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Abstract

regulation in the metabolism of breast cancer.

regulation of the aggressive tumors.

metabolism pointing to specific breast cancer treatment.

Background: Tumor therapy mainly attacks the metabolism to interfere the tumor’s anabolism and signaling of
proliferative second messengers. However, the metabolic demands of different cancers are very heterogeneous
and depend on their origin of tissue, age, gender and other clinical parameters. We investigated tumor specific

Methods: For this, we mapped gene expression data from microarrays onto the corresponding enzymes and their
metabolic reaction network. We used Haar Wavelet transforms on optimally arranged grid representations of
metabolic pathways as a pattern recognition method to detect orchestrated regulation of neighboring enzymes in
the network. Significant combined expression patterns were used to select metabolic pathways showing shifted

Results: Besides up-regulation for energy production and nucleotide anabolism, we found an interesting cellular
switch in the interplay of biosynthesis of steroids and bile acids. The biosynthesis of steroids was up-regulated for
estrogen synthesis which is needed for proliferative signaling in breast cancer. In turn, the decomposition of
steroid precursors was blocked by down-regulation of the bile acid pathway.

Conclusion: We applied an intelligent pattern recognition method for analyzing the regulation of metabolism and
elucidated substantial regulation of human breast cancer at the interplay of cholesterol biosynthesis and bile acid

Background

Breast cancer is a prevalent disease and a leading cause
of cancer death in women [1]. Worldwide, breast cancer
is the second most common type of cancer after lung
cancer and the fifth most common cause of cancer
death. Breast cancer patients with the same stage of dis-
ease can have very different treatment responses and
overall outcome. Clinical predictive factors like age,
tumor size, lymph node status, histological and patholo-
gical grade or hormone-receptor status, often fail to
accurately predict clinical outcome, distant metastasis
and recurrence of the cancer.
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Chemotherapy and hormonal therapy reduces the risk
of distant metastases by approximately one third. How-
ever, 70-80% of the patients would have survived with-
out it (five years of follow-up) [2-4]. A more accurate
means of prognosis and selection of therapy would sub-
stantially improve disease-free and overall survival of
breast cancer patients [5]. Cancer cells acquire their
hallmarks of malignancy through the accumulation of
advantageous gene activation and inactivation events
over long periods of time [6]. Nevertheless, the molecu-
lar basis of breast cancer tumorigenesis remains poorly
understood. A long-standing strategy for cancer treat-
ment is to attack basic tumor metabolism by inhibiting
nucleotide biosynthesis [7,8] and DNA production [9].

Besides this, over the past decade there have been
exciting developments in analyzing large scale gene
expression profiles. This improved the understanding of
the tumors’ composition and behavior to develop new
targets for therapy [1]. Many studies of gene expression
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identified expression profiles that are prognostic for
patients with breast cancer. However, comparisons of
the lists of genes derived from these studies showed that
they overlap only slightly due to differences in the
patient cohorts, microarray platforms, and mathematical
methods of analysis [6]. One strategy to tackle this pro-
blem is to map lists of differentially expressed genes on
groups of genes with related functions according to the
information provided by several databases such as Gene
Ontology [10] and KEGG [11]. Finding enrichments of
specific gene sets related to certain phenotypes or cell
states yields a functional grouping of differentially
expressed genes which can be related to their patho-
genic behavior and can lead to more robust results in
comparison to the analysis of single genes.

To detect the enrichment of gene sets, commonly, a
list of significantly differentially expressed genes is iden-
tified and statistical tests applied, such as Fisher’s exact
test and x> test. In a different approach, a gene-specific
statistics, known as the “local” statistics, measures the
strength of association between the gene expression and
the phenotype for each gene. A global statistics for a
gene set is then constructed as a function of local statis-
tics for each gene in it. The significance is assessed by
permutation tests [12]. A global test for gene sets to
associate gene expression with clinical outcome was pre-
sented by Goeman and co-workers and enabled deter-
mining whether the global expression pattern of a group
of genes is significantly related to clinical outcome of
interest using a linear regression approach [13]. In
another approach, expression levels of all genes in the
gene sets are combined and presented as gene specific
features. These features are then compared between the
treatment and the control groups to identify significantly
affected gene sets [14]. In general, these methods test
the association of all genes in a gene set with the pheno-
types, whereas often only genes in a subset of the gene
set are associated with the phenotype. Some of the
genes may not belong to the set due to incompleteness
or errors in the available data. Additionally, even if all
genes in the gene set have apparently the same function,
or belong to the same process, it is likely that only a
few genes are associated with the phenotype.

To overcome these and other gene-associated pro-
blems, transcriptional data was analyzed using topology
information of cellular networks. Topological informa-
tion derived from the metabolic network was connected
by calculating Z-scores of highly correlated sub-net-
works [15]. Chuang and co-workers improved classifica-
tion of breast cancers with expression patterns of small
subnets of a signal transduction network [16]. Substan-
tial new genetic mediators for prostate cancer were
found using reverse engineered gene networks in combi-
nation with gene expression profiles [17]. Rapaport and
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co-workers found gene expression patterns of neighbor-
ing genes in the network yielding good classification of
the profiled samples by calculating Fourier transforma-
tions and rejecting high frequency signals [18]. Common
gene expression levels of neighboring nodes in a meta-
bolic network were calculated by averaging over all
neighbors of a gene, and revealed several interesting
regulated pathways for the human immune system [19].
However, these approaches were not developed to detect
highly contrasting expression of neighboring genes that
undergo a switch-like shift of regulation in a tumor cell.
Importantly, especially these switches can be highly rele-
vant to identify potential drug targets that specifically
attack the tumor at nodes at which it redirects fluxes in
the network to establish parasitic advantages.

