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Abstract

Background: Paclitaxel is a microtubule-stabilizing drug that has been commonly used in treating cancer. Due to
genetic heterogeneity within patient populations, therapeutic response rates often vary. Here we used the NCI60
panel to identify SNPs associated with paclitaxel sensitivity. Using the panel’s GI50 response data available from
Developmental Therapeutics Program, cell lines were categorized as either sensitive or resistant. PLINK software
was used to perform a genome-wide association analysis of the cellular response to paclitaxel with the panel’s
SNP-genotype data on the Affymetrix 125 k SNP array. FastSNP software helped predict each SNP's potential
impact on their gene product. mRNA expression differences between sensitive and resistant cell lines was
examined using data from BioGPS. Using Haploview software, we investigated for haplotypes that were more
strongly associated with the cellular response to paclitaxel. Ingenuity Pathway Analysis software helped us
understand how our identified genes may alter the cellular response to paclitaxel.

Results: 43 SNPs were found significantly associated (FDR < 0.005) with paclitaxel response, with 10 belonging to
protein-coding genes (CFTR, ROBO1, PTPRD, BTBD12, DCT, SNTG1, SGCD, LPHN2, GRIK1, ZNF607). SNPs in GRIK1, DCT,
SGCD and CFTR were predicted to be intronic enhancers, altering gene expression, while SNPs in ZNF607 and BTBD12
cause conservative missense mutations. mRNA expression analysis supported these findings as GRIKT, DCT, SNTGI,
SGCD and CFTR showed significantly (p < 0.05) increased expression among sensitive cell lines. Haplotypes found in
GRIK1, SGCD, ROBOT, LPHNZ2, and PTPRD were more strongly associated with response than their individual SNPs.

Conclusions: Our study has taken advantage of available genotypic data and its integration with drug response
data obtained from the NCI60 panel. We identified 10 SNPs located within protein-coding genes that were not
previously shown to be associated with paclitaxel response. As only five genes showed differential mRNA
expression, the remainder would not have been detected solely based on expression data. The identified
haplotypes highlight the role of utilizing SNP combinations within genomic loci of interest to improve the risk
determination associated with drug response. These genetic variants represent promising biomarkers for predicting
paclitaxel response and may play a significant role in the cellular response to paclitaxel.

Background

Since its approval by the Food and Drug Administra-
tion in 1992, paclitaxel (Taxol, Bristol-Myers Squibb,
NY) has been commonly used to treat both breast and
ovarian cancers. Paclitaxel has also been used in treat-
ment regimens for head and neck cancers, lung
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cancers, esophageal cancers, testicular cancers and sar-
comas [1-4].

Paclitaxel belongs to a family of microtubule-targeting
drugs called the taxanes [4]. However, unlike other micro-
tubule-targeting drugs, which cause microtubule instabil-
ity, paclitaxel stabilizes microtubules leading to the
disruption of mitosis (G2/M cell-cycle arrest) and altera-
tions in intracellular communication [2]. Once arrested,
cells either remains arrested until the drug is cleared or
they begin to undergo apoptosis [4]. The apoptotic
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mechanism is thought to be independent of microtubule
stabilization and is dependent on intrinsic apoptotic path-
ways leading to caspase activation [5-7]. The JNK, PI3K/
AKT and RAF-1 kinase pathways have also been impli-
cated in paclitaxel induced apoptosis [2,4].

Despite aggressive treatment regimens using paclitaxel,
response rates are unsatisfactory and vary among groups
of patients. The response rates observed from clinical
studies of breast cancer patients treated with paclitaxel
vary from 21-86% [2]. Similarly in ovarian cancer, the
response rate varied from 20-65% and in non-small lung
cancer, 30-56% [2]. One approach to improve drug
response is by increasing dosages beyond the typical
dose to increase the efficacy, but this is not an available
approach due to the existence of dose limiting toxicities.
In the case of paclitaxel, these toxicities include myelo-
toxicity, neurotoxicity and neutropenia [2].

Although the observed variation can be accounted for
by differences in environmental factors such as age or
treatment compliance, it may also be attributed to dif-
ferences among the genetic profiles of patients [8].
These genetic variations are found to impact the activ-
ities of genes involved in the drug’s pharmacokinetics,
its cellular targets or other signalling pathway proteins
downstream of the target [8]. These genetic variations
include single nucleotide polymorphisms (SNPs), micro-
satellites or copy number variation [8].

Here, we used a methodology previously developed by
our group for studies on gemcitabine and selenium, and
expanded upon it to identify genetic variants associated
with the cellular response to paclitaxel [9,10]. We used
the NCI60 cancer cell line panel, a collection of geneti-
cally well-characterized patient tumours to help us iden-
tify these variants. This panel has been commonly used
to screen numerous therapeutic agents, including pacli-
taxel [11]. We integrated the paclitaxel screening results
for the NCI60 panel with the panel’s SNP data to per-
form a genome-wide association study (GWAS). Bioin-
formatic tools were applied to understand how these
genetic variants alter paclitaxel response. Lastly, we per-
formed a haplotype analysis on the protein-coding genes
containing potential markers to identify haplotypes that
were more strongly and significantly associated with
paclitaxel response than the single SNP markers alone.
In turn, we feel that these variants and haplotypes will
help to serve as potential biomarkers, identifying
patients that will best respond to paclitaxel.

