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Abstract

aberrations).

Background: Copy number alterations (CNA) play a key role in cancer development and progression. Since more
than one CNA can be detected in most tumors, frequently co-occurring genetic CNA may point to cooperating
cancer related genes. Existing methods for co-occurrence evaluation so far have not considered the overall
heterogeneity of CNA per tumor, resulting in a preferential detection of frequent changes with limited specificity
for each association due to the high genetic instability of many samples.

Method: We hypothesize that in cancer some linkage-independent CNA may display a non-random co-occurrence,
and that these CNA could be of pathogenetic relevance for the respective cancer. We also hypothesize that the
statistical relevance of co-occurring CNA may depend on the sample specific CNA complexity. We verify our
hypotheses with a simulation based algorithm CDCOCA (complexity dependence of co-occurring chromosomal

Results: Application of CDCOCA to example data sets identified co-occurring CNA from low complex background
which otherwise went unnoticed. Identification of cancer associated genes in these co-occurring changes can
provide insights of cooperative genes involved in oncogenesis.

Conclusions: We have developed a method to detect associations of regional copy number abnormalities in
cancer data. Along with finding statistically relevant CNA co-occurrences, our algorithm points towards a generally
low specificity for co-occurrence of regional imbalances in CNA rich samples, which may have negative impact on
pathway modeling approaches relying on frequent CNA events.

Background

Genetic alterations are an absolute requirement for
malignant neoplasias in humans [1,2]. Both kind of
genetic alterations and order of occurrence are impor-
tant for cancer development and progression [3]. Addi-
tionally to sequential event models, large scale analysis
of genomes from patient’s tumors have shown that mul-
tiple genetic abnormalities can promote the develop-
ment of one cancer entity [4]. Alterations in cancer
genome can range from subtle sequence changes (e.g.
point mutations) over structural alterations with func-
tional impact on the coding sequence (e.g. generation of
fusion genes by chromosomal translocations) to regional
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or whole-chromosome copy number abnormalities (see
e.g. [5-7]).

Through a gene dosage effect, genomic copy number
alterations (CNA) may lead to insufficient expression of
tumor suppressors or overexpression of proto-oncogenes,
respectively. Recurrent CNA have been identified in
nearly all cancer entities [8-10]). Comparative Genomic
Hybridization (CGH) [11,12] is a genome wide CNA
screening technology which has been widely applied
throughout the last two decades. Building on the reverse
in situ hybridization principle developed for chromoso-
mal CGH [13], genomic microarray technology (aCGH;
[14,15]) now utilizes intensity values from up to millions
of short DNA sequences to derive regional copy number
estimates.

Large data sets from copy number screening experiments
should provide a powerful resource for oncogenomic data
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mining studies. In contrast to expression data, copy num-
ber data arises from the projection of discrete values into
the experimental space. As such, a reduction of the (a)
CGH data can result in the minimal information of seg-
mental status (gain/loss/normal) and genomic position.
This facilitates efforts to integrate data across large num-
bers of experimental series and derived from diverse tumor
entities. So far, most of these efforts have been of descrip-
tive nature [10,16] or have been aimed at the definition of
disease-specific genomic patterns and useful pattern
descriptors ("markers”, e.g. [17]). Other publications have
attempted the reconstruction of relation and temporal
order of oncogenetic events [18-20].

For some cancers types such as subsets of colorectal
adenocarcinoma, presence of a limited number of
genetic events including several CNA is critical for can-
cer development [21]. Other neoplasias such as chronic
lymphocytic leukemia (CLL) display a paucity of CNA,
which however may be correlated to patient survival
[22]. These examples illustrate that the presence of cer-
tain CNA is not a chance phenomenon, but may either
be necessary for cancer development or give a selective
edge to affected clones. Previous publications have tried
to address the cooperative nature of co-occurring CNA
[23,24]. So far, these approaches have not considered
the high variability in the complexity of CNAs among
individual malignant tumors. Here, we develop an algo-
rithm CDCOCA for analysis of co-occurring oncoge-
nomic CNA events which considers the genomic
complexity of the individual samples. We use our
approach for detection of CNA events in real-world
example data sets. Furthermore, we compare the results
from CDCOCA to a previously published method [23]
(which we call “analysis 3” in this paper) and also to a
modified version of CDCOCA which does not include
the adjustment for genomic complexity.