In our study, gene expression profiles of breast tumors
having an “unfavorable” prognosis were compared to
breast tumors with a “favorable” prognosis. We wanted
to track how the aggressive (unfavorable) tumors have
specifically regulated their metabolism to optimize their
oncogenetic fitness, and to elucidate ways to severely
perturb this process. For this, we used an approach that
detects orchestrated regulation of neighboring enzymes
in the metabolic network. We mapped gene expression
data onto optimally arranged grid representations of
pathways of the metabolic network and applied Haar
wavelet transforms onto defined pathways of the net-
work to combine gene expression values from neighbor-
ing enzymes. These combined features were tested using
a non-parametric test (Wilcoxon) if they could separate
samples from different treatments. Metabolic pathways
were selected that had features with the most discrimi-
native gene expression patterns. We detected a substan-
tially higher number of significant gene expression
patterns in comparison to commonly used enrichment
tests. We revealed 19 significant metabolic pathways
including increased purine and pyrimidine biosynthesis
which were needed for increased mitosis cycles. Further-
more, we found pathways for increased energy metabo-
lism (glycolysis, pyruvate metabolism and fructose/
mannose metabolism). Interestingly, we observed the
regulation of a possible a cellular switch in the pathway
for bile acid biosynthesis redirecting the metabolic flux
to the synthesis of steroids while preventing degradation
into bile acids.

Results and Discussion

In this study, 250 patients were examined, 196 having a
“favorable” and 54 patients an “unfavorable” prognosis.
1826 reactions could be extracted from KEGG [11] for
1771 out of which expression values could be assigned.
The workflow of the method is depicted in Figure 1.
Pathway maps from KEGG were represented as two-
dimensional lattice grids with densely packed reactions.
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Figure 1 The workflow. Samples were divided into patients with
favorable and unfavorable prognosis according to their time of
recurrence (time period of relapse after the first event of breast
cancer, denoted in years) and event of metastasis (favorable: time
recurrence above 5 years, unfavorable: time recurrence of less than
three years and the occurrence of metastasis). Expression data were
mapped onto the reactions from KEGG and analyzed. Pathways with
significant expression patterns were ranked according to the
significance of the patterns and compared with the literature.

expression patterns

The reactions were arranged in a way that their neigh-
borhoods in the network were preserved as optimally as
possible (using the grid arrangement method, for details
see methods). Gene expression data was mapped onto
the reactions representing the according expressed
enzymes. Wavelet transforms were used to combine
expression values of neighboring reactions by all possi-
ble combinations of subtractions and additions. The
out-coming features were tested (Wilcoxon rank test)
for their possibility to discriminate between the two
tumor entities (favorable and unfavorable). Figure 2
illustrates the principle of the pattern analysis for an
example pathway. Pathways with the best discriminating
features were selected. We revealed significant features
from 19 different pathways (Table 1), including pyrimi-
dine, purine, aminoacyl-tRNA metabolism, pyruvate
metabolism, glycolysis/gluconeogenesis and fructose/
mannose metabolism. These pathways have been
expected as they accounted for higher biosynthesis of
nucleic acids and proteins and higher energy demands
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of the aggressive (unfavorable) tumors. We also revealed
less expected differentially regulated pathways, such as
biosynthesis of steroids and bile acids. We compared
the performance of our algorithm with commonly used
enrichment methods. Fisher’s exact tests revealed only
one pathway (Lysine biosynthesis, P = 0.048) to be sig-
nificantly enriched with differentially regulated genes
(P < 0.05, threshold for defining the differentially
expressed genes also P = 0.05). In addition, we applied
the well established Gene Set Enrichment Analysis
(GSEA [20], two sided) to the data yielding also only
one significantly enriched pathway, i.e. the pyrimidine
metabolism (P = 2.2E - 03). We compared the perfor-
mance of our method to Fisher’s exact tests and GSEA
with simulated data yielding considerably higher sensi-
tivity for our method (see Additional file 1 A2 and
Receiver Operator Characteristics: Figure A2). In the fol-
lowing, we will discuss the oncogenetic relevance of the
pathways we found.

Pyrimidine and purine metabolism

Most up-regulated reactions were identified in the pyri-
midine (P = 2.25E - 04) and purine (P = 1.21E - 03)
metabolism. These pathways were up-regulated to
enable enforced nucleotide biosynthesis for increased
cell cycle activity of the aggressive tumors. Nearly all
enzymes involved in the biosynthetic pathway for
nucleotides were up-regulated, such as enzymes convert-
ing substrates to dNTPs and polyribonucleotide nucleo-
tidyltransferases (EC 2.7.7.7), incorporating dNTPs into
DNA. Enzymes reversing pyrimidine and purine anabo-
lism, such as enzymes degrading dNTPs, were down-
regulated (ECs 3.6.1.17, 1.3.1.2 and 2.7.4.3). Reactions
involved in RNA synthesis were partially up-regulated to
increase protein biosynthesis (EC 2.7.7.8). Furthermore,
reactions which were responsible for synthesizing ade-
nosine were up-regulated (EC 2.4.2.1). Adenosine was
shown to be angiogenic, cyto-protective and anti-inflam-
matory in several tissues and contributed to more
aggressive behavior and metastasis of cancer cells [21].

