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Abstract

Background: Public proteomics databases such as PeptideAtlas contain peptides and proteins identified in mass
spectrometry experiments. However, these databases lack information about human disease for researchers
studying disease-related proteins. We have developed mspecLINE, a tool that combines knowledge about human
disease in MEDLINE with empirical data about the detectable human proteome in PeptideAtlas. mspecLINE
associates diseases with proteins by calculating the semantic distance between annotated terms from a controlled
biomedical vocabulary. We used an established semantic distance measure that is based on the co-occurrence of
disease and protein terms in the MEDLINE bibliographic database.

Results: The mspecLINE web application allows researchers to explore relationships between human diseases and
parts of the proteome that are detectable using a mass spectrometer. Given a disease, the tool will display proteins
and peptides from PeptideAtlas that may be associated with the disease. It will also display relevant literature from
MEDLINE. Furthermore, mspecLINE allows researchers to select proteotypic peptides for specific protein targets in a
mass spectrometry assay.

Conclusions: Although mspecLINE applies an information retrieval technique to the MEDLINE database, it is
distinct from previous MEDLINE query tools in that it combines the knowledge expressed in scientific literature
with empirical proteomics data. The tool provides valuable information about candidate protein targets to
researchers studying human disease and is freely available on a public web server.

Background
Public databases of mass spectrometry experiments con-
tain an enormous amount of data about the human pro-
teome. Repositories such as PeptideAtlas [1], PRIDE [2],
and Peptidome [3] contain peptides and proteins identi-
fied in experiments as well as the empirical evidence to
support such identifications. These databases are essen-
tial resources for planning mass spectrometry assays,
especially in a targeted proteomics workflow where
researchers must identify proteotypic peptides for a tar-
get protein based on the results of previous experiments
[4]. Proteotypic peptides are those peptides that most
strongly indicate the presence of a target protein in a
sample. They are known to be observable in a mass
spectrometer and they map to a unique location in the
human genome [5].
Mass spectrometry has significant potential in study-

ing proteins that are involved in human disease. For

example, researchers have identified virulence factors of
Streptococcus pyogenes bacteria [6], candidate biomar-
kers for erosive rheumatoid arthritis [7], and candidate
plasma biomarkers for ovarian cancer [8] using mass
spectrometry. Targeted mass spectrometry approaches
(e.g., multiple reaction monitoring) can now detect and
quantify proteins of very low abundance relative to
traditional shotgun approaches (e.g., tandem mass spec-
trometry) [9], allowing researchers to identify disease-
related protein targets with high sensitivity.
Unfortunately, mass spectrometry experiment

databases do not currently support searching for dis-
ease-related proteins and peptides. Although further
integration with genomic databases as in PeptideAtlas
[10] could allow researchers to search for proteins as
products of a disease-related gene, this would require
knowledge of a specific gene that is implicated in a dis-
ease. Ideally, proteomics databases should be integrated
with knowledge bases of human disease such that
researchers may search for candidate protein targets for* Correspondence: jboyle@systemsbiology.org
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any disease of interest. We have therefore developed
mspecLINE, a tool to assist researchers in exploring the
detectable human proteome for disease-related proteins.
Using terms from a controlled biomedical vocabulary,
mspecLINE associates diseases with sets of proteins by
finding the semantic distances between them in pre-
viously published scientific literature. mspecLINE allows
researchers to enter a disease and view all proteins asso-
ciated with that disease in the MEDLINE bibliographic
database. It also aids researchers in developing targeted
assays for disease-related proteins by displaying proteins
and peptides from PeptideAtlas that are detectable using
the current generation of mass spectrometry
instruments.
By combining knowledge about disease with empirical

data about the proteome, mspecLINE offers a unique
new interface to assist proteomics researchers who are
studying proteins that are involved in human disease.
We provide an overview of the data sources used by
mspecLINE and discuss relevant work on biomedical
information retrieval below.