Methods

Case-control design of the NCI60 drug response data

The cellular response data for the NCI60 panel to pacli-
taxel treatment was acquired through Developmental
Therapeutics Program (DTP), a branch of the National
Cancer Institute (http://dtp.nci.nih.gov/). Specifically, we
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obtained the log 10 value of the growth inhibitory 50%
(GI50) response data (effective concentration that arrests
cellular growth in 50% of a population of cells) for the
NCI60 panel. The GI50 response data was determined
from a series of measurements taken from a starting
dose of 10® M. Specific information about the determi-
nation of GI50 values can be found on the DTP website
(http://dtp.nci.nih.gov/branches/btb/ivclsp.html). A total
of 62 cell lines had drug response data available from
this drug screening protocol. To help categorize specific
cell lines as either sensitive or resistant, we followed a
methodology previously used by our group using the
statistical software package, SAS 9.1 (SAS Institute,
Cary, NC) [9]. On all 62 cell lines, we converted the
response data to normalized z-scores and then per-
formed a non-parametric kernel density estimation on
these z-scores to help with the categorization.

Statistical analysis of genome wide genetic data

In order to identify SNPs that are significantly associated
with drug response, we obtained the Affymetrix 125 k
SNP array (Affymetrix, Santa Clara, CA) genotype data
(http://dtp.nci.nih.gov/mtargets/download.html) for the
NCI60 panel. A total of over 124,000 SNPs were geno-
typed on this array, but the data for only 118,409 SNPs
was available [12]. Drug response data for the cell lines
from the DTP website were matched with the genomic
data available on this SNP array. Only cell lines which
had genomic data available from this array were used in
the GWAS. This reduced the number of cell lines ana-
lyzed from 62 to 58. A GWAS of the drug response to
the SNP-genotype data was carried out using whole gen-
ome association analysis software, PLINK (http://pngu.
mgh.harvard.edu/~purcell/plink/) [13]. Cell lines missing
more than 25% of their genotype data or SNPs with a call
rate lower than 75%, or a minor allele frequency of less
than 2%, were excluded from the study. As a result of
these quality control measures, 20,514 SNPs were
removed for missing more than 25% of the genotype
data, 20,176 SNPs were removed for having a minor
allele frequency of less than 2%, leaving 79,622 SNPs in
the GWAS. SNPs were considered significantly asso-
ciated with drug response if they had a false discovery
rate (FDR) q value (following Benjamini and Hochberg
(1995)) of less than 0.005. These significant SNPs were
mapped back to their corresponding genes based on
information provided by dbSNP Build 131 (http://www.
ncbi.nlm.nih.gov/projects/SNP/). Information about the
description of each gene was obtained from the online
database, GeneCard (http://www.genecards.org).

Impact of significant variants on respective genes
Functional prediction was performed for each SNP iden-
tified to determine its potential effect on its gene
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product. This was conducted using the online software,
FastSNP (http://fastsnp.ibms.sinica.edu.tw/) [14]. This
software follows a specific algorithm in order to determine
the possible functional effect of the variant on the gene
(i.e., intronic enhancer, missense mutation) and the asso-
ciated risk of having the specific SNP variant. FastSNP uti-
lizes information available from another online program
PolyPhen (http://www.bork.embl-heidelberg.de/PolyPhen/)
to predict whether any SNPs causing missense muta-
tions will also cause a non-conservative change in pro-
tein structure [15]. In addition, FastSNP uses
information available from three different web
resources, namely ESEfinder, Rescue-ESE and FAS-ESS
to determine whether SNPs are located at exonic spli-
cing regulatory sites and if they will cause changes in
splicing regulation [16-18].

Interactome analysis and impact of genes on drug
response

To learn how the identified genes interact with each
other and other cellular proteins and also to understand
their role in the cellular response to paclitaxel, pathway-
based analysis was conducted using Ingenuity Pathway
Analysis software (Ingenuity Systems Inc, Redwood City,
CA) as of April 2010. Specifically, direct protein-protein
interaction, gene regulation information and gene
expression change information was used in this investi-
gation. Furthermore, we conducted our own literature
investigation on each protein-coding gene using
PubMed to understand how each gene may affect pacli-
taxel response.

mRNA expression analysis

mRNA expression data for the NCI60 panel, as measured
on the Affymetrix U133A Chip and normalized using the
per-gene normalization to the median approach, was
obtained from the online database, BioGPS (http://
biogps.gnf.org) [19]. Protein-coding genes which lacked
available probes were excluded from this analysis. As
well, cell lines which did not have corresponding mRNA
expression data available were also excluded from the
analysis. For genes with multiple probes, each probe was
used as an independent measure of the expression level.
In some cases, where cell lines had two sets of expression
measurements (HCT116, HL60, NCIH23A), we averaged
the two sets and treated the averaged expression as a sin-
gle set of measurements for the cell line. Case-control
analysis was conducted for each probe between the
mRNA expression level in the sensitive group and the
levels in the resistant group. A Mann-Whitney U-test
was used as a measure of significance with p values less
than 0.05 being considered statistically significant. Due to
the exploratory nature of this study, we did not perform
corrections for multiple comparisons.

