
significantly higher than background, so this variation
may be a measure of random background noise. The dis-
tributions for low- and high-abundance probes are similar
for both the cell line and patient technical replicates.
Spearman's correlations are shown in the right box of Fig-
ure 4 in panels A and B. The ranges of values are similar
for cell line and patient data, ranging from 0.91 to 0.98.
Overall, these data show good technical reproducibility
within SAMs and a need for non-linear normalization.

Reproducibility between SAMs
Technical replicates for cell line and human samples were
then assessed between SAMs. Pre-normalization box and

whisker plots are shown in the left panel of Figure 5. There
is no clear global shift in expression across the different
SAMs. There are a few wells on SAM 2 that have more out-
liers than other wells. The first replicate was arbitrarily
chosen for MVA plots comparing replicates between
SAMs. The bias curves comparing replicate 1 intensities on
a SAM to the replicate intensities on another SAM for all
possible pairs of SAMs are displayed in Figure 3 (24 curves
in panel C for cell lines and 15 curves in panel D for CRC
subjects). The average bias curves show greater biases
within SAM technical replicate curves, extending up to 1.3
(nearly 2.5-fold change) in addition to many small biases.
Within the individual MVA plots, it is evident that the
agreement is better between SAMs 1 and 3 than between
SAMs 1 or 3 and 2; there are a few oddly behaving probes
on SAM 2 (see Additional files A3 and A4). The distribu-
tion of standard deviations of the probe differences is
shifted slightly higher than for technical replicates within
a SAM for the low-abundant data and shifted more dra-
matically for the high-abundant data (Figure 4, left box,
panels C and D). Likewise, the distribution of Spearman's
correlations is shifted down, indicating slightly weaker
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the same as those described for Panels A — F in Figure 3.

agreement between SAMs than within SAMs (Figure 4,
right box, panels C and D). These values ranged from 0.84
to 0.98. For most, the correlation remains above 0.9. After
normalization the biases are mostly removed (Figure 3,
panels C and D of the right set of plots). Overall, while the
reproducibility between SAMs is not as good as that
within SAMs, it is acceptable.

Reproducibility between extractions

Two separate total RNA extractions were carried out on
five CRC samples. In order to compare between extrac-
tions, technical replicate 1 within an extraction, was cho-
sen without loss of generality for presentation here. Bias
curves comparing the intensities for extraction 1 versus
the intensities of extraction 2 for each patient sample are
displayed in panel E of Figure 3 (pre-normalization, left
set; post-normalization, right set). These curves indicate
relatively small average biases between extractions for
most patients. Standard deviations for the differences
between extractions (Figure 4, left box, panel E) in the
low-abundant probes are similar to those within an
extraction (panel B); values for the high-abundant data
are remarkably similar to those within an extraction with
similar median values. Likewise, the Spearman's correla-
tions (Figure 4, right box, panel E) are high, ranging from
0.95 to 0.98. Post-normalization, the biases are again
nearly completely removed. Clusters on pre-normaliza-
tion data are not grouped by patient, extraction or dilu-

tion (100 or 200 ng) (see Additional file 7). However,
post-normalization data are grouped by patient and not
dilution or extraction, indicating similar expression pro-
files for each patient regardless of extraction or dilution
(see Additional file 8). Between-extraction reproducibility
is comparable to within-SAM reproducibility in these lim-
ited data.

Effect of varying input of RNA

As it is likely that many clinical samples will have limited
amounts of tissue, and hence RNA, available for assessing
miRNA expression profiling, we examined whether relia-
ble results could be attained when input was as low as 25
ng. Two of the CRC samples (IDs 565 and 45) were run
with one replicate of 25, 50 and 100 ng and two technical
replicates of 200, 400 and 800 ng of total RNA on SAM 2.
There is little difference between dilutions as evidenced by
box and whisker plots; there is no global shift in intensity
across input amount as would be expected if there was a
dilution effect (Figure 5, right panel). Before normaliza-
tion, the average bias curves of each dilution versus the
200 ng dilution in panel F of Figure 3 (left set) showed no
evidence of a shift in abundance, since the curves are
mostly centered about zero rather than the corresponding
expected fold changes. Most curves show little nonlinear-
ity. The distribution of standard deviations for both the
low- and high-abundant data (Figure 4, left box, panel F)
are shifted higher than for other systematic sources of var-
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SAM well ID. The bottom and top of the box represent the 25th and 75t percentiles of the probe expression values. The hori-
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No global shift in distribution is seen between plates. Right panel: Pre-normalization box and whisker plots depicting distribu-
tion of probe intensities at various amounts of starting material. The vertical axis corresponds to a log base 2 intensity, while

the horizontal axis corresponds to the ng of starting material.

