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Abstract

cancer cell lines.

sensitize breast cancer cells to treatment.

Background: The nuclear transcription factor estrogen receptor alpha (ER-alpha) is the target of several
antiestrogen therapeutic agents for breast cancer. However, many ER-alpha positive patients do not respond to
these treatments from the beginning, or stop responding after being treated for a period of time. Because of the
association of gene transcription alteration and drug resistance and the emerging evidence on the role of DNA
methylation on transcription regulation, understanding of these relationships can facilitate development of
approaches to re-sensitize breast cancer cells to treatment by restoring DNA methylation patterns.

Methods: We constructed a hierarchical empirical Bayes model to investigate the simultaneous change of gene
expression and promoter DNA methylation profiles among wild type (WT) and OHT/ICI resistant MCF7 breast

Results: We found that compared with the WT cell lines, almost all of the genes in OHT or ICI resistant cell lines
either do not show methylation change or hypomethylated. Moreover, the correlations between gene expression
and methylation are quite heterogeneous across genes, suggesting the involvement of other factors in regulating
transcription. Analysis of our results in combination with H3K4me2 data on OHT resistant cell lines suggests a clear
interplay between DNA methylation and H3K4me2 in the regulation of gene expression. For hypomethylated
genes with alteration of gene expression, most (~80%) are up-regulated, consistent with current view on the
relationship between promoter methylation and gene expression.

Conclusions: We developed an empirical Bayes model to study the association between DNA methylation in the
promoter region and gene expression. Our approach generates both global (across all genes) and local (individual
gene) views of the interplay. It provides important insight on future effort to develop therapeutic agent to re-

Background

The term epigenetics in general refers to heritable pat-
tern of gene expression that is mechanistically regulated
through processes other than alteration in the primary
DNA sequences [1,2]. Epigenetics has implications in
both our understanding of gene regulation in complex
organisms such as mammals and clinical investigation
on various diseases such as cancer [3,4]. It is now clear
that epigenetic events can occur at both the DNA level
(i.e. DNA methylation) and chromatic level (i.e. histone

* Correspondence: chashen@iupui.edu

1Department of Medicine/Division of Biostatistics, Indiana University,
Indianapolis, IN, USA

Full list of author information is available at the end of the article

( BioMVed Central

modifications), resulting in an intricate process of inter-
actions that ultimately lead to the alteration of gene
expression [5-7].

DNA methylation is a process that adds a methyl
group to the cytosine ring via a co-valent bond, using S-
adenosyl-methionine as the methyl donor and DNA
methyltransferases (DNMTs) as the catalytic enzyme [5].
In mammals, DNA methylation is mostly common on
cytosines that precede a guanosine (the CpG dinucleo-
tide). Two features characterize the distribution of the
CpG dinucleotides in the genome. First, the overall fre-
quency of the CpG dinucleotides is substantially less
than one would expect from probabilistic calculations,
which is likely due to a depletion process induced by
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methylation over time [8]. Second, the distribution of
CpG dinucleotides in the genome is highly asymmetric
with a high concentration of DNA segments 200bp to
several kb in length called “CpG islands”, residing in the
promoter region and first exon for approximately 60%
of genes [6]. A striking feature that distinguishes CpG
islands from CpG dinucleotides is that under normal
conditions, CpG islands generally lack DNA methyla-
tion, whereas CpG dinucleotides are typically methylated
(i.e. 80%) [2]. While the relationship between CpG
island methylation and gene silencing is well established,
the mechanisms underlying this phenomena are less
clear but thought to include physical blocking of tran-
scription factor binding [9,10] and/or recruitment of
transcriptional repressors to the methylated sites [11].

A more complete understanding of the DNA methyla-
tion in carcinogenesis is beginning to emerge. A general
observation is that the level and pattern of DNA methy-
lation in cancer cells is the opposite of their normal
counterparts. The cancer methylome is characterized
by global hypomethylation of DNA, which is linked
primarily to repeated DNA sequences becoming hypo-
methylated. Hypomethylation may contribute to carci-
nogenesis by promoting tumor formation or progression
in a number of possible ways, including affecting trans-
posable element activation, DNA/chromosomal rearran-
gements, tumor suppressor gene or oncogene copy
number, and/or altered chromosome conformation. In
contrast to normal cells, increased methylation of CpG
islands is a common occurrence in cancer, and is asso-
ciated with epigenetic silencing during all phases of the
cancer process, including tumor initiation, progression
and drug resistance. Aberrant CpG island methylation is
associated with silencing of genes involved in control of
the cell cycle, apoptosis and drug sensitivity, as well as
tumor suppressor genes.