Pathways for energy supply were significantly up-
regulated

We detected significant differential expression patterns
in glycolysis (P = 3.85E - 03), pyruvate (P = 1.20E - 02)
and fructose/mannose (P = 1.55E - 02) metabolism.
They were mostly up-regulated to generate sufficient
energy and metabolites for fast-growing cancer cells.
Genes of the glycolysis pathway have been found to be
over-expressed in a set of 24 cancers, while other path-
ways showed less consistent up-regulation so far [22].
Glycolysis is increased in cancers and this generates
ATP by oxidative phosphorylation [23,24]. Furthermore,
elevated glycolytic flux may support the production of
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Figure 2 Compiling the features. A. We sketch the method with a simple example pathway consisting of six reactions R1-R6 and six
metabolites M1-M6. B. To apply the pattern analysis method (wavelet transforms), the pathway needed to be represented on a two dimensional
lattice grid. Reactions were optimally arranged to preserve next nearest neighborhoods while minimizing the distances of neighboring reactions.

Metabolites didn't need to be displayed in this representation but rather used to determine the neighborhoods (e.g. R1 is a neighbor of R2
because it produces M1 which is needed as a substrate for R2 or vice versa). C. Gene expression data was mapped onto the corresponding
enzymatic reactions. In this example genes of enzymes for reactions R1, R4, RS were high expressed and of enzymes for reactions R2 and R6 low
expressed. D. Combined gene expression features were assembled by Haar wavelet transforms which basically calculated additive and
subtractive combinations of 2 x 2 pixels of the grid (pixels without reactions were filled with zeros). The figure shows all four possible
arrangements of 2 x 2 pixels for which the wavelet transforms were calculated. The same procedure was done for all tumor samples. The
feature which best separated the tumor entities (favorable from unfavorable) was selected for the significance of this pathway.

important metabolites that contribute to essential cellu-
lar processes like fatty acid synthesis, nucleotide synth-
esis and to the better protection of oxidative stress
[25,26].

However, the extent of up-regulated genes in glycoly-
sis varies for different cancer types. In our study, all
except one differentially regulated reactions were up-
regulated, including enzymes such as glyceraldehyde-3-
phosphate dehydrogenase (EC 1.2.1.12), phosphor glyce-
rate mutase (EC 5.4.2.1), phosphoglycerate kinase (EC
2.7.2.3), triosephosphate isomerase (EC 5.3.1.1) and fruc-
tose-bisphosphate aldolase (EC 4.1.2.13). These enzymes
were also described as up-regulated by Altenberg and
co-workers [22]. Inhibitors of glycolysis, such as the

glucose analog 2-deoxyglucose, which binds and sup-
presses hexokinase I, and arsenate, that causes arsenoly-
sis in glyceraldehyde-3-phosphate dehydrogenase, as
well as 3-bromopyruvate, an inhibitor of hexokinase II,
have already been developed to target this metabolic
abnormality and could effectively kill cancer cells [27].

Inhibition of glycolysis was effective even in killing
cancer cells with a multidrug resistance (MDR) pheno-
type. It is known that cells expressing MDR proteins
require ATP as their energy source to export drugs out
of the cell. Thus, to overcome this drug resistance,
depletion of cellular ATP causes the excretion to fail
and consequently, cancer cells become more sensitive to
anti-cancer therapy [27].
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Table 1 Significantly differentially regulated pathways
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Rank Pathway Differentially Number of Down-regulated Up-regulated in unfavorable  P-value
regulated reactions in unfavorable

1 Histidine metabolism 6 14 3 3  1.15E-05
2 Alanine and aspartate metabolism 8 19 2 6  1.56E-05
3 Valine, leucine and isoleucine degradation 13 36 10 3  3.74E-05
4 Pyrimidine metabolism 37 75 3 34 225E-04
5 Fatty acid metabolism 14 36 9 5  248E-04
6 Biosynthesis of Steroids 10 41 2 8 312804
7 Methionine metaboplism 4 12 2 2 736E-04
8 Purine metabolism 17 91 3 14 1.21E-03
9 Glycine, Serine and Threonine metabolism 12 31 4 8 1.28E-03
10 Propanoate metabolism 4 18 3 1 2.12E-03
11 Lysine Biosynthesis 6 6 5 1 2.33E-03
12 Aminoacyl-tRNA biosynthesis 5 20 1 4 283E-03
13 Glycolysis/Gluconeogenesis 17 32 1 16 3.85E-03
14 Bile acid biosynthesis 10 28 4 6 5.26E-03
15 Pentose phosphate pathway 5 20 1 4 8.84E-03
16 Inositol phosphate metabolism 8 25 1 7 9.75E-03
17 Pyruvate metabolism 6 27 2 4 1.20E-02
18 Fructose and mannose metabolism 11 23 1 10 1.55E-02
19 Galactose metabolism 8 24 4 4  2.00E-02

Pathways with significant regulation patterns and more than three differentially regulated reactions (as defined by KEGG), bold: pathways which had also

significant patterns in the second analyzed dataset.