Page 3 of 12

Haplotype analysis

In order to test whether multiple SNPs from the same
gene region can more significantly (with respect to
unadjusted p values) and strongly predict drug response,
we performed haplotype association analysis based on
the additional SNP data flanking the significantly asso-
ciated SNPs within the identified protein-coding genes.
This was performed using the software, Haploview
(http://www.broad.mit.edu/haploview/haploview) [20].
For each protein-coding gene identified, we inputted
into Haploview, the remaining SNPs belonging to the
same gene and their associated genotype data from the
Affymetrix 125 k SNP array. Cell lines that were missing
50% of their data were excluded from this analysis. As
well, SNPs missing 75% of their genotype data or had a
minor allele frequency less than 0.1% were also
excluded. The odds ratio and 95% confidence interval of
the odds ratio for each haplotype was calculated to
determine the confidence of the statistical results
obtained. Since this haplotype investigation was also
exploratory in nature, we chose to not perform correc-
tions for multiple comparisons.

Results

Case-control Study

The non-parametric kernel density estimation of the
NCI60 GI50 response data helped to identify the opti-
mum cut-off z-score, thus categorizing the cell lines
into a resistant group (n = 8) if their z-scores were
greater than 1.2 (10°%8%7 M) and a sensitive group (n =
50) if they had z-scores less than 1.2. The distribution
of our drug response data and the kernel estimation
applied, which had a bandwidth of 0.55 can be found in
Figure 1 with specific cell line listings in Additional File
1, together with the information on whether cell lines
had SNP genotype data available.

Our GWAS analysis revealed 43 SNPs that were signifi-
cantly associated with paclitaxel response (FDR q value
< 0.005). A listing of these SNPs, brief descriptions of
the identified genes along with additional statistics
(unadjusted p-values, chi-squared and Bonferroni cor-
rection) can be found in Table 1. Ten of these SNPs
were found to be located within the protein-coding
genes; in the order of significance [Syntrophin, gamma 1
(SNTGI) (q = 6.78E-05); Glutamate receptor, ionotropic,
kainate 1 (GRIK1) (q = 0.00125); Dopachrome tautomer-
ase (DCT) (q = 0.00208); BTB (POZ) domain containing
12 (BTBD12) (q = 0.00248); Sarcoglycan, delta (SGCD)
(q = 0.00319); Roundabout, axon guidance receptor,
homolog 1 (ROBOI) (q = 0.00335); Protein tyrosine
phosphatase, receptor type, D (PTPRD) (q = 0.00354);
Cystic fibrosis transmembrane conductance regulator
(CFTR) (q = 0.00416); Zinc finger protein 607 (ZNF607)
(q = 0.00423); Latrophilin 2 (LPHN2) (q = 0.00477)].
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Figure 1 Categorization of cell lines in the NCI60 panel into
paclitaxel sensitive and resistant groups. This graph was
generated by SAS 9.1 and shows the distribution of the panel’s
response data to paclitaxel after a non-parametric kernel estimation
with bandwidth of 0.55 was applied. The 62 cell lines which had
drug response data available from DTP were used in this
categorization. Normalized drug response z-scores are listed on the
x-axis and relative frequency in each bin on the y-axis. The vertical
line indicates the location of the antimode in the distribution and
the z-score value (1.2) which determined whether cell lines were
categorized as sensitive or resistant.

For the SNP markers whose frequency was zero in
either the sensitive or resistant group, the odds ratio
(OR) and 95% confidence interval for the odds ratio
were unavailable from PLINK.

Impact of significant variants on respective genes

Among the ten significant SNPs mapped to protein-cod-
ing genes, eight could be analyzed using FastSNP [14],
while no FastSNP data was available on the remaining
two (PTPRD, SNTGI). Four of these eight SNPs were
located within the intronic sequences acting as potential
intronic enhancers (GRIKI, DCT, SGCD, and CFTR).
SNPs belonging to ROBOI and LPHN2 were also
located within intronic sequences, but were not pre-
dicted to have a functional consequence on gene expres-
sion and/or function. The variants in ZNF607 and
BTBDI12 were found to cause conservative missense
mutations (ZNF607-R531K, BTBD12-P1122L) with pre-
dicted benign effects on protein structure/function
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Additionally, the variant in ZNF607 was predicted to
cause changes in splicing regulatory effects. Specifically
for the two variants (C/T) of ZNF607 in this investiga-
tion, cell lines having the C variant were predicted to
not have exonic splicing silencer (ESS) sites, while those
with the T variant were predicted to have three ESS
sites. Investigation of the SNPs in SNTGI and PTPRD
using GeneView on dbSNP revealed that they lied
within the intronic regions of their respective genes.
However, their potential effects on gene expression or
protein function remain unknown.

Interactome analysis and impact of genes on drug
response

Using Ingenuity Pathway Analysis and a complementary
PubMed literature search, we have investigated the bio-
logical interactions amongst the novel candidate mar-
kers and how they may alter the cellular response to
paclitaxel. This analysis identified additional key proteins
(such as p53, B-catenin (CTNNB1), ERBB2) commonly
involved in cancer pathways. These investigations helped
us classify the identified genes into two groups when
determining the cellular response to paclitaxel: those
such as PTPRD and BTBDI12, interacting with the p53
and P-catenin axis, and those including ROBOI, CFTR,
ZNF607, GRIKI, LPHN2, DCT, SGCD, SNTGI that
interact with cellular microtubules.