Methods

Data

Annotated copy number and associated data was
selected from our Progenetix (a)CGH database ([25]:
http://www.progenetix.net; status as of 2010-03-01). For
model development and testing, we choose one hemato-
poietic (MCL) and one solid tumor entity (BLCA) due
to their overall intermediate genomic complexity, with-
out consideration of their previously established geno-
mic imbalance profiles or CNA subset analysis.

For analysis, copy number status data was determined
for 320 genomic intervals based on corresponding cyto-
genetic bands. Sex chromosomes were removed due to
possible bias in some of the published series (e.g. use as
normalization control in (a) CGH experiments), resulting
in 303 genomic intervals. For analysis by CDCOCA/
CICOCA, gain and loss status of all genomic intervals
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were considered separately, leading to a data matrix
with 606 categories. Only genomic intervals showing
change in at least one sample were considered for analy-
sis resulting in a CDCOCA/CICOCA input matrix with
593 categories for BLCA and 571 for MCL. For analysis
3, the original data matrix containing 303 genomic
intervals was used. As a surrogate score for genomic
complexity, a case specific score was calculated by add-
ing each type of genomic imbalances (gain and/or loss)
occurring on a chromosomal arm [26].

From now onwards we will use the term “genomic
interval” for genomic interval status. A gain and loss
association on same chromosome (e.g. -1p and + 1q)
will be referred as “bidirectional” change. The modified
structure of the data matrices is exemplified in Table 1.
Any gain/loss status of a genomic interval is represented
by the value 1.

Model

Let D be the data matrix of dimension nxm, where n is
the number of samples and m is the number of genomic
intervals. D;; = 1, if a CNA is present in genomic inter-
val j in sample i else D;; = 0. F; represents the number
of sample having CNA at genomic interval j, F; is given

by 2?:1 Dy . P, = (P)..PI") represents the vector of

probability weights given to samples. The prior probabil-
ity weight for any sample r is defined by the number of
CNAs in patient r over total number of CNA across all

samples
m
Z j=1 D

T_
P, = n m
D. .
Zizo j=o0 "

Simulation of any genomic interval j is achieved by
redistribution of the CNA status over all samples. For
genomic interval j, we define D" = (D*ll...D}") as the cor-
responding vector representing the CNA status of simu-
lated data. Dj is obtained in a way so that F ] = F;.

Overlay between two genomic intervals is computed
using Jaccard’s index [27]. Jaccard’s index gives a value

Table 1 Binary matrix derived from CGH data

g-clp11  g-c1p12 g-c1p13 I-clp11l |-clp12 I-c1p13
1 0 0 1 1 1 0
2 0 0 0 0 0 1
3 0 0 1 1 0 0
4 1 1 1 0 0 0
5 1 1 1 0 0 0
6 0 0 0 0 1 1

For each cytogentic band (e.g. c1p12) occurrence of gain (e.g. g-c1p12) and
loss (e.g. I-c1p12) is annotated as separate event for each case.
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between 0 and 1, where one represents a perfect overlap
and zero, no overlap. The Jaccard’s index between any
two genomic intervals j and k is computed as

11

_ N

NG 01 11
Njk +Njk +Njk

Jik

N }kl number of samples with CNA in genomic inter-
vals status, j and k.

N };? number of samples with CNA in genomic inter-
val status j but not k.

N ?kl number of samples with CNA in genomic inter-

val status k but not j.
The overlap obtained on permutation is represented

by J ;fk Frequency of a co-occurrence is computed as

Fj frequency of an overlap between genomic intervals
status i and j.

N ]lkl number of samples having change in both geno-

mic interval status i and j. n total number of samples in
the data.

CDCOCA Algorithm

Let S be the number of simulations and C is the counter
measuring the number of times the expected (i.e. per-
muted) overlap is greater than or equal to the observed
overlap. We set the counter of C = 0.