We found a smaller pattern of up-regulated reactions
in the pyruvate metabolism. Significantly up-regulated
were: pyruvate kinase (EC 2.7.1.40) which is responsible
for ATP production in glycolysis, and the conversion of
pyruvate to malate via (S)-Malate:NADP+ oxidoreduc-
tase (ECs 1.1.1.38, 1.1.1.39, 1.1.1.40). Aldehyde dehydro-
genase (EC 1.2.1.3) was down-regulated to prevent
degradation of fatty acids. Oxaloacetate was reported to
directly induce cell proliferation by increasing DNA
synthesis [28]. Surprisingly, our results did not show any
increase in lactate dehydrogenase, which is often up-
regulated in cancer cells [22]. Highly expressed reactions
in fructose and mannose metabolism were mainly
involved in the conversion of D-fructose (EC 4.1.2.13),
D-fructose-1P (ECs 2.7.1.1, 2.7.1.11, 4.1.2.13) and
D-mannose (ECs 2.7.1.1, 2.7.1.11, 4.1.2.13) into glyceral-
dehyd-3P, a substrate of glycolysis, leading to increased
ATP production.

Biosynthesis of steroids and bile acids

The steroid pathway was mainly up-regulated in breast
cancer of unfavorable outcome. 8 out of 10 reactions
were significantly up-regulated (8 reactions from KEGG
comprising ECs 2.5.1.29, 2.5.1.10, 2.5.1.1, 1.1.1.170,
5.3.3.5, 1.3.1.21). Cholesterol is a precursor for the bio-
synthesis of steroid hormones. It was shown that sex
steroid hormones such as estrogen increase the prolif-
eration of breast cancer cells by acting on estrogen
receptors [29]. Directly connected with the production

of cholesterol is the biosynthesis of bile acids. Figure 3
shows the regulation of bile acid biosynthesis (including
the results from the second analyzed dataset, the second
analyzed dataset is described in the next section). In the
bile acid biosynthesis pathway, reactions generating cho-
lesterol and its derivates were up-regulated (ECs 3.1.1.13
and 2.3.1.26), whereas the lower part of the pathway
was mainly down-regulated, i.e. the production of bile
acids such as cholate and lithocholate (ECs 2.3.1.16,
1.2.1.3). Conversion of cholesterol to bile acids is the
major pathway for cholesterol catabolism in the human
body [30]. Therefore, down-regulation of the lower part
of the bile acid pathway and up-regulation of cholesterol
biosynthesis may, in conjunction, support steroid bio-
synthesis which supports estrogen mediated tumorigen-
esis of breast cancer cells.

Besides this, there have been intensive cancer investi-
gations on bile acids as they have very heterogeneous
effects on tumor cells and carcinogenesis. They are
known enhancers for invasiveness of colon cancers
[31,32]. In turn, bile acids can induce apoptosis either
specifically (receptor-mediated interactions) [33] or, in
high concentrations, non-specifically (as detergents)
through mitochondrial destabilization and oxidative
stress [34]. Non-toxic doses of deoxycholic acid (DCA),
chenodeoxycholic acid (CDCA) and lithocholic acid
(LCA) induced differentiation in promyelocytic leukemia
cell lines [35]. 6ECDCA is a synthetic bile acid deriva-
tive and can act as a selective FXR ligand to promote
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differentiation of preadipocyte cell lines [35]. In the
blood plasma of postmenopausal women with newly
diagnosed breast cancer, elevated concentrations of
DCA were detected which may have been released from
osteoblasts to induce migration of the cancer [30]. This
would explain a down-regulation in breast cancer cells

as they may use elevated bile acid levels from the blood
for detaching and infiltrating while sustaining their
endogenous cholesterol synthesis.

Bile acids are normally predominantly produced by
hepatocytes which may explain the elevated levels of
bile acids in the blood when elevated breast cancer
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estrogen is decomposed into bile acids in the liver. In
conclusion, this regulation may reflect a cellular switch
which redirects the metabolic flux from degradation of
cholesterol (via bile acids) into the conversion of steroid
hormones, suggesting drug targets in the biosynthesis of
steroids, such as mevalonate (diphospho) decarboxylase
(EC 4.1.1.33) and mevalonate kinase (EC 2.7.1.36).

Analyzing a second dataset

To verify our findings we analyzed an independent gene
expression dataset of breast cancer [36,37] consisting of
414 samples. The data was downloaded from Array
Express (GSE6532, http://www.ebi.ac.uk/microarray-as/
ae/) and normalized as described in Methods. We
divided the dataset into 250 tumors showing a favorable
prognosis and 61 tumors with an unfavorable prognosis
following our criteria as described for the other dataset
(in Methods). 103 tumors were discarded as they did
not fit in any of the prognostic groups. The significance
level was again set to P = 0.05. Our analysis revealed 12
pathways with significantly differentially regulated pat-
terns (see Additional file 1 Table Al). Although the
overlap of survival predicting genes between different
breast cancer studies is often rather small [38], four
pathways from the first analyzed study also showed a
significant regulation pattern in this second dataset, i.e.
histidine metabolism, valine, leucine and isoleucine
degradation, bile acid biosynthesis and galactose meta-
bolism. Interestingly also the citrate cycle showed a sig-
nificant regulation pattern which compares to the
pathways for carbon hydrate metabolism we found in
the first analyzed dataset, and C,;-steroid hormone
metabolism which compares to steroid biosynthesis
found in the first analyzed study.