Gene expression analysis

mRNA expression data available on the Affymetrix
U133A chip was subjected to case-control analysis
using the Mann-Whitney U Test (Table 2). Only 54
NCI60 cell lines had mRNA expression data available
(Additional File 1). Individual probes were available to
investigate the expression of all genes, but BTBD12
and ZNF607, which did not have any probes. The
mRNA expression analysis revealed significantly differ-
ent expression levels between sensitive and resistant
cell lines for a total of 15 probes belonging to five
genes (DCT, SNTGI1, CFTR, GRIK1, and SGCD). In all
cases where there was a significant difference in
expression level, sensitive cell lines always showed
greater expression levels when compared to resistant
cell lines.

Haplotype analysis

Haplotype analysis was performed using Haploview to iden-
tify haplotypes within our list of protein-coding genes that
had stronger association with drug response than the indi-
vidual SNP markers alone. Each of these haplotypes con-
tained the SNP that was detected as being associated with
the cellular response to paclitaxel from our GWAS analysis.
Five protein-coding genes [LPHN2 (TTGAGCAT-
CATCTCCCC, psnp = 2.58E-06 VS. Phaplotype = 2-71E-08),
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Table 1 Significant SNPs (FDR q value < 0.005) associated with paclitaxel response along with statistical information

CHR Marker RS_ID Gene  Gene Description A1 AF_R AF_S A2 UNADJ BONF FDR_BH CHISQ OR L95 U95
Name
1p31.1 91699  rs371363  LPHN2 Latrophilin 2, G- A 05 00714 G 258E-06 0.2051 0.00477 2211 13 3741 4517
protein coupled
receptor
2914 1413956 rs1898705 A 0571 00851 G 1.76E-06 0.1405 0.003902 2284 1433 3975 51.69
29143 1421343 C 0438 00313 A 1.32E-07 001052 0001169 2784 2411 5296 109.8
29312 1481588 T 025 0 C 1.02E-06 008144 0003192 2388 NA NA NA
2g33.1 1503580 A 05 00375 G 1.26E-06 0.1006 0003354 2348 2567 4721 1395
2935 1523870 rs6739040 A 0286 0 G 139E-06 01104 0.003451 233 NA NA NA
29363 1538316 T 0375 00213 C 474E-07 003773 0002331 2537 276 4902 1554
3p24.3 1743877 C 0286 0 A 232E-07 00185 0001542 2674 NA NA NA
3pl4.2 1785132 G 0333 00106 C 686E-07 005459 0002481 2466 465 4.628 467.2
3p123 1805457 rs1032966 ROBO1 roundabout, axon A 0333 00111 G 120E-06 009528 0.003354 2358 445 4428 4473
guidance receptor,
homolog 1
(Drosophila)
3926.1 1876142 152404571 G 0667 00854 A 281E-07 002238 0001721 2638 2143 5136 8941
4p153 1929743 5685064 C 0313 00114 T 201E-06 0.1602 0004162 2258 3955 4.224 3703
50232 2254477 rs959300 G 0714 01111 A 998E-08 0.007946 0.001135 28.38 20 5274 7584
50333 2292501 rs7715464 SGCD sarcoglycan, delta A 0563 00851 G 1.04E-06 008298 0003192 2385 1382 406 4705
(35kDa dystrophin-
associated
glycoprotein)
50333 2294131 A 0313 00102 G 515E-07 004098 0.002331 2521 4409 4714 4124
6p25.1 2325528 152073042 A 0786 01622 G 1.12E-06 008914 0003301 23.71 1894 4587 7825
6p22.3 2343860 A 0917 0141 C 587E-09 0.000467 0.000156 33.88 67 785 5718
6914 2403189 A 0333 00116 G 209E-06 0.1665 0004162 2251 425 4227 4273
6022.1 2440993 15594930 C 04 00217 T 1.38E-06 0.1098 0003451 2331 30 4542 1982
7931.2 2626491 715213988  CFTR Cystic fibrosis G 0438 00444 A 203E-06 01616 0004162 2257 1672 4093 6831
transmembrane
conductance
regulator
8p12 2715222 G 025 0 A 172E-06 01373 0003902 2288 NA NA NA
8q11.22 2727769 rs2385525 C 0429 00217 T 793E-08 0.006315 0001052 2882 3375 5829 1954
8q911.22 2727770 rs2132528 G 05 00256 A 3.77E-08 0.003005 0.00063 30.26 38 6591 2191
8q11.22 2727954 T 0583 00778 G 1.75E-06 0.1392 0003902 2285 166 4165 66.17
8911.22 2728154 15318885 SNTGI1  syntrophin, gamma G 06 0025 T 1.70E-09 0.000136 6.78E-05 3629 585 8841 387.1
1
8024.21 2806750 rs2568409 0643 0.0455 4.79E-10 3.81E-05 381E-05 3876 378 8573 166.7
9p23 2835786 G 025 0 6.07E-07 0.04836 0.002418 2489 NA NA NA
9p23 2836025 rs7470838 PTPRD protein tyrosine T 0857 02245 C 147E-06 01168 0003538 2319 20.73 4311 99.66
phosphatase,
receptor type, D
9p23 2836880 T 0714 01413 C 1.26E-06 0.1005 0003354 2348 1519 4.143 5572
9p22.2 2845463 G 025 0 A 7.88E-07 006275 0002728 2439 NA NA NA
9p21.2 2856599 rs2060439 G 025 0 A 607E-07 004836 0002418 2489 NA NA NA
992133 2897567 G 06 00488 A 1.24E-07 0.009894 0001169 2795 2925 5814 1472
119141 494182 57927911 A 0429 00256 C 837E-07 006661 0002775 2427 285 4912 1654
12921 629187 G 025 0 A 361E-07 002874 0002053 2589 NA NA NA
13g133 709113  rs7335400 A 0563 00714 C 158E-07 001257 0001251 2749 1671 4781 5843
1392133 748668 G 0857 01628 A 396E-08 0.003151 000063 30.17 3086 6213 1532
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Table 1 Significant SNPs (FDR q value < 0.005) associated with paclitaxel response along with statistical information
(Continued)