Data sources overview
mspecLINE incorporates data from a number of sources
including the Medical Subject Headings vocabulary,
MEDLINE, and PeptideAtlas.
mspecLINE uses the Medical Subject Headings

(MeSH) vocabulary to identify semantic relationships
between diseases and proteins. MeSH is a controlled
vocabulary of biomedical descriptors arranged in a hier-
archical structure that can be modeled as a set of trees
[11]. MeSH descriptors are assigned to nodes in a parti-
cular tree by their subject category. For example, the
disease descriptor ‘Prostatic Neoplasms’ is assigned to a
node in the ‘Diseases’ tree while the enzyme descriptor
‘Acid Phosphatase’ is assigned to a node in the ‘Chemi-
cals & Drugs’ tree.
Each reference in the MEDLINE bibliographic data-

base [12] is manually curated and annotated with rele-
vant descriptors from the MeSH vocabulary. For
example, an article on Parkinson Disease might be
annotated with the MeSH descriptors ‘Parkinson Dis-
ease’ and ‘alpha-Synuclein’. mspecLINE analyzes these
annotations to associate diseases with proteins. MED-
LINE represents an enormous collection of biomedical
knowledge about human disease and it currently con-
tains references to more than 16 million articles.
Additionally, mspecLINE uses data from PeptideAtlas,

a publicly accessible repository that currently contains
empirical data pertaining to more than 130,000 human
peptides identified in mass spectrometry experiments.
The database also maps peptides to their parent proteins
and to their locations in the human genome [10]. Pro-
teins in PeptideAtlas are uniquely identified by accession

numbers that can be easily mapped to identifiers used in
other protein databases. PeptideAtlas contains high
quality data and represents the state of the art in
empirical proteomics databases.

Information retrieval techniques
Investigators have applied numerous information retrie-
val techniques to extract relationships from biomedical
knowledge bases. Many of these techniques involve
semantic analysis using Latent Semantic Indexing (LSI)
[13]. For example, Homayouni et al. [14] successfully
used LSI to cluster genes by extracting conceptual rela-
tionships from MEDLINE abstracts. Furthermore, Khatri
et al. used LSI to identify novel gene function annota-
tions by analyzing previous annotations in the human
genome [15].
Other investigators have applied co-occurrence analy-

sis techniques to extract relationships from biomedical
literature. The Associative Concept Space method, for
instance, extracts associations between concepts in lit-
erature using co-occurrence data as input [16]. Addi-
tionally, Stapley et al. developed a method for extracting
gene-function relationships from MEDLINE using co-
occurrence data [17]. Others have extracted gene and
protein synonyms [18] as well as gene clusters [19] from
MEDLINE using co-occurrence analysis.
mspecLINE associates diseases with proteins by calcu-

lating the semantic distance between MeSH annotations
in MEDLINE using Normalized Google Distance
(NGD). NGD is grounded in the well-established theory
of Kolmogorov complexity [20] and the Normalized
Information Distance (NID) between two objects [21].
NID is a general purpose distance measure that is inti-
mately related to coding and compression and it has
been successful in a number of contexts including geno-
mics-based phylogeny [22], music clustering [23], and a
variety of other applications [24-26]. NGD can be
applied to measure the semantic distance between
objects in any set of documents. Cilibrasi and Vitányi
showed that NGD is effective in distinguishing concepts
such as colors and numbers, names of paintings by
17th-century Dutch masters, books by English novelists,
and in performing automatic English-Spanish transla-
tion. Furthermore, they demonstrated that NGD can be
used in a supervised learning setting to accurately clas-
sify words into categories in the WordNet database.
NGD is similar to LSI in that it can be used to calculate
semantic distance between objects, however it is much
more computationally feasible than LSI when working
with very large document sets such as MEDLINE and it
does not require any parameter tuning [27].
NGD is defined as a value between 0 and 1 that indi-

cates the semantic distance between two terms in a set
of documents. It uses the co-occurrence of two terms in
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a document as evidence of their semantic relatedness. If
two terms occur frequently in the same documents,
those terms are said to be highly related and have a low
NGD value. Likewise, if two terms rarely occur in the
same documents, those terms are said to be unrelated
and have a high NGD value. We apply the NGD mea-
sure to the MEDLINE database, so we shall refer to it as
Normalized MEDLINE Distance (NMD) throughout this
paper. We describe our calculation of NMD in detail in
the following section.

Implementation
mspecLINE builds sets of MeSH disease descriptors and
MeSH protein descriptors, then calculates the semantic
distances between each pair of descriptors using NMD.
We describe our method and provide an overview of
the tool’s architecture below.