iation indicating greater variability in disagreement. Like-
wise, the Spearman's correlations are shifted lower (Figure
4, right box, panel F) with a median value of 0.95 suggest-
ing weaker agreement. After normalization, the nonlinear
biases are mostly removed (Figure 3, panel F of right set).
Clusters on both pre- and post-normalization data are not
grouped by either patient or dilution (100 or 200 ng) (see
Additional files 9 and 10). These data indicate that micro-
RNA profiling using this chemistry can be achieved with
as little as 25 ng of total RNA.

It is of interest to compare the detection rates between
dilutions. The Illumina software defines a detection p-
value for a probe by comparing the probe intensity to the
distribution of the background probes. We set a cut-off of
p = 0.01 to determine whether a probe was "significantly
detected". For the two patients, 53% (386/735) and 51%
(377/735) of the probes were detected in both 200 ng
technical replicates, while 12% (88/735) and 5% (39/
735) were detected in only one of the replicates. Venn dia-
grams show the overlap in detection with replicate 1 of
200 ng with all other dilutions (see Additional file A11).
Overall, no systematic differences were noted in the
number detected or not detected across the dilutions.
Additionally, of the 461 probes detected in replicate 1 of
the 200 ng dilution for one patient, 75%, 10%, 4%, 7%,

3%, and 2% were also detected in 5, 4, 3, 2, 1 or 0 of the
other 5 dilutions for the one patient. Thus, 89% of the
probes detected at 200 ng were detected in three or more
of the other dilutions. Of the 274 probes not detected at
200 ng, 0%, 1%, 3%, 6%, 14% and 75% were detected in
5,4, 3, 2, 1 or 0 other dilutions. Thus, of the probes not
detected at 200 ng, only 4% were detected in three or
more dilutions. These percentages are similar for the sec-
ond patient.

Avisual depiction of the variation in detection across dilu-
tions is provided in Figure 6. In this figure, the probes are
arranged vertically according to their relative average
abundance across dilutions. The left column for each dilu-
tion corresponds to detectable probes; a black horizontal
line is drawn if a probe is detected in that dilution; if it is
not detected, no line is drawn (white space). Due to the
density of the probes in the column, a second column is
included for each dilution indicating negative detection
calls; a gray horizontal line is drawn if the probe was not
detected; and a white space if a probe was detected. Thus,
a probe detected (or not detected) in all dilutions would
have a black (or gray) line in all dilutions. Thus, it is pos-
sible to visually track the presence (black) or absence
(gray) of individual probes across each dilution. The solid
black columns and corresponding lack of grey lines for
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Probe signal detection. Detection coverage plots for both patients showing overlap in probe detection between dilutions.

The two panels correspond to the two patients used for the dilution assessment. The horizontal axis corresponds to dilution,
or amount of input RNA. For the vertical axis, the average intensity across the six dilutions was calculated for each patient sep-
arately. These average values were then ranked in abundance from | (lowest average abundance) to 735 (highest average abun-
dance). The vertical axis corresponds to this ranking. The left column for each dilution corresponds to probes detected; and a
black horizontal line is drawn only if a probe is detected in that dilution; white space if a probe is not detected. Due to the den-
sity of the probes in the column, a second column is included for each dilution indicating negative detection calls; a gray hori-

zontal line is drawn if the probe is not detected; white space if a probe is detected. Thus, a probe detected (or not detected) in

all dilutions would have a black (or gray) line in all dilutions.

probes with high-abundance rank indicates that probes
with the highest abundance levels are consistently
detected in all dilutions. Likewise, the lack of black lines
at the low-abundance probes and the solidness of the grey
columns indicate the low-ranking abundance probes are
consistently not detected in all dilutions. Thus, the likeli-
hood of a positive detection is clearly related to average
abundance. If likelihood of probe detection was related to
dilution, one would expect either the depth of the black
columns (and correspondingly the height of the grey col-
umns) to follow an increasing trend with increasing dilu-
tion or a decrease in number of grey lines overall with
increasing dilution. However, the point at which the black
columns begin to give way to white space is remarkably
consistent across dilutions for both patients. Evaluating
the data from these two patients, there is no clear trend in
detection over dilution. Thus, as noted above, as little as
25 ng of total RNA may be used as input for the Illumina
microRNA expression profiling.