139321 779846 15727299  DCT dopachrome T 0313 001 C 392E-07 003122 0002081 2573 45 4812 4208
tautomerase

16p133 997458 15714181 BTBD12 BTB (POZ) domain A 0313 00104 G 6.76E-07 005379 0002481 2468 43.18 4616 404
containing 12

16p13.12 1011445 15251919 C 0438 00385 T 241E-06 01918 0004566 2224 1944 4257 8881

169233 1071765 G 0571 00745 C 527E07 004196 0002331 2516 1657 4476 61.35

18p11.22 1162169 153975417 T 0333 00116 C 209E-06 01665 0004162 2251 425 4227 4273

19913.12 1266548 15958305 ZNF607  znc finger protein - C 05 0061 T 218E-06 0.1738 0004239 2243 154 4058 5844

607
219213 1647581 rs457531  GRIK1  glutamate receptor, T 05 00349 C 173807 001377 0001251 2731 2767 5504 139.1

ionotropic, kainate 1

Significant SNPs were traced back to their genes using dbSNP Build 131 in order to identify which protein-coding genes they belonged to. (CHR = Chromosome
loci, Marker = SNP ID number on Affymetrix 125 k SNP Array, RS_ID = SNP rs number, Gene Name = Notation for gene as found on Human Genome
Organization Gene Nomenclature Committee website, A1 = Associated SNP allele, A2 = Alternate variant allele, AF_R = Frequency of associated allele in resistant
cell lines, AF_S = frequency of associated allele in sensitive cell lines, UNADJ = unadjusted p value, BONF = Bonferroni correction value, FDR_BH = FDR correction
value, CHISQ = Chi-Squared Value, OR = Odds Ratio, L95 = Lower Bound of 95% confidence interval for odds ratio, U95 = Upper Bound of 95% confidence
interval for odds ratio). Statistics with NA written indicate that the statistic could not be calculated. This GWAS was performed using only 58 of the 62 cell lines

which had drug response data available since the remaining 4 cell lines lacked available genotype data.

PTPRD (TGGATCCCGT, psnp = 1.47E-06 Vs. Phaplotype =
462E—10), GRIK1 (GT, Psnp = 1.73E-07 vs. Phaplotype =
1.01E-07), ROBOI (AGGT, pgnp = 1.2E-06 Vs. Phaplotype =
7.91E-08), and SGCD (GAC, psnp = 1.04E-06 Vs. Phaplotype
= 4.12E-07)] had haplotypes that were more significantly
associated with drug response. Additionally, these five
haplotypes were also more strongly associated with drug
response based on their odds ratio [GRIKI (ORsyp =
27.67 vs. ORpapiotype = 30.28), ROBOI (ORgnp = 44.50 vs.
ORHaplotype = 84.25), SGCD (ORgnp = 13.82 vs. ORpigpiotype
= 36.70), PTPRD (ORgyp = 20.73 V5. ORppaplotype = 38.85),

Table 2 mRNA expression case-control analysis results for
the NCI60 panel using mRNA expression data from
BioGPS

LPHN2 (ORgnp = 13.00 vS. ORpygpiotype = 23.73]. These hap-
lotypes can be found in Table 3. A figurative illustration of
the relative positions of the SNPs in their protein-coding
genes is shown in Figure 2.

Discussion

Novel method development and application

In this study, we have built upon a previous methodol-
ogy using the NCI60 panel to identify genetic markers
associated with drug response: namely gemcitabine and
selenium by our group and perifosine by Zhang et al
[9,10,21]. Instead of investigating specific candidate bio-
logical processes/pathways, here we used a genome wide
approach with an aim of identifying genomic variants
not originally thought to be related to the drug’s
mechanism. Previous studies on paclitaxel have investi-

Gene Probes p value  Gene Probes pvalue  gated the pharmacogenetics of specific genes associated
LPHN2  206953_s_at 06612 205337_at 00062 with paclitaxel response, genes associated with paclitaxel
ROBO1 213194 _at 05188 205338 s_at 00098 metabolism, and ¢cDNA, protein activation status and
213543 at 00095 216512 s.at 00053 siRNA changes associated with response [22-26]. How-
214492 _at 00026 216513_at 00049 ever, this is thf: first genome-wide SNP association study
21032952t 00031 214611 at 00077 done. for .paclltaxel response. Further.more, the use of
cell lines in these types of GWAS studies allowed access
210330_at 0.0053 207242_s_at 00243 . . . .
to high throughput genomic and transcriptomic data,
215702_s_at ~ 0.0293 205712_at 0.7332 . . .
along with robust drug screening protocols allowing for
215703 at 00095 PTPRD 213362 at 06878 more accurate results and also allowed for greater con-
217026_at 00117 214043.at 07795 trol of non-genetic factors such as treatment compliance
205043_at 0.0074  SNTGI 220405_at 00154 and administration time [27,28].