Although the above phenomena are well documented
in all cancers and recognized as playing an important
role in almost every aspect of carcinogenesis, the
mechanistic nature of the relationship between methyla-
tion and regulation of gene expression remains incom-
pletely understood, including the heterogeneity of the
relationship among genes, the interaction of methylation
at different sites and the involvement of other epigenetic
events.

In the clinical setting, a critical issue for cancer treat-
ment is acquired drug resistance, where patients initially
respond to chemotherapy but cease to respond after
repeated exposure to the same drug. Potentially, epige-
netic alterations, such as DNA methylation, are likely to
play an important role in acquired drug resistance, as
suggested by several studies [12-15], though much work
is yet to be done to gain a clear insight into this phe-
nomenon. Based on our experience in studies of
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hormone-therapy resistance in breast cancer, antiestro-
gen resistance is accompanied by dramatic alterations in
the expression level of many genes, and alteration of
DNA methylation may be one of the causes.

In this article, we focused on understanding the asso-
ciation between CpG island methylation and gene
expression in breast cancer. In particular, we attempted
to gain a better understanding of differences in DNA
methylation and gene expression between hormone-
therapy-sensitive and -resistant cell lines. We considered
two breast cancer cell lines that are resistant to tamoxi-
fen and fulvestrant, respectively. These are two clinically
important therapeutic agents that target estrogen recep-
tor alpha (ER-alpha), a nuclear receptor that primarily
mediates genomic regulation of gene transcription and
non-genomic activation of various kinase pathways [16].
It is well known that ER-alpha is a key protein impli-
cated in the majority of breast cancers. Although both
tamoxifen and fulvestrant are antagonists of ER-alpha,
their mechanisms of action differ markedly [17]. Tamox-
ifen functions as a competitive agent of E2 (the ligand
that stimulates ER-alpha), blocking E2 binding to
ER-alpha. In spite of this antagonistic action, tamoxifen-
bound ER-alpha is capable of regulating gene transcrip-
tion through genomic/non-genomic actions. On the
other hand, fulvestrant directly inhibits the process
through which ER-alpha executes genomic regulation
function, rapidly inducing cytoplasm aggregation and
ER-alpha degradation [17].

Based on their different mechanisms of action, the
transition to a resistant state by constant exposure to
these agents likely involves both similar and distinct
molecular alterations. The aim of this study is to iden-
tify at both the individual gene as well as genome level
the regulation status in both DNA methylation and gene
expression by comparing drug-resistant cell lines to
drug-sensitive cell lines. This study provides important
insight on the search of potential targets for epigenetic
therapy to re-sensitize tumor cells to hormone or
chemo-therapy. Toward this goal, we developed an
empirical Bayes statistical model to integrate gene
expression and DNA methylation data. Advantages of
such a model include (i) consideration of probe-probe
variation, (ii) easily interpretable confidence of the
detections and (iii) straight forward false discovery rate
(FDR) control/estimate [18,19].

Methods

Experiment

The Human Genome U133A 2.0 Array was used for
gene expression analysis. We restricted our analysis to
probes with at least two “present” calls among four
replicates. Differential methylation hybridization (DMH)
was done using customized 60-mer oligonucleotide
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microarrays, which contain ~44,000 CpG-rich fragments
from ~12,000 promoters of defined genes [20]. Microar-
ray Analysis Suite (MAS) version 5.0 was used for pre-
processing. Experimental details were described in [20].
The data discussed in this paper have been deposited in
NCBI's Gene Expression Omnibus http://www.ncbi.nlm.
nih.gov/geo/ and are accessible through GEO Series
accession number (GSE5840 for gene expression and
GSE25519 for methylation).