Validation of miRNA data using qPCR
For validation of miRNA expression, qPCR data was
explored for 12 miRNAs that were chosen based on vary-

ing degrees of differential expression between the four cell
lines as observed in a separate miRNA array experiment.
Absolute expression from the miRNA array appeared to
correlate well with qPCR negative CT values (Figure 7A:
Spearman's correlation of 0.91). All pairwise differences
between cell lines within each miRNA target were also
explored to determine the relative expression patterns of
the array. Results also correlated well in this comparison
(Figure 7B: Spearman's correlation 0.87), although fold
change differences in miRNA array expression were con-
sistently lower than those of qPCR as is illustrated by the
slope of the regression line.

Discussion

This report is aimed at understanding the performance
characteristics of a newly developed, highly sensitive,
high-dimensional miRNA expression platform, the Illu-
mina human miRNA BeadArray. In particular, we wished
to rigorously assess reproducibility of the assay and
present raw, un-normalized data to better understand the
performance of the assay. Overall, the Illumina miRNA
array system performed very well. With respect to repro-
ducibility (both within a plate and between plates), this
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(B)
Spearman's Correlation = 0.87

10
|

FC: qPCR (log2 differences)

-10

FC: mIRNA array (log2 differences)

Correlation of array and qPCR results. (A) A scatterplot illustrating the association of raw miRNA array expression
(log2) versus the negative CT value (Spearman's correlation 0.91) is used to assess the quantification capabilities of the array in
a single sample. (B) All pairwise differences (log2) between the four cell lines were computed both within the array and qPCR
data and plotted to assess the quantification capabilities of the array for relative differences between samples (Spearman's cor-
relation 0.87). Included in the scatterplot are both the dotted y = x line as well as the solid regression fit line (y = -0.56 +

|.88x).

assay was found to be similar to other high-dimensional
gene expression platforms. The recommended input of
RNA was 200 ng. Using this as the reference, however, we
found no evidence for a dilution effect, with comparable
results obtained from 25 ng to 800 ng RNA. Therefore,
miRNA from small tissue samples can be reliably assayed.
Additionally, this platform can test up to 96 samples at a
time, providing high throughput capability. A description
of the platform has been previously published [21] and
included validation of 12 individual miRNA by qPCR,
and on a more global scale, miRNA expression was vali-
dated using digital gene expression.

The experimental approach was to look at variability
between extractions, between technical replicates (both
within and between plates) and between varying inputs of
RNA using RNA from five colon cancer specimens and
four cell lines. The agreement between extractions appears
to be similar to that between technical replicates within an
extraction and was similar for all the samples tested. As
one would expect, the between-plate agreement was
slightly less than within-plate agreement, although most
correlation values were >0.90. There were several outliers
noted in one SAM. Processed at the same time as another
SAM, these may be related to sample handling or perhaps
to a few underperforming probes.

We present both scatter plots and MVA plots to evaluate
the data; the latter are a useful tool for assessing biases in
high-dimensional data. Just as with high-dimensional
gene expression microarray platforms [32,36,34,38,37],
the bias curves observed here demonstrate that bias is not
constant across all abundance levels for high-dimensional
microRNA data indicating a need for nonlinear normali-
zation. There is debate in current literature as to whether
normalization algorithms used for high density mRNA
microarrays are applicable to data from microRNA micro-
arrays [39-43]. Most commonly used mRNA normaliza-
tion algorithms assume that only a small portion of
probes are differentially expressed, that the distribution of
differentially expressed probes is approximately symmet-
ric about identity. In addition, there must be sufficient
probes for estimation of bias without over-fitting. These
assumptions must be evaluated specific to the experiment
at hand. The data we present here suggest that there are
sufficient numbers of probes expressed on this microRNA
platform for estimation of biases without over-fitting
using standard mRNA normalization algorithms in this
experiment. In addition, there is no differential expression
expected in the replicates analyzed herein. Thus, the
assumptions hold for these data and nonlinear normali-
zations such as quantile [34,44] and cyclic loess [32,33]
should be directly applicable to this experiment. Indeed,
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the fastlo normalization method utilized in this report
removed the nonlinearity seen in the bias curves.

Finally, we selected 12 miRNA targets to further assess the
accuracy of the Illumina array utilizing a second method
to quantitate miRNA levels (qQPCR). Using RNA from the
four cells lines used in this study, the correlation between
miRNA expression levels derived from the Illumina plat-
form compared to that from the qPCR analysis was excel-
lent for the 12 targets. These results were essentially the
same as those previously reported [21].