Building MeSH descriptor sets
First, we used the 2009 MeSH distribution from the
National Library of Medicine (NLM) to find all descrip-
tors in the ‘Diseases’ tree. In total, our set of diseases D
consisted of 4,323 MeSH descriptors.
We then extracted a list of all unique protein acces-

sions in PeptideAtlas. We used BioThesaurus [28] to
find Unified Medical Language System (UMLS) [29]
concept annotations for each protein. UMLS is a biome-
dical vocabulary that is distinct from MeSH. Proteins in
BioThesaurus are annotated with UMLS concepts by
matching the protein name in public protein databases
to a UMLS concept name. Although BioThesaurus pro-
vides UMLS concept annotations derived from partial
matches to the protein name, we only used annotations
that were derived from an exact match. The MeSH dis-
tribution from NLM provides a mapping from UMLS
concepts to MeSH concepts and using this UMLS-
MeSH concept map, we annotated each PeptideAtlas
protein with MeSH descriptors that are equivalent to
the UMLS concepts in BioThesaurus. We filtered out
any MeSH descriptors not in the ‘Chemicals & Drugs’
tree as we are specifically concerned with those relevant
to proteins. Finally, we constructed a set P containing
2,585 MeSH protein descriptors to represent all unique
annotations for proteins in PeptideAtlas.

Associating diseases with proteins
To associate the diseases described in MeSH with the
proteins in PeptideAtlas, we calculated pairwise seman-
tic distances between each MeSH disease descriptor in
D and each MeSH protein descriptor in P by analyzing
article annotations in MEDLINE. We ran our calcula-
tions using a local copy of the 2008 MEDLINE database
on lease from NLM. For each MeSH disease descriptor

d Î D and each MeSH protein descriptor p Î P, we cal-
culated NMD(d, p) as:

NMD d p
gmax d p f d p

M gmin d p
( , )

( , ) log ( , )
log ( , )

. 


We define f (d, p) as the number of articles in MED-
LINE that are annotated with both d and p, and M as
the total number of articles in MEDLINE. Further, we
define gmax(d, p) and gmin(d, p) as:

g d p f d f p

g d p f d f
max

min

( , ) max{log ( ), log ( )},

( , ) min{log ( ), log (


 pp)}.

We define f (d) as the number of articles in MEDLINE
that are annotated with d, and f (p) as the number of
articles that are annotated with p.
As shown in Figure 1, each pairwise NMD value

associates a MeSH disease descriptor with a MeSH pro-
tein descriptor. Together, these associations allow us to
find proteins and peptides from PeptideAtlas that may
be related to a specific disease.

Architecture
Our software consists of four main components: the
NMD Data Store, the MEDLINE Data Store, the mspe-
cLINE Data Service, and the mspecLINE web user inter-
face (UI). Figure 2 shows a high-level view of
mspecLINE and its data inputs.
The NMD Data Store has a denormalized schema that

encodes the associations depicted in Figure 1. It stores
MeSH descriptor pairs along with their NMD values,
PeptideAtlas protein identifiers, and PeptideAtlas pep-
tide identifiers. The MEDLINE Data Store contains
MeSH descriptor pairs along with PubMed identifiers
for articles that are annotated with both descriptors in a
pair. The mspecLINE Data Service aggregates data from
downstream sources and provides it to the UI via a web
service. The Data Service obtains additional protein and
peptide information from the PeptideAtlas caGrid
service.

PeptideAtlas caGrid Service
We developed a web service on top of PeptideAtlas that
operates on the Cancer Biomedical Informatics Grid
with caGrid infrastructure [30]. The PeptideAtlas caGrid
Service enables clients like mspecLINE by providing
them with detailed information about proteins and pep-
tides in PeptideAtlas. The service has a well-defined
query interface that is integrated with the Cancer Com-
mon Ontologic Representation Environment (caCORE)
[31]. Query-able objects in the PeptideAtlas caGrid Ser-
vice are annotated with metadata and terms from the
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caCORE controlled vocabulary, which allows semantic
interoperability with other caGrid services and provides
clients such as mspecLINE with detailed semantic infor-
mation about objects in the service interface.

Results
Researchers interact with mspecLINE by entering a dis-
ease in the UI and viewing associated proteins, peptides,
and MEDLINE literature. We provide a walkthrough
below using Creuztfeldt-Jakob Syndrome as an example
disease. Figure 3 shows a screen capture of the mspe-
cLINE UI and we will refer to it throughout this
example.