1. Initialize C = 0.

2. Calculate Jaccard’s overlap J; between genomic
interval j and k.

3. For genomic interval j simulate the data to obtain

Dj as
a. Obtain a sample index r of size 1, from N =
(1,...,n) using Pui} such that sample with maxi-
mum weight given has a higher probability of get-
ting a change on permutation, update D;-T =1
b. Update N = N[-r].

, Pl = Pli’i.
1=P}

. . . pi
c. Update P, =P,|-r], P, = <=
DI
i w
d. Repeat step 3a and 3b F; times to obtain simu-
lated vector Dj.
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4. For genomic interval k simulate the data using

step 3 to obtain Dy .

5. Recompute Jaccard’s overlap ];k, if ];k 2 ji,

increase C = C + 1.
6. Repeat step 3, 4 and 5 for S times.
7. At the end of S (5000 in our case) permutations

calculate p value as, p = % .

The p-value obtained after step 7 represent the prob-
ability of co-occurrence of two CNAs in absence of any
other CNA in sample. A low p-value cut off will help in
enriching for CNAs which occur together even in less
heterogenous samples.

Results and Discussion

We here propose a methodology named CDCOCA
(Complexity dependence of co-occurring chromosomal
aberrations) that defines highly correlated pairs of CNA
in cancer samples while correcting for the overall degree
of genomic instability.

We determine CNA complexity based on the number of
segmental CNA in a sample while accounting for variations
introduced through different resolutions and/or segmenta-
tion algorithms [10]. A sample is called “CNA complex” if
it has acquired a high number of CNA, and conversely
“CNA simple” if a low number of segmental imbalances
have been detected. In Figure 1 the distribution of copy
number complexities is presented for data from selected
tumor entities, extracted from the Progenetix database.

The performance of CDCOCA depends on the number
of tumor samples, number of genomic intervals and num-
ber of iterations. CDCOCA produces a matrix of p values
for all possible associations in the data matrix which are
then used to enrich for associations dependent on sample
complexity. The algorithm is implemented in the R statis-
tical framework and is available through R package
“CDCOCA” provided on the Progenetix website [25].

We applied the CDCOCA algorithm to bladder car-
cinoma (BLCA) and mantle cell lymphoma (MCL)
copy number data, considering gains and losses for
each interval as separate events. The readout of the
analyses consisted of the p values obtained after rando-
mization for all observed associations in both cancers
after 5000 permutations each. We used Jaccard’s index
to calculate the overlap between genomic intervals
[27]. Figure 2 and 3 show the log of p values plotted
against the log of Jaccard’s index. For simplicity, here
p values for only 4 chromosomal changes were plotted.
Using CDCOCA we observed that most of the genetic
associations have very low Jaccard’s overlap and arise
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Figure 1 Complexity boxplot of CNA in some selected cancers.
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Box plot for the overall CNA complexity in selected cancer entities.

As a surrogate marker for genomic complexity, each cytogenetic

arm was scored independently for gains and losses (i.e, max. score
of 4 for a chromosome with both gains and losses on both arms),
and chromosome scores were summarized for each case.
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Figure 2 Log of p value plotted against log of Jaccard’s index
for BLCA. For simplicity reasons all the associations involving only 4
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chromosomal changes are shown here. Each color dot reprent an
association of that particular chromosome with some other
chromosomal band. Most of the associations have a low Jaccard's
index and very high p values (upper left side of plot) these

associations represent CNA in CNA complex samples. Few
associations have a high Jaccard’s index and low p values (lower
right side of plot); these associations are present in “CNA simple”

samples.
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Figure 3 Log of p value plotted against log of Jaccard’s index
for MCL. Most of the associations have a very high CNA complex
background (upper right side of plot) whereas a associations with
high Jaccard’s index and low p value (lower right side) are also
present for all chromosomes.

from genetic changes which occur in CNA complex
samples (hence high p values). Associations presenting
with high Jaccard’s indices and low p-values represent
CNA with high probability of specific co-occurrence
(i.e. frequent co-occurrence independent of high sam-
ple CNA complexity).