Protein-coding genes which did not have any available probes to measure
their expression (BTBD12, ZNF607) were excluded from this analysis along with
cell lines that did not have data available. A total of 20 probes were available
to help analyze the expression pattern of the 8 genes listed above. As well,
only 54 of the cell lines (from the 58 used in the GWAS) were used in this
analysis as the remainder lacked gene expression data. Expression differences
between sensitive and resistant cell lines were considered to be significant if
p < 0.05 for the Mann-Whitney U-test.

Relevance to paclitaxel dosing in clinical settings

The GI50 response data was extrapolated from a range
of doses which started at a 10°® M dose and this was
used as the basis for our case-control analysis. Although
this dose was above therapeutic concentrations, the
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Table 3 Summary of case-control analysis of haplotypes associated with paclitaxel response

Gene Haplotype Haplotype Case, Control Ratio Case, Control Chi p Value Odds L95 U95
Frequencies Counts Frequencies Square Ratio

GRIK1 GT 0.073 63:97,21:979 0.394, 0.021 28362 1.01E-07 3028 556 16498

ROBO1 AGGT 0.043 41:79,06:974 0.339, 0.006 28.828 791E-08 8425 510 139173

SGCD AAC 0.043 40:120,09:99.1 0.251, 0.009 19.847 8.39E-06 3670 345 39022

PTPRD TGGATCCCGT 0.095 83:7.7,27:973 0518, 0.027 38.832 4.62E-10 3885 819 18429

LPHN2 TTGAGCATCATCTCCCC 0.12 80:6.0,50:890 0571, 0.053 30.902 2.71E-08 2373 591 9528

This table summarizes the haplotypes that were found more significantly associated with drug response than the originally identified SNP marker alone. Cell lines
categorized as cases here are those which were in the resistant group and those categorized as controls are those in the sensitive group. Figure 2 illustrates the
relative position of these SNP markers along the genes. Statistics with NA written indicate that the statistic could not be calculated.

2ma9828

Figure 2 Results of haplotype analysis using Haploview software. Haplotype analysis was performed to identify haplotypes more
significantly and strongly associated with drug response than the originally identified SNP. Solid lines represent SNPs that were used in the
haplotype analysis and are part of the haplotype from SNP block whereas dashed lines represent SNPs that were used in the analysis, but were
not part of the haplotype. The specific nucleotides, frequencies and significance values can be found in Table 3.
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actual drug concentrations determined to cause 50%
growth inhibition (Additional File 1) ranged from
0.104 nM to 7.96 pM. The minimum is below the thera-
peutic concentration range’s minimum of 100 nM, while
our maximum is slightly below the maximum therapeu-
tic concentration 10 uM [29]. This supports the clinical
relevance of the GI50 values utilized in this study.

Impact of significant variants on respective genes and
gene expression

Using FastSNP, four of the SNPs were found as intronic
enhancers of their respective genes (SGCD, DCT, GRIK1I,
and CFTR). This suggests that the SNP variant does not
alter the protein product significantly, but may alter tran-
scription factor binding leading to altered expression pat-
terns [14]. In all cases, these genes were found to have
significantly increased mRNA expression in sensitive cell
lines for all probes available, supporting their predicted
effect by FastSNP. The differential mRNA expression
shown for SNTGI suggests that its intronic variant may
also serve as an intronic enhancer. Since only half of our
protein-coding genes showed significant differences in
mRNA expression, this emphasizes the importance to
investigate genetic changes as the remaining five genes
(ROBO1, LPHN2, PTPRD, BTBD12 and ZNF607) would
not have been detected solely based on mRNA expres-
sion data. As well, these suggests that mechanisms other
than changes in that specific gene’s expression may help
to explain how our identified SNPs can alter paclitaxel
response. For the remaining protein-coding genes with
intronic SNP variants: ROBOI, LPHN2 and PTPRD, it
remains unclear how their variant may alter their gene
product. However, SNPs located in intronic and inter-
genic regions can regulate the expression of many other
genes (located on the same chromosome or different
chromosomes); serving as master regulators and this may
be how our intergenic and remaining intronic variants
can be altering paclitaxel response [30]. In the case of
BTBD12 and ZNF607, their variants each caused conser-
vative missense mutations with predicted benign effects
on protein structure. These variants would not cause
major changes in protein or cellular function but may
still be significant enough to alter paclitaxel response. As
well, the potential alternative splicing of ZNF607 can
lead to further changes in the protein product, altering
drug response. Alternatively, these SNPs may be in link-
age disequilibrium with the real genetic factor that has a
biological consequence directly or indirectly contributing
to the paclitaxel response. Although FastSNP did accu-
rately predict the potential effect for the 4 SNPs serving
as intronic enhancers along with the intronic SNPs in
ROBOI and LPHN?2 as not having any effects, these pre-
dicted changes are only suggestive at this stage and will
need further validation using; for example, in vitro cell
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based functional assay systems. In addition, since the
mRNA expression data from BioGPS served as adjunctive
support for our findings, this data will need further vali-
dation by Real-time PCR or Northern blot analysis.