Finding disease-related proteins
First, the researcher enters a proper MeSH descriptor
name for a disease. He may click on a link to open the
NLM MeSH browser and find the proper name. In our

example, the MeSH disease name is ‘Creutzfeldt-Jakob
Syndrome’ and mspecLINE finds all matching entries in
the NMD Data Store. The UI displays MeSH protein
descriptors that are semantically related to Creutzfeldt-
Jakob Syndrome in the left panel along with their NMD
values: Prions (0.17), 14-3-3 Proteins (0.35), and PrPC
Proteins (0.36). The researcher may select or de-select
MeSH protein descriptors in the left panel and the
other views will filter and update accordingly. It is
important to note that mspecLINE only retrieves seman-
tically related protein descriptors below a threshold
NMD value. In our example, we have chosen an arbi-
trary NMD threshold of 0.5, although the UI allows
researchers to adjust the threshold.
mspecLINE displays all proteins annotated with one or

more of the MeSH protein descriptors in the center
panel. The center panel also lists peptides from Pepti-
deAtlas for each protein, the amino acid sequence for

Figure 1 The associations between diseases, proteins, and peptides in mspecLINE. First, we constructed sets of all MeSH disease
descriptors and all unique MeSH protein descriptors for proteins in PeptideAtlas. Next, we associated diseases with proteins by calculating
pairwise NMD values between disease and protein descriptors. Last, we incorporated protein-peptide mappings from PeptideAtlas to construct
lists of possible disease-related peptides that are observable in a mass spectrometer.
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each peptide, and the annotated MeSH descriptors for
each protein. In our example, mspecLINE found a total
of 305 peptides from PeptideAtlas for proteins that may
be related to Creutzfeldt-Jakob Syndrome.
The center panel allows the researcher to sort and

group peptides by different fields. For example, she may
want to find all peptides detectable for a specific target
protein related to Creutzfeldt-Jakob Syndrome, therefore
she groups peptides by the ‘Protein’ field.

Selecting proteotypic peptides
As previously discussed, selecting proteotypic peptides
for a protein is an essential step in developing a targeted
mass spectrometry assay. mspecLINE displays the Pepti-
deAtlas Empirical Observability Score (EOS) for each
peptide in the center panel, which indicates the empiri-
cal likelihood that a researcher would observe a specific
peptide if its parent protein is detected in the sample
[4]. mspecLINE also indicates whether each peptide has
a unique mapping in the human genome. The
researcher can use this information to select proteotypic
peptides for a specific protein target. For example, if he
is interested in targeting [IPI:IPI00759832], a protein
annotated with the MeSH descriptor ‘14-3-3 Proteins’,
he should select peptides with high EOS scores and
unique genome mappings such as [PeptideAltas:
PAp00032686]. The researcher may export a list of

selected peptides from mspecLINE as a tab-separated
values file.

Viewing protein and peptide details
The center panel in the mspecLINE UI displays only
minimal information about disease-related proteins and
peptides. The researcher may click in the table to open
a protein details tab that contains additional information
about a protein and its peptides from PeptideAtlas. The
information in the tab includes the name of the gene
that encodes the protein and a detailed description of
the protein. The tab also provides additional empirical
information about the protein’s peptides including the
isoelectric point, molecular mass, and hydrophobicity of
each peptide.

Browsing MEDLINE references
mspecLINE displays all MEDLINE references that con-
tribute to the association of a disease with a set of pro-
teins in the lower panel. The UI queries the MEDLINE
Data Store to find all article references that are anno-
tated with both the input MeSH disease descriptor and
one or more of the associated MeSH protein descrip-
tors. In our example, mspecLINE found 118 articles in
the MEDLINE database that are annotated with the
MeSH descriptors ‘Creutzfeldt-Jakob Syndrome’ and ‘14-
3-3 Proteins’. The researcher can use the MEDLINE

Figure 2 The high-level architecture of mspecLINE. Using custom Ruby scripts, we extracted data from BioThesaurus, MEDLINE, and MeSH to
construct the NMD and MEDLINE Data Stores in a MySQL database. The mspecLINE Data Service collates protein and peptide information from
the PeptideAtlas caGrid Service along with data from the Data Stores. We implemented the Data Service in Java and it presents data to the
Javascript-based mspecLINE Web User Interface via a web service. The web service could be used by other applications to access mspecLINE
data.
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references to explore literature that discusses disease-
related proteins. She may also click on a specific refer-
ence and open the PubMed article entry in a separate
browser window. In our example, the MEDLINE refer-
ences include numerous articles discussing the 14-3-3
brain protein as a clinical marker for Creutzfeldt-Jakob
Syndrome in cerebrospinal fluid.