Conclusion

Performing a network based gene expression analysis
revealed interesting insights into the metabolism and
regulation of aggressive breast tumor cells. Expected dif-
ferentially regulated pathways in cancer could be con-
firmed, e.g. the aggressive tumors showed significantly
up-regulated pathways for purine and pyrimidine synth-
esis to maintain elevated proliferation, as well as the up-
regulation of glycolysis and pyruvate metabolism to sup-
port energy supply for the tumor. The analysis revealed
insights into differentially regulated metabolic pathways
in breast cancer cells, which may support the induction
of proliferation by inositol signal transduction cascades
(inositol phosphate metabolism) and steroid hormones
(biosynthesis of steroids). An interesting view in breast
cancer metabolism was observed in the interplay of bio-
synthesis of steroids and bile acids, the latter of which
was down-regulated possibly to convert cholesterol into
proliferative acting steroid hormones. Such a cellular

Page 7 of 10

switch would be interesting to compare to other tumors
and tissues, also in order to define a tumor specific ther-
apy. Performing Fisher’s exact tests as a standard enrich-
ment analysis revealed the lysine biosynthesis pathway
to be significantly enriched with differentially expressed
genes. The GSEA method yielded pyrimidine biosynth-
esis. In addition to this pathway, our method yielded
eighteen further significant regulation patterns. How-
ever, not all pathways detected by such enrichment tests
and also our pattern analysis may be relevant for the
pathogenesis of the analyzed disease. Some pathways in
our results, such as valine, leucine and isoleucine degra-
dation, could not be associated with oncogenesis and
may need further examination.

Complex regulated pathways which were relevant to
breast tumors with unfavorable prognosis were detected
and described in a straightforward manner. The global
analysis of network patterns offered a good insight into
the regulation of metabolism in breast tumors and may
support revealing new potential targets for drug design,
specifically in the interplay of the biosynthesis of bile
acids and steroids.

Methods

We wanted to identify pathways and regions of path-
ways that showed patterns of differentially regulated
reactions. To find such patterns we applied wavelet
transforms on the mapped gene expression data. For the
application of wavelet transforms and the subsequent
feature calculations we needed to arrange the metabolic
pathways onto a 2-dimensional grid (Figure 2 illustrates
this procedure with a small example pathway).

Preparing the microarray data

Normalized gene expression data was taken from a pub-
lished study [5] of breast-cancer samples of 295 women
(diagnosis between 1984 and 1995) with age < 53 years
and no previous history of cancer, except for non-mela-
noma skin cancer. The data was downloaded from Rosetta
Inpharmatics at http://www.rii.com/publications/2002/
nejm.html. The gene expression profiles were derived by
using oligonucleotide microarrays from Agilent Technolo-
gies http://www.agilent.de. Data on relapse-free survival
(defined as the time to the first event) and overall survival
were available for all patients. Most of the patients had
breast cancer of stages one and two. 165 had received
local therapy alone, 20 had received tamoxifen only, 20
had received tamoxifen plus chemotherapy, and 90 had
received chemotherapy only. 151 patients were diagnosed
as lymph-node-negative and 144 as lymph-node-positive.
The tumors were primary invasive breast carcinoma that
were less than 5 cm in diameter at pathological examina-
tion [5]. To differentiate between tumors with “favorable”
and “unfavorable” prognosis, samples were separated
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according to their “time recurrence” (period of time of
relapse after the first event of breast cancer, denoted in
years) and “event of metastasis” (if metastasis occurs dur-
ing this period). A time recurrence above 5 years indicated
a “favorable” prognosis (196 patients), whereas samples
were classified as samples with unfavorable prognosis if
they showed a time recurrence of less than three years and
the occurrence of metastasis (54 patients). Samples with
ambiguous information were discarded (45 samples) and
identified either by a time recurrence of less than three
years without the event of metastasis or by a time recur-
rence above three years but below five years. A Remark: A
new ethical approval was not needed for our study as all
our analyses based on published microarray datasets
(which also applies to the second analyzed dataset).

Assembling the metabolic pathways

Pathways were defined according to curated pathway
maps of the KEGG database [11] (version from February
4t 2009). Two reactions were neighbors if a metabolite
existed that was the product of one and the substrate of
the other. We defined reactions as the nodes and meta-
bolites as the edges between them. Pathways without
any connected reaction were discarded. This resulted in
99 pathways with 1826 different reactions. Each pathway
was represented by its adjacency-matrix. An entry at
row a and column b was set to one if there existed a
metabolite that was produced by reaction a and con-
sumed by reaction b or vice versa. The sizes of the sym-
metric adjacency-matrices were between 2 x 2 and 92 x
92 reactions.

Ordering the two-dimensional pathway representation
with the grid arrangement method

To apply our feature extraction method we required a
2-dimensional grid arrangement of the metabolic net-
work. We calculated an embedding of the metabolic
networks for every KEGG pathway into a 2-dimensional,
regular square lattice grid. To preserve neighborhood
characteristics of the reactions, we were looking for
embeddings in which adjacent nodes of the network
were placed onto the grid as close to each other as pos-
sible. We wanted to determine an optimal neighborhood
in which the total edge length of the graph was mini-
mized according to some metric on the lattice. The net-
work topology was preserved as good as possible. For
this purpose the minimization of total edge length is
more suitable than a minimization of the longest edge
which is widely applied in very large scale integration
(VLSI) designs as the latter one allows a variety of opti-
mal solutions in which adjacent nodes are placed unne-
cessarily far from each other. As a measure of distance
in the lattice, we used the natural metric induced by the
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underlying lattice graph, the so-called Manhattan
distance. That is, for any two grid points u# = (iy, j;) and
v = (iy, j») the distance was given by d,,, = |i; - i2| + |j1
- Ja| This resulted in an NP-hard combinatorial optimi-
zation problem. We stated this problem as an integral
linear program (IP) (see [39] for an introduction to inte-
ger programming). We formulated the IP by introducing
3-dimensional binary variables wx,;; for every node v and
every grid point (i, j) stating whether or not node v has
to be placed on grid point (i, j). For each pair of nodes
(u, v) we calculated their distance d,,,. For a given lattice
grid g, the undirected network graph G = (V, E) with
node set V, edge set E and adjacency matrix M, the
most basic IP was given by finding an optimum for