Data

We compared gene expression and DNA methylation in
tamoxifen-(OHT; 4-hydroxytamoxifen) and fulvestrant
(ICI 182,780)-resistant MCF7 breast cancer cell lines to
the parental, wild type (WT) MCEF?7 cell line [20]. There
were four replicates for gene expression data and no
replicate for the methylation data. The structure for the
gene expression data is given in Additional file 1. We
restricted our analysis to probes with at least two “pre-
sent” calls among four replicates in gene expression and
our focus in methylation is on promoter region probes.
Then, for WT v.s. OHT, the gene expression data have
a total of 11286 probes that cover 4078 genes, while
methylation data have a total of 10223 probes and 4078
genes. For WT v.s. ICI, there are 11529 probes for gene
expression and 10500 methylation probes. In addition,
there are 4182 genes in common. The gene expression
data plots (average over replicates within each group)
are given in Figure 1 as an illustration. We also sum-
marized the number of genes and probes included in
our statistical analysis after the preprocessing (Figure 2).
Probe intensities are log2 transformed before analysis
for both gene expression and methylation data.

The Model
We consider an empirical Bayes model to correlate
alteration of gene expression and DNA methylation in

A OHT v.s. WT B

IClv.s.WT

Figure 1 Gene expression data plot. Gene expression data
(average over samples within each group): OHT v.s. WT and ICl vs.

WT at log2 scale.
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Figure 2 Number of probes and genes. Summary of the number
of genes and probes included in our statistical analysis after the
preprocessing; Panel A and C: numbers of genes (A) and probes

(©) for OHT v.s. WT; Panel B and D: number of genes (B) and probes
(D) for ICI v.s. WT. Numbers in the intersection area represent the

genes or probes included in the statistical analysis. GE: gene
expression data; M: DNA methylation data.

WT and drug-resistant cell lines. The marginal model
for gene expression (Gy;y,) is given by:

Gijig = Hi + by + €, 1)
i=1, L j=1J k=1, K1=12

where i indexes gene, j indexes probe in a gene, k
indexes replicates, and [ denotes WT (/ = 1) and resis-
tant group (/ = 2). Therefore, p; is the average expres-
sion level for gene i in cell line /, b;; is the added effect
of probe j for each gene i, and g, is the error term. We
consider the following distributions for each component
in the model:

by ~ N(O,az), Eijl ~ N(O,&Z), (tirs i)'~ N((py, 1) 24)- (2)

Marginal model for methylation (M;;,;) is given in a
similar fashion:

My =ny +ag +dgg, i=1,--, L h=1- H;,1=12 (3)

Similarly, 1, is gene effect in each group, a;; is the
probe effect in each gene, and d;;, is the error term.
However, no replicate is here in contrast to GE data.
Again, we assume the same distributions for compo-
nents in Eq. (3):

Aip ~ N(O,wz), digy ~ N(O/TZ)' (M mi2)" ~ N((11,12)' . Z5).- (4')
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To integrate both marginal models into an unified
model, we assume

(ﬂil//"iZ/nilrniz)t ~ N(u, Z) (5)
> Y
where X = 1
2,

Models (1) - (5) can be represented in a simple linear
model format [21,22]:

Di:Aiﬁi-{_ei’i:l’”.’I (6)

t
where f3; :(:uilmui2'77i1fni2'b1'”"blilalr"'faH,») » D;
= (G}, M{)". G; and M; are gene expression and methy-
lation data for gene i, respectively. The distribution
assumption for each component in the unified model

(Eq. (6)) is:

Bi~ N(u:'Zpi)rei ~N(0,Z,) 7)

where /Ji* =(u,0)"

8y 0

0 TZIMl_

Here N; = 2K x J; and M; = 2H;. As we can see, our
model has hierarchical structure for each gene i:

D;|Bi~ N(Aiﬁi'ze, ), priorof B; ~ N(:ui*'zpi) (8)

Thus, posterior distribution of ;|D; follows N(K, K -)

where K= K*(A,-Tzei_lDi + Zpi_l,ui*) and

K = (AiTEei_lA,- +Zpi_l)_1 . Inference is based on the

posterior distribution above.
More details about statistical modeling are provided in
Additional file 2.

Estimation

Expectation-Maximization (EM) algorithm [23,24] is
widely used to obtain maximum likelihood estimates
when there are unobserved variables. Basically, EM algo-
rithm consists of two iterative steps: Expectation and
Maximization. In the E-step, expectation of complete-
data log likelihood conditional on data and current
value of parameters is calculated. In the M-step, para-
meters are updated by the value that maximizes the
expectation from E-step. Here we briefly describe EM
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algorithm applied to our case. More details about E-step
and M-step are given in Additional file 2.

E-step
For iteration k, we obtain E(S;|D;, 6 -1y and Cov(Bi]|
D, 6 %~ V) that allows us to compute

Q(0;0% ) = E[log L.(0) | D;, 0% ].