Haplotype blocks associated with paclitaxel response

In addition to individual SNP markers, we searched for
haplotypes that were more significantly and strongly asso-
ciated with paclitaxel response and hence can be more
informative as response predictors. A total of five protein-
coding genes had such haplotypes. In each of these haplo-
types, our original SNP marker was found as part of the
haplotype. Many of the remaining SNPs in the haplotypes
were not found significantly associated with paclitaxel
response when working alone and would have remained
undetected unless they were working in concert with the
original SNP marker. This supports the synergistic effect
that multiple SNPs can exert on a gene which has been
found to occur in processes such as cancer metastasis
[31]. This synergism can occur among SNPs in the same
gene or between different genes [32-34]. The location of
the SNPs in these haplotypes may also help to identify dif-
ferent gene regions or functional domains that can directly
impact drug response and provide more insight into the
drug’s mechanism. Furthermore, one of our identified
SNPs at 9p23 (marker number: 2836880) was found as
part of the identified PTPRD haplotype. This suggests that
by performing haplotype analyses, SNPs identified in the
GWAS that were originally unclear on their role in pacli-
taxel sensitivity, may be found related to part of the gene
through haplotypes.

Impact of genes on drug response

Our GWAS identified 10 genes containing SNP variants
associated with paclitaxel response. Due to the in vitro
nature of our study, it identifies only genes playing a
direct role in the cellular response to paclitaxel, but do
not reveal any variation potentially associated with pacli-
taxel’s pharmacokinetics. Hence, the SNPs such as those
previously identified in the drug metabolizing enzymes:
CYP2C8, 3A4/5 and 2C19 and drug transport proteins:
p-glycoprotein (MDR1) and SLCOIB3 would not be
identified here [3,22,25]. Nevertheless, our analysis sug-
gested that the genes identified here fall into two
groups: those altering paclitaxel response through the -
catenin and p53 transcriptional regulatory axis, and
those altering paclitaxel response through microtubule
interactions.

1. B-catenin and p53 axis and paclitaxel response
Mutations of p53 and f-catenin have commonly been
found associated with cancer risk and progression and
in the case of p53, also response to chemotherapy
[35,36]. B-catenin plays a role in cell growth/morpho-
genesis, cell polarity and cell adhesion and induces
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expression of p53 and related candidates, which in turn
regulates B-catenin’s transcriptional activity [37-39]. p53
detects DNA damage and its activation can lead to cell
cycle arrest and/or apoptosis [38,39]. p53 is directly
associated with paclitaxel chemosensitivity and paclitaxel
increases p53 expression, phosphorylation status and its
nuclear accumulation leading to the arrest of cell growth
and apoptosis [4,40-42].

Two of our identified genes PTPRD and BTBD12 inter-
act with these two genes or their related pathways and
may impact paclitaxel response through them. p53
decreases expression of protein tyrosine phosphatase
receptor type A (PTPRA) which interacts with our candi-
date, PTPRD [43,44]. PTPRA and PTPRD are receptor tyr-
osine phosphatases, and PTPRD can dephosphorylate v-
src sarcoma viral oncogene homolog (SRC), altering v-raf-
1 murine leukemia viral oncogene homolog 1 (RAF-1)
activation, a major pathway for paclitaxel induced apopto-
sis [2,6,45,46]. BTBD12 is a scaffold protein that helps to
regulate various DNA repair enzymes including those
used for double stranded breaks and cross-links and also
interacts with enzymes for cell-cycle control, homologous
recombination and replication forks [47-50]. In addition to
arresting cell division, paclitaxel can also induce DNA
damage, while repressing various DNA repair genes lead-
ing to cytotoxicity [51]. Thus, the missense substitution
caused by BTBD12’s variant could reduce its DNA repair
ability leading to increased paclitaxel susceptibility or alter
paclitaxel’s ability to arrest mitosis.

2. Microtubule interactions and paclitaxel response
Microtubules play an important role in paclitaxel
response. Paclitaxel binds to B-tubulin when it is present
as assembled tubulin and causes cell-cycle arrest, and
eventually apoptosis [4]. Previous studies have found
that point mutations in tubulin, which weaken drug-
tubulin interactions and altered expression of a microtu-
bule stabilizing protein, microtubule-associated protein
4 (MAP4), both alter paclitaxel response in cells [2,4].

Several of our identified genes may also affect paclitaxel
response through changes in microtubules dynamics or
stability. ROBOL1 is a neuronal receptor used in neurode-
velopment and when activated by its ligand Slit, directly
interacts with the beta 4 tubulin subunit (TUBB4) of
microtubules to regulate microtubule dynamics [52-55].
CFTR is a chloride transporter channel and is required
for proper microtubule distribution, as studies have
shown that cells having mutant CFTR (DeltaF508) show
microtubular disorganization [56]. ZNF607 is a zinc fin-
ger protein involved in transcriptional regulation and it
interacts with Ataxin 1 (ATXN1), which interacts with
microtubules to alter cell morphology during neuronal
development [54,57,58].