Visualizing associations
In addition to the tabular view in the center panel of the
UI, mspecLINE provides a visualization of associations
between a disease, MeSH protein descriptors, as well as
proteins and peptides from PeptideAtlas. The researcher
can click the ‘Visualize’ button to visualize these associa-
tions in a network using Cytoscape [32]. The visualiza-
tion allows researchers to easily identify relationships

between disease-related proteins and peptides from Pep-
tideAtlas. For example, researchers can distinguish pep-
tides that are unique to a specific disease-related protein
versus those that may identify multiple disease-related
proteins in a mass spectrometry experiment. Figure 4
shows part of the mspecLINE visualization for Creutz-
feldt-Jakob Syndrome.

Discussion
Investigators have developed numerous tools for query-
ing MEDLINE. For example, GoPubMed allows
researchers to query and browse MEDLINE using terms
from the Gene Ontology [33]. Other tools such as
FACTA [34] show semantic relationships in a MED-
LINE query result set. Although mspecLINE is similar
to these tools in that it applies an information retrieval

Figure 3 Screen capture of the mspecLINE web user interface showing Creutzfeldt-Jakob Syndrome as an example disease. Researchers
may review possible disease-related proteins and peptides observable in mass spectrometry experiments, review relevant literature from
MEDLINE, and export selected peptides for later use.
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technique to the MEDLINE database, it is not a generic
MEDLINE query tool.
mspecLINE is unique in that it combines knowledge

about human disease from MEDLINE with empirical
data about the detectable human proteome from Pepti-
deAtlas. It is intended for researchers who study speci-
fic diseases and wish to explore candidate proteins for
targeting in mass spectrometry experiments. For exam-
ple, researchers seeking proteins that may be markers
for disease could use mspecLINE to identify candidate
protein targets and proteotypic peptides for those tar-
gets. They could subsequently use analytical tools such
as Corra [35] to identify differentially expressed targets
among diseased versus non-diseased sample groups.
Researchers could also use mspecLINE to browse
recent biomedical literature regarding disease-related
proteins.
We have identified a number of future enhancements

for mspecLINE. First, we are exploring procedures to
empirically validate our method for associating diseases
with proteins. Second, we are investigating techniques
to automatically determine an appropriate threshold for

Normalized MEDLINE Distance when a researcher
enters a MeSH disease descriptor. Last, we are research-
ing data management systems that would allow us to
more effectively store and process the data that we use
in our method. Specifically, we are looking at integrating
mspecLINE with the Addama infrastructure [36] and
developing an automated pipeline to update our Data
Stores whenever a new release of MEDLINE is available.

Conclusions
Mass spectrometry is a promising technology to study
proteins involved in human disease. We have presented
mspecLINE, a new tool that bridges empirical proteo-
mics data with knowledge about human disease. As we
have demonstrated using an example disease, mspe-
cLINE allows researchers to explore potential disease-
related protein targets based on semantic distances
between disease and protein annotations in MEDLINE.
The tool also assists researchers in identifying proteoty-
pic peptides for mass spectrometry assays. mspecLINE
is open source software and is freely available for use on
a public web server.

Figure 4 A portion of the mspecLINE network visualization for Creutzfeldt-Jakob Syndrome. The visualization allows researchers to see
relationships between disease-related proteins and peptides from PeptideAtlas.

Handcock et al. BMC Medical Genomics 2010, 3:7
http://www.biomedcentral.com/1755-8794/3/7

Page 7 of 9



Availability and requirements
• Project name: mspecLINE
• Project home page: http://informatics.systemsbiol-
ogy.net/informatics/mspecLINE
• Operating system(s): Platform independent
• Programming languages: Ruby, Java, Javascript
• License: Apache License, Version 2.0
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