1
Here logL,(6)= ). _{loglD;,f;|0]} is complete-

data log likelihood function where @ is the parameter
vector.

M-step
In this step, we update 6 by values that maximize the
target function, Q(8; @ * V) given in the E-step.

Inference on Relationship between Gene Expression and
Methylation

Inference on relationship between gene expression and
methylation can be made by using posterior distribution
of (i1, Hins Mit» NMi2)* conditional on data and parameter
estimates, where y;; and 1;; are mean parameters of
gene expression and methylation in WT and g, and 1,
are mean parameters of gene expression and methyla-
tion in the resistant cell line. Since we are interested in
the correlation of the differentiation of gene expression
and DNA methylation, we focus on the posterior distri-
bution of

(e, M) = (i = M Mia =1a)" ©)

which can be easily calculated through a linear trans-
formation of (41, fizs Mirs Mi2)"-

To characterize the correlation of gene expression and
DNA methylation for each gene, we first divide the two-
dimensional sample space of (,uGEi,nMi) into nine
categories by applying two thresholds to each of the
Mg, and 7y, dimensions. The nine categories repre-
sent the combination of three levels of alteration in
gene expression and DNA methylation: up-regulation,
no change, down-regulation. For instance, the north-east
region will be “up-regulation in both expression and
DNA methylation”. The thresholds are chosen to be + C
- 0, where & is the standard deviation of the posterior
mean of MgGg, or My, across all genes. In our applica-
tion, we chose C = 1.5. We then calculate for each gene
the posterior probability of each of the nine regions,
which characterizes the correlation of gene expression
and DNA methylation for each gene in a probabilistic
manner. Based on these probabilities, we will assign
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each gene to one of the nine categories. See result sec-
tion for details.

Results and Discussion
Association between Gene Expression and Methylation
Status
The main output from our model is a joint posterior
distribution of the difference of expression and methyla-
tion levels between drug-resistant cell lines and WT for
each gene. Such a distribution provides us with a prob-
abilistic measure on the strength of the association for
each gene. On the other hand, the center (or the mean)
of the prior distribution of the difference of expression
and methylation provides us with a global view of the
association across genes. In the following discussion, up
and down regulation is always in reference to the WT.
To facilitate the understanding of the association
between gene expression and DNA methylation at the
individual gene level, we used four thresholds (two for
gene expression and two for methylation) to categorize
each gene into nine categories (Figure 3). In the
figure, NG, UP, and DN stand for no change, up regu-
lation, and down regulation in gene expression.
Similarly, NM, HO, and HR stand for no change in
methylation, hypomethylation and hypermethylation.
For example, the upper-left cell is the category for down
regulation of gene expression and hypermethylation.
The thresholds are determined based on the posterior
distribution (see Method section). Given the thresholds,
one can calculate posterior probability that each gene
falls into one category. We then assign each gene to one
of the nine categories based on these probabilities. We
consider two ways of categorization. In the first method,
a gene is assigned to the category with the maximum
probability. The limitation of this method is that when
the probability mass is evenly distributed among the
several categories, the maximum is not a substantially

DN/HR NG/HR UP/HR +)
DN/NM NG/NM UP/NM
DN/HO NG/HO UP/HO -

(=) (+)

Figure 3 Nine categories for gene assignment. 9 categories (X-
axis: gene expression; Y-axis: methylation status); NG, DN, and UP
stand for no change, down regulation, and up regulation in gene
expression. NM, HO, and HR stand for no change in methylation,
hypomethylation, and hypermethylation.
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dominating number, which still entails a lot of uncer-
tainty. Therefore, in the second method, we apply a
threshold to the maximum probability for gene assign-
ment. Genes with maximum probability below the
threshold are not assigned to any category. In the con-
text of FDR, applying a cutoff value to the posterior
probability means that the false discovery rate is con-

trolled at o = D(k) = K, where K = ziI[PAZK] i.e., the

number of genes whose posterior pass the threshold &
and D(k) is the summation of one minus the posterior
probabilities of these genes:

D(K)zz{l_Pis}I[piszK] (10)

where I is the indicator function and P/ is the poster-
ior probability of gene i belonging subcategory s [19].
We illustrate these definitions through two examples.
Figure 4 is the contour plots of the posterior distribu-
tions of two genes (CDH3, KIAA0478) from the OHT
vs. WT comparison superseded on nine categories. It is
well known that gene CDH3, which acts as a tumor sup-
pressor gene, is hypomethylated in breast cancer [6].
This is visually confirmed by Figure 4 by observing that
most of the probability mass is concentrated on the
region of no expression change but reduced methyla-
tion. It can be shown that the probability of this cate-
gory is 0.8. On the other hand, KIAA0478 concentrates
on the region of no expression and methylation change
with a probability of 0.63. To characterize all genes
assigned into one of the nine categories, we apply three
assignment rules: maximum probability, maximum
probability over 0.6 and maximum probability over 0.7.
Table 1 and 2 summarize the results for OHT v.s. WT
and ICI v.s. WT, respectively. The gene lists obtained
from using three different cutoff values are given in
Additional file 3.

KIAAD478

A CDH3 B

HR

DN NG UP

Figure 4 Example of gene assignment. Contour plot of posterior
distribution of two genes (Left: CDH3; Right: KIAA0478).
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Table 1 Gene assignment to nine category

Gene expression

Methylation DOWN No change upP
HYPER 0/0/0 1/0/0 0/0/0
No change 101/45/17 2284/1382/786 176/63/35

HYPO 48/11/6 1331/744/496 137/46/24

Three values in each cell present the number of genes belonging to each
category using three different assignment rules: maximum probability,
maximum probability over 0.6, and maximum probability over 0.7.

(OHT v.s. WT)

Not surprisingly, the category NG/NM contains most
of the genes. The other feature is that very few genes
are hypermethylated, similar to what was observed in
the original report of the experiments [20]. While the
reason for this is not clear, one possibility is that hypo-
methylation and up regulation of the corresponding
gene(s) may provide the drug-resistant cells with a sur-
vival and growth advantage. Among those hypomethy-
lated genes with expression alteration, the majority are
up-regulated, consistent with what is known regarding
promoter methylation and gene expression. The hypo-
methylated, down-regulated genes suggest other
mechanisms are involved in regulating expression in
addition to DNA methylation, such as the repressive
histone methylation [25-31].

With hypomethylated genes only, the Venn diagram
for the overlap of genes with expression alteration
between the two drug-resistant cell lines is shown in
Figure 5 (based on maximum probability criterion). It
can be seen that the overall overlap is small, suggesting
distinct sets of hypomethylated genes between OHT
and ICI resistant breast cancer cells. The number of
overlapping genes that are up-regulated in both cell
lines (i.e., 20) is disproportionally higher than the over-
lapping genes for down regulation patterns (i.e., 2),
suggesting that the association of DNA hypomethyla-
tion and up regulation in both cell lines may share a
common gene set, at least more common than the
other association patterns. More details about overlaps
for different cutoffs are given in Additional file 4. At
the global level, the Pearson correlation coefficients

Table 2 Gene assignment to nine category

Gene expression

Methylation DOWN No change upP
HYPER 0/0/0 1/1/0 0/0/0
No change 86/20/9 2309/1518/922 237/114/64
HYPO 50/12/7 1350/811/526 149/61/40

Three values in each cell present the number of genes belonging to each
category using three different assignment rules: maximum probability,
maximum probability over 0.6, and maximum probability over 0.7.(ICl v.s. WT)
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ICI (UP)

OHT (UP)

OHT (DOWN)

ICI (DOWN)

Figure 5 Venn diagram presenting the number of genes in
each Gene expression status. Venn diagram of UP/DOWN genes
between OHT and ICl using maximum probability; UP and DOWN
stand for up and down regulation in gene expression, respectively.
Genes are restricted to hypomethylated ones.

(across genes) between DNA methylation and gene
expression are -0.17 for WT, -0.19 for OHT and -0.16
for ICIL. Hence, there seems to be some relationship, in
general, between DNA methylation and gene expres-
sion, and although the magnitude is not strong, this
observation is consistent with the general understand-
ing that increased promoter DNA methylation corre-
lates with a lower level of gene activity. From another
angle, if we examine the correlation between methyla-
tion and gene expression alterations (i.e.,
corr (Wiy — M, Mip —Ni) in Eq. (9)) when comparing
OHT/ICI to WT, the correlation coefficients across
genes are -0.04 for OHT and 0.01 for ICI, implying
methylation and gene regulation are not strongly asso-
ciated in this model system, and this relationship may
be highly gene-specific. The local level (gene-specific)
view is given in the following histogram (Figure 6).
Panels A and C present the histograms of correlations
between gene expression and methylation in OHT and
ICI. Panels B and D present distribution of correlations
between gene expression mean difference and methyla-
tion mean difference obtained from OHT v.s. WT and
ICI v.s. WT, respectively. Panels A and C show the dis-
tribution of correlations between gene expression and
methylation ranging from -0.15 to 0, implying hetero-
geneity in gene-specific correlations.
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Figure 6 Histogram of gene-specific correlations. Panel A:
histogram of correlations between gene expression and