As well, many of our identified genes use microtubules
for their own transport or transport of other proteins and
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therefore these genes can also cause changes in microtubule
dynamics, potentially altering paclitaxel response. GRIK1 is
a kainite receptor used for interneuronal communication
and uses microtubules to get transported to the surface of
dendrites [59,60]. Additionally, GRIK1 can indirectly affect
cellular binding to paclitaxel through co-regulation of
expression by Atrophin 1 (ATN1), which also regulates
Stathmin 1 (STMNI) expression and STMN1 reduces cellu-
lar binding of paclitaxel [61-63]. LPHNZ2 interacts with
microtubules when it binds to a ligand, a-Latrotoxin in
order to cause neurotransmitter release [64]. DCT belongs
to a group of enzymes used in the biosynthesis of melanin
and this process uses microtubules to transport melano-
somes containing melanin, to the cell surface [65,66]. How-
ever, DCT is also a marker for melanoma and the observed
results for this gene may be caused by the melanoma cell
lines all belonging to the sensitive cell line category [67].
The last two of our genes, SGCD and SNTG1 which
represent members of their respective families, sarcogly-
cans and syntrophins form a part of a larger complex
called the dystrophin associated glycoprotein complex
(DAGC). The DAGC connects the cytoskeleton to the
extracellular matrix in muscle [68]. The beta isoform of
sarcoglycan, SGCB along with SGCD have been found to
co-localize with tubulin during the M phase of the cell
cycle, and this corresponds to the cell cycle stage when
paclitaxel interacts with tubulin [4,25,69]. Members of
the syntrophin family, including B2-syntrophin have been
found to associate with purified microtubules through a
PDZ domain which is shared by SNTG1 [70,71]. The
association of these genes with microtubules suggests
that they may play a role in regulating microtubule
dynamics; thereby potentially altering paclitaxel response.
The NCI60 panel comprises of a limited number of
human cancer-derived cell lines, and as such, there may
be confounding by either race or tumor type in our
identification of pharmacogenomic markers. For
instance, DCT is also a marker for melanoma and is
melanocyte specific [65,67]. The melanoma cell lines in
this case were all found in the sensitive group and this
may serve as a confounding variable. Validation of our
results in non-cell line data and in other tumor types
are therefore necessary prior to clinical translation.
Working through the p53/B-catenin axis and microtu-
bule interactions, our identified SNP variants can alter
their respective gene products and in turn modulate the
cellular response to paclitaxel causing the observed het-
erogeneity in both cellular and clinical responses.

Requirement for an integrative approach in
pharmacogenomics

Traditionally, the discovery of markers associated with
drug response or prognosis of complex disease risk has
depended upon investigating changes in the gene
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expression, in particular mRNA expression levels
[72,73]. However, if this was applied here, only five of
our genes would have been identified. Thus, it is impor-
tant to use both genomic and expression data sets to
complement each other as genomic variants which ulti-
mately alter gene functions other than expression may
not be detected [74]. Furthermore, it has been suggested
that the discovery of such markers should use an inte-
grated functional genomics analysis where information
from genomic (i.e., mutation, copy number variation,
SNPs, DNA methylation), expression and functional
experiments should be combined to find genetic marker
profiles [73]. This analysis could also include haplotype
analysis which can reveal markers that are more mean-
ingfully linked with traits, as done here, but also include
analysis such as proteomics, epistatic changes and
reverse-phase protein arrays (RPPA) [72,73,75].

A similar type of integrated analysis has been per-
formed for paclitaxel by Park et al, where RPPA profil-
ing along with mutation analysis and siRNA screening
analysis was used to find and assess markers associated
with paclitaxel sensitivity [26]. However, our results dif-
fered from those by Park et al, in part due to the differ-
ent approaches used to identify markers associated with
paclitaxel sensitivity. Our study focused on investigating
a genetic association through categorization (sensitive or
resistant) while Park et al, correlated sensitivity with
protein expression level. As seen in our mRNA expres-
sion analysis, not all identified SNPs belonging to pro-
tein-coding genes showed changes in their respective
gene’s mRNA expression and this can hold true for pro-
tein expression as well. Also, although not investigated
here, it is likely that other genes, not identified in our
GWAS, show significant differences in expression levels
between sensitive and resistant cell lines, despite not
having any SNPs associated with drug response. As dis-
cussed previously, one possible mechanism for this
could be through SNPs in other genes or intergenic
SNPs altering the expression of genes on the same or
different chromosomes and reinforces the need to com-
plement expression data with genomic analysis [30].
Hence more integrative analysis approaches, integrating
data from genetic (SNPs and copy number variations),
mRNA expression, protein expression studies should be
utilized to better understand the role of genetic variants
in drug response.

Conclusions

Our study has taken advantage of genotypic, expression
and drug response data available for the NCI60 panel.
Using this data, we have identified a number of genetic
variants belonging to protein-coding genes that are asso-
ciated with the cellular response to paclitaxel. Many of
these variants may not have been identified solely on
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expression data emphasizing the importance of comple-
menting expression data with genomic data. Through a
series of bioinformatic and literature investigations, we
have been able to infer how these SNP variants may
alter paclitaxel response. Our identified haplotypes can
potentially serve as better predictors of paclitaxel
response as they have a stronger association with pacli-
taxel response than their individual SNP markers.
Despite the potential limitations to using a cell line sys-
tem, such as its accuracy in representing an in vivo sys-
tem, our use of cell lines has allowed us to use well
characterized and high throughput data, enabled us to
focus more on variants directly affecting drug response
instead of those affecting paclitaxel pharmacokinetics,
while reducing the effect of confounding or non-genetic
factors present in clinical studies. The genetic variants
may play a significant role in the cellular response to
paclitaxel, and represent potential biomarkers for pre-
dicting paclitaxel response.

Additional material

<
Additional file 1: Case-control design for sensitive and resistant cell
lines. This table lists the cell lines which were classified to be sensitive
from our kernel estimation on the left and those classified as resistant on
the right. A normalized value of 1.2 was used as the cut-off in

designating sensitive or resistant. (Log Value = logarithm of GI50
concentration (M), Normalized value = z-score of log value in normal
distribution, SNP Data = shows whether the SNP-genotype was available,
mRNA data = indicates whether mRNA expression data was available, Y

= Available, N = Not Available).
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