Our results show that most of the CNA data for both
cancers are derived on a background of multiple and
extended CNA. The total number of genetic associations
in both cancer types remains beyond scope of the
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Figure 4 Matrix plot showing results obtained for BLCA with
CDCOCA. The diagonal lower half of the image represents all the
possible associations in BLCA data where as diagonal upper half
represents associations obtained after p value cut off. Frequency of
genomic intervals is represented by histogram at the top. Color code
represents the value of Jaccard’s overlap between associations. The
high correlation throughout the diagonal confirms shows the strong
connection between CNA co-occurrence and close genetic linkage.
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Figure 5 Matrix plot showing results obtained for MCL with
CDCOCA. The diagonal lower half of the image represents all the
possible associations in BLCA data where as diagonal upper half
represents associations obtained after p value cut off. Frequency of
genomic intervals is represented by histogram at the top. Color code
represents the value of Jaccard’s overlap between associations. The
high correlation throughout the diagonal confirms shows the strong
connection between CNA co-occurrence and close genetic linkage.

current analysis. However, with CDCOCA we are able
to focus on a defined set of statistically relevant, specific
changes.

For estimating the performance of our methodology in
relation to otherwise discussed models we compared
CDCOCA to a modified version “CICOCA” (see supple-
ment) and a previously published method [23]. Both the
later algorithms do not include an estimate of sample
complexity and primarily identify associations with a
high frequency. CICOCA and analysis 3 use different
methods to compute overlap resulting in slightly differ-
ent but overall concordant results.

With CICOCA, a high number of co-occurring
changes were obtained after p value cut off (Figure 1
and 2 in additional file 1). In contrast, introduction of
complexity estimation leads to a focus on changes aris-
ing on a low complexity background (Figure 4 and 5).
With analysis 3 (Figure 3 and 4 in additional file 1) a
very low number of associations was obtained in our
sample data set. As expected these only involved high
frequent changes. We could show that most of the CNA

Table 2 Statistic of associations in BLCA
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Figure 6 Matrix plot showing frequency of associations in
BLCA. Associations are shown similar to figure 4 but here
displaying frequencies of associations in place of Jaccard's overlap
values. Most frequent CNA associations involve genetically linked
CNA. Associations involving high frequent changes are lost after p
value cut off indicating their occurrence in a CNA complex
background.

obtained by analysis 3 (Figure 3 and 4 in additional file
1) were also detected using CDCOCA (Figure 4 and 5)
and CICOCA (Figure 1 and 2 in additional file 1).
CICOCA and analysis 3 can be used to describe fre-
quent associations, while CDCOCA additionally allows
to test the specificity of associations and to apply
thresholds accordingly. Compared to frequency based
thresholding, one advantage of CDCOCA is its indepen-
dence from arbitrary cut-off values. The algorithm
scores every association. The p value obtained assigns a
statistical significance to the associations which is inde-
pendent of the frequency of the association in the data
but takes the complexity of the sample into account.

Analysis Total No. intra-chromosomal p-value FDR Associations No. intera-chromosomal
method associations associations obtained associations

1 CDCOCA 96436 4786 0.02 0.275 6991 3619

2 CICOCA 96436 4786 0.02 0.096 20089 3891

2 Analysis 3 40284 2577 0.02 0.721 321 152
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Bladder carcinoma

An overview of the most frequent genomic imbalances
in urinary BLCA can be found in e.g. [10]. Most fre-
quent gains in BLCA include regions on 1q, 5p, 8q,17,
19 and 21q, while the most frequent losses occur on 2q,
4, 5q, 6q, 8p, 9, and 13q (Figure 1 and 3 in additional
file 1 and Figure 4 barplot). Due to the high degree of
aneuploidy in BLCA, CNA data is highly complex
(Figure 4 matrix plot) resulting in a very high number
of total associations (Table 2).

A large proportion of associations combine a low fre-
quency with a high Jaccard’s index (Figure 4 and 6 matrix
plots). We applied a p-value cut off of 0.02 resulting in a
false discovery rate (FDR) of 27.5%. At this p-value cut
off, 75% of intra-chromosomal associations passed the
threshold, confirming the correlation between genetic
linkage and involvement in CNA events. Table 2 contains
the information about the comparison of results for all
three analysis. For simplicity reasons here we limit the
display to the 100 most frequent inter-chromosomal
changes obtained after p-value cut off.