Overall, the Illumina array appears to be quite specific for
the mature form of the miRNA. Chen et al. hypothesize
that the ¢cDNA synthesis may be more complete for the
short mature miRNAs than for the pre-miRNA templates.
Also, the stem-loop structure of pre-miRNAs could hinder
the ¢cDNA synthesis and annealing of the oligonucle-
otides, resulting in relatively selective detection of expres-
sion of the mature miRNAs [21].

In summary, we found this high-dimensional miRNA
profiling platform to be highly sensitive, providing repro-
ducible data over a wide range of RNA input amounts. The
variability between extraction, replicates, and SAMs was
found to be acceptable. After comparison with independ-
ently produced qPCR data, validation of the absolute and
relative quantification of the technology seemed adequate
as well.

Conclusion

[lllumina's miRNA profiling application provides an
excellent tool for determining miRNA expression in clini-
cal and research samples. Small amounts of RNA may be
used to generate highly reproducible data. The Illumina
miRNA panel therefore, presents a robust tool for a variety
of research applications, providing advantages over exist-
ing tools
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Additional material

Additional file 1

MVA plots: within plate cell line replicates. Pre-normalization MVA
plots for within plate cell line technical replicates on all four SAMs corre-
sponding to panel A of Figures 3 and 4. Axes are described in the manu-
script.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-57-81.pdf]

Additional file 2

MVA plots: within plate patient replicates. Pre-normalization MVA
plots for within plate patient technical replicates for 200 ng of extraction
1 on the first three SAMs corresponding to panel B of Figures 3 and 4.
Axes are described in the manuscript.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-57-52.pdf]

Additional file 3

MVA plots: between plate cell line replicates. Pre-normalization MVA
plots for 200 ng between SAM cell line technical replicates corresponding
to panel C of Figures 3 and 4. Axes are described in the manuscript.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-57-S3.pdf]

Additional file 4

MVA plots: between plate patient replicates. Pre-normalization MVA
plots for 200 ng between SAM patient technical replicates for 200 ng of
extraction 1 corresponding to panel D of Figures 3 and 4. Axes are
described in the manuscript.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-57-S4.pdf]

Additional file 5

MVA plots: between extractions. Pre-normalization MVA plots for 200
ng between extraction patient technical replicates for 200 ng correspond-
ing to panel E of Figures 3 and 4. Axes are described in the manuscript.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-57-S5.pdf]

Additional file 6

MVA plots: between dilutions. Pre-normalization MVA plots for patient
samples from extraction 1 comparing 25, 100, 400, 800 ng to 200 ng for
two patients corresponding to panel F of Figures 3 and 4. Axes are
described in the manuscript.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-57-S6.pdf]

Additional file 7

Pre-normalization clustering dendrogram, plate 1. Pre-normalization
dendrogram depicting the results of clustering performed on patient sam-
ples on plate 1. Sample IDs are of the form Tdilution.ptID.extrac-
tion.replicate. For example, T200.133.1a.1 represents the 200 ng
dilution for patient 133 from extraction 1, replicate 1.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-

8794-2-57-S7.pdf]
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Additional file 8

Post-normalization clustering dendrogram, plate 1. Post-normaliza-
tion dendrogram depicting the results of clustering performed on patient
samples on plate 1. Sample IDs are as described for Additional file 7.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-57-S8.pdf]

Additional file 9

Pre-normalization clustering dendrogram, plate 2. Pre-normalization
dendrogram depicting the results of clustering performed on patient sam-
ples on plate 2. Sample IDs are as described for Additional file 7.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-57-89.pdf]

Additional file 10

Post-normalization clustering dendrogram, plate 2. Post-normaliza-
tion dendrogram depicting the results of clustering performed on patient
samples on plate 2. Sample IDs are as described for Additional file 7.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-57-510.pdf]

Additional file 11

Venn diagrams of signal detection between replicates. Venn diagrams
showing overlap in detection calls between each dilution and the 200 ng
replicate 1 for both patients with dilution replicates on SAM 2. Each box
represents comparison of one dilution versus the 200 ng replicate 1 sam-
ple, where the dilution is labeled on the tops of circles within a box. The
numbers inside the circles indicate the number of probes detected in the
200 dilution, both dilutions, or the comparison using the p = 0.01 cut-off
to determine detection. The numbers in the bottom right of each box indi-
cate the number of probes not detected in either dilution. For example, for
patient 45 comparing 200 ng versus 25 ng, 388 probes were detected in
both dilutions, 73 or 16 probes were detected in only the 200 ng or 25 ng
dilution, respectively, and 258 were not detected in either dilution.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-57-S11.pdf]
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