i M(a,b)-d,,
n;cl,ldnza,beV,a<b ((1 ) ab (1)

with the constraints

z(i,j)eg x,; =1 forallveV, 2)
Zuev x,; <1 forall (i, j)e g (3)
dpy2A+B, d,=>2A-B (4)
dgy=2-A+B, dy=2-A-B (5)

for all (a, b) € V x V, a <b, where

” Z(i,j)egl K (s’ O ©)
- Z(i,j)eg] '

=20, x

X gij _Z(i’j)eg]' “ Xpijs (7)

x e Z forallve V,(i,j)e g (8)

vij vij

Constraints Eq. (2) and Eq. (3) guaranteed that all
nodes (reactions of the pathway) were placed exactly
once and that each grid point could be used at most
once, thus avoiding multiple placements and stacking of
reactions on a single grid point. Constraints Eq. (4) and
Eq. (5) ensured that the distance of node a and b is
given by |A| + |B| where A and B are computed by Eq.
(6) and Eq. (7) as A = i, - i, and B = j, - j,. All variables
were enforced to values 0 or 1 by constraint Eq. (8). The
problem was solved by CPLEX 8.1 (ILOG, Gentilly,
France) for 99 lattice grids (representing 99 KEGG-
maps) with an average optimality of 96% for embeddings
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on square grids of side length \/m +1, rounded up to
the next integer. By choosing a grid of the smallest pos-
sible size, we reduced both the number of variables in
the model and the number of unoccupied sites on the
grid. This basic model was enhanced by a number of
graph dependent, additional constraints on the distance
variables. They provided lower bounds for the distance
sums of well-known sub-graph motifs. For an edge
induced sub-graph G’ € G with a least objective func-
tion contribution of [b(G’), the following inequality was
added or dynamically separated by

Z d,, > 1b(G") ©)

(u,v)eE(G")

The right-hand sides /b(G’) for the different sub-graph
motifs needed to be determined only once as they are
independent of G. Furthermore, the motifs were defined
in a pre-processing step and could therefore be sepa-
rated quickly during the optimization process. We con-
sidered the sub-graph motifs of star graphs, cliques
consisting of up to 10 vertices and odd cycles (2k + 1-
cycles) for k = 1,2. Moreover, a certain class of trees
with maximum vertex degree A(T) < 4 decreased com-
putation time and enhanced separation ability. Further-
more, calculation time was reduced by symmetry
breaking constraints eliminating all but a few represen-
tative embeddings from each equivalence class of sym-
metrical embeddings. For this, grid symmetries due to
translation, rotation and reflection of the embeddings
were considered as well as vertex subsets which inner
permutations didn’t change the value of the objective
function. After solving the optimization problem the
values of the variables x,;; allowed to construct the
embedding of the metabolic pathway on a 2-dimensional
grid placing reaction v on the grid point with coordi-
nates (i,/). On the grid representations of the pathways
we then applied our feature generation method.

Pattern recognition of gene regulation on the metabolic
network

Neighboring enzymes on the 2-dimensional grid repre-
sentation were grouped by combining their gene expres-
sion values with wavelet transforms. These transforms
yielded combined expression values ("features”) of low
pass filters to detect similar expression changes and
high pass filters to detect contrasting regulation pat-
terns. The wavelet calculation is described in the follow-
ing. Each cluster-matrix was divided into 2 x 2 pixeled
disjoint sub-sections (e.g. a cluster matrix of size 8 x 8
was divided into 16 sub-sections). Clusters with non-fit-
ting sizes (e.g. 3 x 3, 5 x 5,) were extended with rows
and columns of zeros to yield matrices that could be
divided into 2 x 2 pixels sub-sections. For each
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sub-section, all combinations of row-wise and column-
wise mean and differences, respectively, were calculated.
This yielded 4 combined values for each 2 x 2 pixels
sub-section: 1st: mean of the mean of the upper and
mean of the lower row, 2nd: difference of the mean of
the upper and the mean of the lower row, 3rd: mean of
the difference of the upper and the difference of the
lower row, and, 4th: difference of the difference of the
upper and the difference of the lower row. All four
combined values for each 2 x 2 pixels sub-section were
stored and applied as features for the classifier. This was
done for all sub-sections of the matrix. All 1st combined
values (mean of means) were taken for a new matrix
and were again grouped into 2 x 2 fractions that were
combined in the same manner, yielding again 4 new fea-
tures for every fraction. This procedure was repeated
until no further grouping was possible. The discrimina-
tive behavior of all non-trivial features was tested using
Wilcoxon rank tests. Pathways were ranked according to
their best discriminating features. Features were
regarded as significant if they had p-values < 0.05 after
correction for multiple testing using the Bonferroni
method [40,41]. Only pathways with more than three
significantly, differentially regulated reactions and genes
were further investigated to focus on the most relevant
features. Two reactions that consisted of exactly the
same genes were counted as one reaction.