According to CDCOCA, specific pairs of genomic
imbalances in bladder carcinoma include concurrent

Page 6 of 10

“bidirectional” losses on 8p and gains on 8q (Figure 7).
In the comparative analysis, gains involving chromo-
some 8q were detected with all three methods (Figure
5 and 6 in additional file 1 and Figure 7). However,
with CDCOCA the frequent co-occurrence of these
CNA on the background of a low genomic complexity
became more apparent. This observation may point to
an early appearance of these CNA during tumorigen-
esis, with a possible role as cancer initiating event.
While gains on distal 8q are the most consistent copy
number change in epithelial neoplasias with MYC con-
sidered a predominant target, recently deletions on
8p23.3 have been associated with aggressive clinical
behavior in BLCA [28]. Another observation concerned
changes involving concurrent gains on 5p and losses
on 5q which were also associated with losses on chro-
mosome 4q and distal 6q (6q22). These co-occurrences
(Figure 5 and 6 in additional file 1 and Figure 7).
Although one may assume that “bidirectional” changes
involving both chromosomal arms are based on simple
cytogenetic events, e.g. isochromosome formation, the
limitation of this pattern to distinct chromosomes
points at an evolutionary advantage of both gain and
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Figure 7 100 frequent associations obtained after p value cut off in BLCA with CDCOCA. Pathway associations for presumptive target
genes from the 100 most frequent associations in BLCA obtained after p value cut-off are shown. TGF-beta signaling genes (blue triangles) and
genes from cellular apoptotic pathways (red triangles) present in these genetic locations are displayed. Gains are represented with prefix “g” and
green color circles whereas losses with prefix “I” and orange circles. Associations were drawn using cytoscape [42].
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loss accumulation for the malignant clone. Other event
pairs obtained by CDCCOA include gains on 8q23
along with gains on 3q, as well as gain on 20q11 with
loss on 18q23.

The abundance of 8p losses, 8q gains, 5q losses, 5p
gains, 3q gains, 4q losses points towards the importance
of these CNA in tumors carrying them. Genes from
TGE-beta receptor signaling (blue triangles) and cellular
apoptotic pathways (red triangles) located to the co-
occurring changes are shown in Figure 7. The presence
of genes from the same pathways on co-occurring CNA
point towards a possible cooperative action of these
genes. CDC23 (5q31), CASP6 (4q25) and PMAIP1
(18q21) are among TGF-receptor cascade genes with
well established role in cancer [29,30] Other possible
targets for genetic cooperation include PMSD2, PAK2,
BCL2L1 and FNTA. Genes from apoptotic signaling
pathways mapped to these regions include CDC23
(5q31), SMAD2 (18q21), SMAD4 (18q21) and SMAD?
(18q21) which have been shown defective in several can-
cer entities [31]. As possible target on 5p, loss of SKP2
had been shown to cause cell senescence [32]. On 5q,
loss of function mutations including copy number losses
of both APC and MCC have been associated with a vari-
ety of epithelial neoplasias [33-36].

Mantle cell lymphoma

For MCL, an overall p value distribution similar to that
of BLCA was observed (Figure 3). Most common CNA
in MCL included gains on chromosomes 3q, 6p, 7p and
8q, while most common losses involved regions on 6q,
8p, 9, 11q and 13q (Figure 7 and 8 in additional file 1
and Figure 5).

A p value cut-off of 0.04 giving a FDR of 30% was
applied with CDCOCA (Table 3 and Figure 8). About
80% of intra-chromosomal associations passed this
threshold, representing approx. 50% of all post cut-off
associations. The 100 strongest associations obtained
with CDCOCA are shown in Figure 9. As in BLCA,
CDCOCA detected losses on 8p with gains on 8q, which
was not described as association in the other analyses.
Also, only CDCOCA selected groups of co-occurrences
involving low frequency CNA (e.g. associations involving
gains 7p, 6p, 12p and 18q). Other changes such as losses
on highly occurring 13q along with gains on not so fre-
quently occurring 7q were obtained using CDCOCA and

Table 3 Statistic of associations in MCL
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Figure 8 Matrix plot showing frequency of associations in MCL.
Associations are shown similar to figure 7 but here displaying
frequencies of associations in place of Jaccard's overlap values. Most
frequent CNA associations involve genetically linked CNA.
Associations involving high frequent changes are lost after p value
cut off indicating their occurrence in a CNA complex background.

not with CICOCA and analysis 3 in the top 100 events
(Figure 7 and 8 in additional file 1).