methylation in OHT; Panel B: histogram of correlations between
mean difference gene expression and methylation (OHT v.s. WT);
Panel C: histogram of correlations between gene expression and
methylation in ICl; Panel D: histogram of correlations between mean
difference gene expression and methylation (ICl v.s. WT).

Histone Methylation

It is well known that the interplay of histone modifica-
tion and DNA methylation affects the transcriptional
regulation [25-29]. To examine the involvement of his-
tone methylation in the association of alterations of
DNA methylation and gene expression, we analyzed
some in-house histone methylation data. The data were
generated by chromatin-immunoprecipitation and high-
throughput sequencing (ChIP-seq). The experimental
protocol followed the same line of procedure reported
previously [32,33]. We will focus our discussion on the
dimethylation on lysine residue 4 on H3 (H3K4me2) on
OHT MCEF7 cell lines. Our data include 26443 genes
with two replicates. We first compared H3K4me2 levels
in OHT between genes with DNA hypomethylation and
those without alteration in DNA methylation, i.e. the
third row versus the second row in Table 1 (maximum
probability rule is used to assign genes to a category).
The fold change is 1.10 (95% CI: 1.00-1.20). Therefore,
DNA hypomethylation is associated with enhanced
H3K4me?2 in this setting. This observation is intuitively
appealing as both DNA hypomethylation and H3K4me2
were found to be related to gene activation [27,28,30]
and [31].

We next compared the H3K4me2 levels for (i) genes
in the UP/HO category versus those in the DN/HO
category; (ii) UP/NM category versus DN/NM category
(Table 1). The fold changes are 1.56 (95% CI 0.89-2.72)
and 1.24 (95% CI: 0.82-1.88), respectively. Therefore,
consistent with previous findings [27,28,30,31], our
results show that H3K4me?2 is likely to be associated
with transcriptional activation. Moreover, there seems to
be a higher level of H3K4me2 change in genes with
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DNA hypomethylation than those without DNA methy-
lation change, suggesting an interaction between
H3K4me2 and DNA methylation in regulating gene
expression.

Gene Ontology Analysis

Although it is likely that other genetic or epigenetic activ-
ities in addition to DNA methylation are involved in the
regulation of genes, our finding is consistent with the
general observation that hypomethylation leads to up reg-
ulation. Furthermore, we conducted a gene ontology ana-
lysis on these genes and the results are shown in Table 3.
Several functional categories are over-represented in both
cell lines, such as cell death, connective tissue develop-
ment and function and cellular development. On the other
hand, distinct functional categories are associated with
each cell line. Taken together, these observations suggest
while common mechanisms for switching of genes
through DNA demethylation at promoter regions are
shared by OHT- and IClI-resistant cells, unique processes
are also associated with development of acquired
resistance to the distinctly different antiestrogens. These
distinct functional and molecular changes associated with
the acquisition of resistance to the two different classes of
antiestrogens include signaling and growth regulatory
processes.

Conclusions

In this article, we developed an empirical Bayes model
to study the association between altered DNA methyla-
tion in the promoter region and gene expression by
comparing WT with OHT and ICI resistant MCF7
breast cancer cell lines. Our statistical model incorpo-
rates various sources of variations that generate prob-
abilistic characterization of such an association. The
model structure also allows a natural incorporation of
other epigenetic processes to investigate their regulatory
roles in acquired antiestrogen resistance.