Additional material

Additional file 1: Additional results and performance assessment.
Results for the additional gene expression data set and comparison of
our approach with standard enrichment tests using simulated data.

Acknowledgements

This work was funded within the BMBF-FORSYS consortium Viroquant
(#0313923), the Helmholtz Alliance on Systems Biology and the Nationales
Genom-Forschungs-Netz (NGFN+) for the neuroblastoma project, ENGINE.

Author details

1Departmem of Bioinformatics and Functional Genomics, Institute of
Pharmacy and Molecular Biotechnology, and Bioquant, University of
Heidelberg, INF 267, 69120 Heidelberg, Germany. “Interdisciplinary Center for
Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany.
3Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121
Heidelberg, Germany.

Authors’ contributions

GS and RK conceptualized and designed the method. GS and EMS analyzed
the data. SW, MO and GR provided solutions for the combinatorial
optimization problem. GS, EMS and RK wrote the manuscript. RE and RK
revised it critically. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 2 December 2009 Accepted: 10 September 2010
Published: 10 September 2010


http://www.biomedcentral.com/content/supplementary/1755-8794-3-39-S1.PDF

Schramm et al. BMC Medical Genomics 2010, 3:39
http://www.biomedcentral.com/1755-8794/3/39

References

1.

Oakman C, Bessi S, Zafarana E, Galardi F, Biganzoli L, Di Leo A: New
diagnostics and biological predictors of outcome in early breast cancer.
Breast Cancer Research 2009, 205:1-11.

van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL,
van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM,
Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling
predicts clinical outcome of breast cancer. Nature 2002, 415:530-536.
Polychemotherapy for early breast cancer: an overview of the
randomised trials. Early Breast Cancer Trialists’ Collaborative Group.
Lancet 1998, 352:930-942.

Tamoxifen for early breast cancer: an overview of the randomised trials.
Early Breast Cancer Trialists' Collaborative Group. Lancet 1998,
351:1451-1467.

Van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AAM, Voskuil DW,
Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D,
Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S,
Rutgers ET, Friend SH, Bernards R: A Gene-Expression Signature as a
Predictor of Survival in Breast Cancer. The New England Journal of
Medicine 2002, 347:1999-2009.

Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DSA, Nobel AB, van't Veer LJ,
Perou CM: Concordance among Gene-Expression-Based Predictors for
Breast Cancer. The New England Journal of Medicine 2006, 355:560-569.
Chen L, Pankiewicz KW: Recent development of IMP dehydrogenase
inhibitors for the treatment of cancer. Curr Opim Drug Discov Devel 2007,
10:403-412.

Lui MS: Biochemical pharmacology of acivicin in rat hepatoma cells.
Biochem Pharamcol 1982, 31:3469-3473.

Pedersen-Bjergaard J: Risk of acute nonlymphocytic leukemia and
preleukemia in patients treated with cyclophosphamide for non-
Hodgkin’s lymphomas. Comparison with results obtained in patients
treated for Hodgkin's disease and ovarian carcinoma with other
alkylating agents. Ann Intern Med 1985, 103:195-200.

Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K,
Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C,

Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R,
Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG,
Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D,
Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R,
Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W,
Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J,
Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T,
White R: The Gene Ontology (GO) database and informatics resource.
Nucleic Acids Res 2004, 32:D258-261.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T,
Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y: KEGG for linking
genomes to life and the environment. Nucleic Acids Res 2008, 36:
D480-484.

Pitman EJG: Significance tests which may be applied to samples from
any population. Royal Statistical Society Supplement 1937, 4:119-130, 225-
232.

Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC: A global test
for groups of genes: testing association with a clinical outcome.
Bioinformatics 2004, 20:93-99.

Yan X, Sun F: Testing gene set enrichments for subset of genes: Sub-
GSE. BMC Bioinformatics 2008, 9:1-15.

Patil KR, Nielsen J: Uncovering transcriptional regulation of metabolism
by using metabolic network topology. Proc Natl Acad Sci USA 2005,
102:2685-2689.

Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of
breast cancer metastasis. Mol Syst Biol 2007, 3:140.

Ergun A, Lawrence CA, Kohanski MA, Brennan TA, Collins JJ: A network
biology approach to prostate cancer. Mol Syst Biol 2007, 3:82.

Rapaport F, Zinovyev A, Dutreix M, Barillot E, Vert JP: Classification of
microarray data using gene networks. BMC Bioinformatics 2007, 8:35.
Nacu S, Critchley-Thorne R, Lee P, Holmes S: Gene Expression Network
Analysis, and Applications to Immunology. Bioinformatics 2007.

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J,
Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ,
Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES,
Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-responsive genes

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Page 10 of 10

involved in oxidative phosphorylation are coordinately downregulated
in human diabetes. Nat Genet 2003, 34:267-273.

Spychala J: Regulation and function of ecto-5"-nucleotidase and adenosine
in cancer. 39 th Meeting of the Polish Biochemical society 2003, 185.

Altenberg B, Greulich KO: Genes of glycolysis are ubiquitously
overexpressed in 24 cancer classes. Genomics 2004, 84:1014-1020.

Guppy M, Greiner E, Brand K: The role of the Crabtree effect and an
endogenous fuel in the energy metabolism of resting and proliferating
thymocytes. Eur J Biochem 1993, 212:95-99.