As candidate targets, TNF-signaling genes (red trian-
gles) and T-cell receptor signaling genes (blue triangles)
are marked on their corresponding band locations in
Figure 9. The role of genes such as MDM2 (12p15),
TNFRSF1A (12p13), MALT1 (18q21) for neoplastic
transformation and/or progression has already been well
established [37-39]. Other examples for cancer relevant
genes mapping to those regions are STAT2 (12q13), and
STATS3 (17q) [40,41].

Conclusions
We have developed a method CDCOCA to define com-
plexity dependence of co-occurring CNA in cancer

Analysis Total No. intra-chromosomal p-value FDR Associations No. intera-chromosomal
method associations associations obtained associations

1 CDCOCA 57644 3918 0.04 0.30 7513 3175

2 CICOCA 57644 3918 0.04 0.197 11673 3918

2 Analysis 3 31136 2418 0.04 0.571 867 207
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Figure 9 100 frequent associations obtained after p value cut off in MCL with CDCOCA. Pathway associations for presumptive target
genes from the 100 most frequent associations in MCL. TNF-alpha signaling genes (red triangles) and T-cell receptor signaling pathway genes
(blue triangles) present in these genetic locations are shown. Gains are represented with prefix “g” and green color circles whereas losses with

prefix “I" and orange circles.

samples. In contrast to methods published previously
[23] and a modified algorithm which does not include
the complexity adjustment step, CDCOCA does not
simply focus on the most frequent co-occurrences of
regional genomic copy number changes in cancer enti-
ties. Here, we determine statistically relevant co-occur-
ring CNA through accounting for the CNA
“background noise”, introduced e.g. through chromo-
some scale imbalances (e.g. isochromosomes, chromoso-
mal aneuploidy). In theory, this procedure should
highlight specific but comparatively rare CNA events.
As indicated by our analysis of BLCA and MCL, two
unrelated cancer entities with overall intermediate copy
number complexity, the relevant CNA associations in
many specimen are obscured due to the large number
and/or extension of regional CNA. When correcting for
genomic background heterogeneity most of the associa-
tions involving highly recurring CNA were removed.
This indicates that many high frequency changes may
be related to the overall genomic instability and there-
fore cannot unanimously be assigned a causative role in
oncogenesis. Especially regarding the large number of

genes affected by complex genomic imbalances, some of
the cancer type specific CNA patterns may represent an
epiphenomenon of disturbed genomic maintenance pro-
cesses rather than the expression of copy number
dependent target gene modifications.

However, when accounting for the overall complexity,
CNA associations may point towards connected events
and/or preferred pathways activated during carcinogenesis.
Based on our CNA associations, we found multiple genes
from single well defined cancer pathways to be a effected
in sample subsets. Alteration of more than one gene in a
pathway may potentiate the effect on pathway function
and be responsible for a specific clonal phenotype.

CDCOCA should prove to be a powerful tool for
defining mutual associations at gene level and to gain
insights into cellular mechanisms relevant for oncogen-
esis. Although we applied our method to CGH data at
band resolution, there is no practical obstacle against
use with segmented data from high resolution genomic
array experiments. In fact, this should facilitate a gene
centric analysis and automatic integration with func-
tional data sources.



Kumar et al. BMC Medical Genomics 2011, 4:21
http://www.biomedcentral.com/1755-8794/4/21

Additional material

Additional file 1: CICOCA: A method to define complexity
independence of co-occurring chromosomal aberrations. The
additional file contains information about the statistical method CICOCA
which is compared with CDCOCA. This method (as described in text
above) aims in finding co-occurring chromosomal associations
independent of the sample complexity. In addition to CICOCA this file
also contains all the additional figures which are referred in the paper
along with a detail description of all the additional figures.
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