Our models are characterized by a hierarchical struc-
ture that has been shown to be more efficient and stable
than analysis of individual gene separately [34]. It also
allows one to estimate the correlation between gene
expression and DNA methylation at the level of indivi-
dual genes. However, our models induce a marginally
positive correlation between probes of the same gene,
which might not hold for all genes and all microarray
platforms. A small simulation study (data not shown)
suggests that the inference on gene level quantity p;,
and 7;; is relatively robust when probes are actually
negatively correlated. Finally, given the complexity of
our model it is not possible to use standard diagnostic
tools to check model assumptions. Nevertheless, it is
still possible to examine posterior quantities of latent
variable that is conditional on the data and parameter at
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Table 3 Gene Ontology Analysis
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OHT

ICI

Cell Death

Connective Tissue Development & Function
Cellular Development

Cellular Compromise

Infectious Disease

Post-Translational Modification
Carbohydrate Metabolism

Cell-To-Cell Signaling and Interaction
Cellular Assembly and Organization

Cell Morphology

Cell Death

Connective Tissue Development & Function
Cellular Development

Immune Cell Trafficking

Nervous System Development & Function
Organismal Development

Cellular Movement

Hematological System Development & Function
Cellular Function and Maintenance
Hematological Disease

This table includes top 10 over-represented functional categories for genes with hypomethylation and up regulation of gene expression with maximum

probability

their estimated values. See Additional file 5, 6, 7, 8, 9, 10
for details. Consistent with original publication of the
data [20], our results showed that almost all DNA
methylation alterations were in the direction of reduc-
tion when resistant cell lines were compared with wild
type, suggesting a homogenous pattern of DNA methy-
lation during the acquisition of drug resistance. Further-
more, the OHT and ICI cell lines shared similar yet
holded unique association patterns. It is noted that a
proportion of genes are hypomethylated with down reg-
ulation of gene expression, suggesting the involvement
of other genetic and epigenetic factors in the regulation
process.

Although there exists a weak correlation between
DNA methylation at promoter regions and gene expres-
sion for the three cell lines studied, the correlation of
methylation and gene expression alterations, when com-
paring OHT/ICI to WT at the global level, is essentially
0. This implies that the relation between alterations in
DNA methylation at promoter region and gene expres-
sion is gene-specific and, likely due to the involvement
of other factors.

Additional material

Additional file 1: Table S1 - Gene expression data structure. This
table shows the gene expression data structure in both group: wild type
and antiestrogen resistant group.

Additional file 2: Table S2 - Gene lists which are hypomethylated
and up-regulated. This table presents gene lists obtained by using three
different cutoff values with the OHT data set.

Additional file 3: Figure S1 - Venn diagram presenting gene
overlap. Each figure is obtained using three different cutoff values.
Based on each cutoff values, the status of each gene is determined in
both data sets. The number of gene overlaps which were obtained by
using gene expression data in both data set is calculated. The numbers
in each Venn diagram presents the number of common genes in both
data sets.

Additional file 4: Figure S2 - Histogram of residuals. This histogram
is based on standardized residuals obtained by using estimates in our
model; Top: residuals histogram of gene expression in ICl; Bottom:
residuals histogram of methylation in ICI.

Additional file 5: Figure S3 - Q-Q plot of residuals. Each Q-Q plot is
based on standardized residuals obtained by using parameter estimates
in our model in ICl; Left: this plot is obtained by using gene expression
residuals; Right: this plot is obtained by using methylation residuals.

Additional file 6: Figure S4 - Histogram of gene effect. Each
histogram is based on estimated gene effect in our model in ICl; Top:
these plots are obtained by using estimated gene effect of each group
in gene expression (LeftWT and RightICl); Bottom: these plots are
obtained by using estimated gene effect of each group in methylation
(LeftWT and Right:ICl).

Additional file 7: Figure S5 - Q-Q plot of gene effect. Each Q-Q plot
is based on estimated gene effect in our model in ICl; Top: these plots
are obtained by using estimated gene effect of each group in gene
expression (LeftWT and RightCl); Bottom: these plots are obtained by
using estimated gene effect of each group in methylation (LeftWT and
Right:ICI).

Additional file 8: Figure S6 - Histogram of added probe effect. Each
histogram is based on estimated probe effect in our model in ICl; Left:
these plots are obtained by using estimated added probe effect in gene
expression; Right: these plots are obtained by using estimated added
probe effect in methylation.

Additional file 9: Figure S7 - Q-Q plot of added probe effect. Each
Q-Q plot is based on estimated probe effect in our model in ICl; Left:
these plots are obtained by using estimated added probe effect in gene
expression; Right: these plots are obtained by using estimated added
probe effect in methylation.

Additional file 10: Supplementary materials - Details about
modeling and estimation. This file includes details about marginal
modeling and parameter estimation. Also, the exact form of parameter
estimators are given.
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