Pfeiffer T, Schuster S, Bonhoeffer S: Cooperation and competition in the
evolution of ATP-producing pathways. Science 2001, 292:504-507.

Feron O: Pyruvate into lactate and back: from the Warburg effect to
symbiotic energy fuel exchange in cancer cells. Radiother Oncol 2009,
92:329-333.

Vander Heiden MG, Cantley LC, Thompson CB: Understanding the
Warburg effect: the metabolic requirements of cell proliferation. Science
2009, 324:1029-1033.

Xu R, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P:
Inhibition of glycolysis in cancer cells: a novel strategy to overcome
drug resistance associated with mitochondrial respiratory defect and
hypoxia. Cancer Research 2005, 65:613-621.

Li Y: Oxaloacetate induces DNA synthesis and Mitosis in primary
cultured Rat Hepatocytes in the basence of EGF. Biochemical and
Biophysical Research communications 1993, 193:1339-1346.

Suzuki T, Miki Y, Nakamura Y, Moriya T, Ito K, Ohuchi N, Sasano H: Sex
steroid-producing enzymes in human breast cancer. Endocrine-Related
Cancer 2005, 12:701-720.

Zimber A, Gespach C: Bile acids and derivatives, their nuclear receptors
FXR, PXR and ligands: role in health and disease and their therapeutic
potential. Anticancer Agents Med Chem 2008, 8:540-563.

Debruyne PR, Bruyneel EA, Li X, Zimber A, Gespach C, Mareel MM: The role
of bile acids in carcinogenesis. Mutat Res 2001, 480-481:359-369.

Pai R, Tarnawski AS, Tran T: Deoxycholic acid activates beta-catenin
signaling pathway and increases colon cell cancer growth and
invasiveness. Mol Biol Cell 2004, 15:2156-2163.

Garewal H, Bernstein H, Bernstein C, Sampliner R, Payne C: Reduced bile
acid-induced apoptosis in “normal” colorectal mucosa: a potential
biological marker for cancer risk. Cancer Res 1996, 56:1480-1483.

Katona BW, Anant S, Covey DF, Stenson WF: Characterization of
Enantiomeric Bile Acid-induced Apoptosis in Colon Cancer Cell Lines.
The journal of biological chemistry 2009, 284:3354-3364.

Zimber A, Chedeville A, Gespach C, Abita JP: Inhibition of proliferation
and induction of monocytic differentiation on HL60 human
promyelocytic leukemia cells treated with bile acids in vitro. Int J Cancer
1994, 59:71-77.

Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, Ellis P,
Harris A, Bergh J, Foekens JA, Klijn JG, Larsimont D, Buyse M, Bontempi G,
Delorenzi M, Piccart MJ, Sotiriou C: Definition of clinically distinct
molecular subtypes in estrogen receptor-positive breast carcinomas
through genomic grade. J Clin Oncol 2007, 25:1239-1246.

Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM, Gillet C,
Ellis P, Ryder K, Reid JF, Daidone MG, Pierotti MA, Berns EM, Jansen MP,
Foekens JA, Delorenzi M, Bontempi G, Piccart MJ, Sotiriou C: Predicting
prognosis using molecular profiling in estrogen receptor-positive breast
cancer treated with tamoxifen. BMC Genomics 2008, 9:239.

Ein-Dor L, Kela |, Getz G, Givol D, Domany E: Outcome signature genes in
breast cancer: is there a unique set? Bioinformatics 2005, 21:171-178.
Nemhauser G, Wolsey L: Integer and Combinatorial Optimization John Wiley
& Sons, Hoboken 1999.

Bonferroni CE: Il calcolo delle assicurazioni su gruppi di test. Studi in
Onore del Professore Salvatore Ortu Carboni. Rome, Italy 1935, 13-60.

Gordi T, Khamis H: Simple solution to a common statistical problem:
interpreting multiple tests. Clin Ther 2004, 26:780-786.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1755-8794/3/39/prepub

doi:10.1186/1755-8794-3-39

Cite this article as: Schramm et al.. Analyzing the regulation of
metabolic pathways in human breast cancer. BMC Medical Genomics
2010 3:39.



http://www.ncbi.nlm.nih.gov/pubmed/11823860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11823860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12490681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12490681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16899776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16899776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4014901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4014901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4014901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4014901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4014901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18077471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18077471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14693814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14693814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18173834?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18173834?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15710883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15710883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17940530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17940530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17299418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17299418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17270037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17270037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17267429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17267429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15533718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15533718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8444168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8444168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8444168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11283355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11283355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19604589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19604589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19460998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19460998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15695406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15695406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15695406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8323554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8323554?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16322318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16322318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18537536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18537536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18537536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11506828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11506828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15004225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15004225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15004225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8603388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8603388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8603388?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19054763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19054763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7927907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7927907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7927907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17401012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17401012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17401012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18498629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18498629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18498629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15220022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15220022?dopt=Abstract
http://www.biomedcentral.com/1755-8794/3/39/prepub

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Results and Discussion
	Pyrimidine and purine metabolism
	Pathways for energy supply were significantly up-regulated
	Biosynthesis of steroids and bile acids
	Analyzing a second dataset

	Conclusion
	Methods
	Preparing the microarray data
	Assembling the metabolic pathways
	Ordering the two-dimensional pathway representation with the grid arrangement method
	Pattern recognition of gene regulation on the metabolic network

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history

