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Abstract

Background: Identification of patients who likely will or will not benefit from cytotoxic chemotherapy through the
use of biomarkers could greatly improve clinical management by better defining appropriate treatment options for
patients. microRNAs may be potentially useful biomarkers that help guide individualized therapy for cancer
because microRNA expression is dysregulated in cancer. In order to identify miRNA signatures for gastric cancer
and for predicting clinical resistance to cisplatin/fluorouracil (CF) chemotherapy, a comprehensive miRNA
microarray analysis was performed using endoscopic biopsy samples.

Methods: Biopsy samples were collected prior to chemotherapy from 90 gastric cancer patients treated with CF
and from 34 healthy volunteers. At the time of disease progression, post-treatment samples were additionally
collected from 8 clinical responders. miRNA expression was determined using a custom-designed Agilent
microarray. In order to identify a miRNA signature for chemotherapy resistance, we correlated miRNA expression
levels with the time to progression (TTP) of disease after CF therapy.

Results: A miRNA signature distinguishing gastric cancer from normal stomach epithelium was identified. 30 miRNAs
were significantly inversely correlated with TTP whereas 28 miRNAs were significantly positively correlated with TTP of
82 cancer patients (P<0.05). Prominent among the upregulated miRNAs associated with chemosensitivity were miRNAs
known to regulate apoptosis, including let-7g, miR-342, miR-16, miR-181, miR-1, and miR-34. When this 58-miRNA
predictor was applied to a separate set of pre- and post-treatment tumor samples from the 8 clinical responders, all of
the 8 pre-treatment samples were correctly predicted as low-risk, whereas samples from the post-treatment tumors that
developed chemoresistance were predicted to be in the high-risk category by the 58 miRNA signature, suggesting that
selection for the expression of these miRNAs occurred as chemoresistance arose.

Conclusions: We have identified 1) a miRNA expression signature that distinguishes gastric cancer from normal
stomach epithelium from healthy volunteers, and 2) a chemoreresistance miRNA expression signature that is
correlated with TTP after CF therapy. The chemoresistance miRNA expression signature includes several miRNAs
previously shown to regulate apoptosis in vitro, and warrants further validation.

Background
miRNAs are short (~22 nucleotide), non-coding RNAs
that regulate gene expression primarily by translational
repression or transcriptional degradation [1]. miRNAs
have great potential as cancer biomarkers because of their
tissue-specific expression and their aberrant expression in
cancer cells [2]. Additionally, miRNAs have important

functions in cell cycle regulation and apoptosis. The
expression of miRNAs may be dysregulated in cancer by a
variety of mechanisms including transcriptional regulation,
amplification, deletion, mutation, and epigenetic silencing
[3]. Thus, microRNAs may be potentially useful biomar-
kers that help guide individualized therapy.
Identifying patients who likely will or will not benefit

from cytotoxic chemotherapy through the use of bio-
markers could greatly improve clinical management by
better defining appropriate treatment options for
patients. Most previous studies attempting to identify
miRNA predictors of chemoresistance in cancer have
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examined only individual miRNAs [4]. Thus far, only
one published high-throughput microarray analysis has
evaluated miRNA expression signatures as predictors of
chemotherapy resistance in metastatic solid tumor
patients [5]. In this miRNA microarray study of stage
III-IV ovarian cancers, let-7i expression was found to be
significantly reduced in 27 chemotherapy-resistant
patients as compared to 42 complete responders,
although there was no independent validation cohort
[5].
Here we present the results of a prospective study uti-

lizing a high-throughput miRNA microarray analysis in
which a miRNA expression signature has been identified
that distinguishes gastric cancer from normal stomach
epithelium. Further, we have identified a second signa-
ture that is correlated with the time to progression
(TTP) for gastric cancer patients treated with cisplatin
and fluorouracil (CF), a reference chemotherapy regime
for gastric cancer. These miRNA signatures may be use-
ful as potential biomarkers to help in the diagnosis of
gastric cancer in difficult cases and to predict response
of gastric cancer patients to CF therapy.

Results
Identification of a gastric cancer miRNA signature
Ninety pretreatment gastric cancer tissue samples were
available for this analysis and their clinicopathological
characteristics are described in Table 1. All patients had
metastatic disease at the time of enrollment and after
endoscopic biopsy tissue samples were collected, the
patients were treated with cisplatin and fluorouracil (or
capecitabine) combination chemotherapy. All microarray
data has been deposited at GEO and is available upon
publication. Reviewer access: http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
token=ftixhsoiemwgyfi&acc=GSE30070
We first compared miRNA profiles from the 90 pre-

treatment samples obtained from gastric cancer patients
with the miRNA expression data from 34 normal gastric
mucosal biopsy samples obtained from healthy volun-
teers (Figure 1). To estimate the predictive power of can-
cer-specific miRNA profiles, class prediction analyses
were also performed by randomly dividing the whole
sample into two (training and test) subsets at 1-to-1
ratio. Randomization was performed using nQuery Advi-
sor software (version 7.0, Statistical Solutions, Saugus,
MA). Then class label of each sample in the test set was
predicted for each of 100 random training to test parti-
tions according to compound covariate predictor (CCP),
diagonal linear discriminant analysis (LDA), 1- and 3-
nearest neighbors (NN), nearest centroid (NC), and sup-
port vector machine (SVM). At a feature selection
P<0.05, the median prediction accuracy in test sets was
>90% in all classifiers (91.9%, 90.3%, 90.3%, 93.5%, 93.5%,

and 91.9%, for CCP, LDA, 1-NN, 3-NN, NC, and SVM, ,
respectively), in 100 random training-to-test partitions.
Table 2 lists miRNAs that are differentially expressed

between the 90 gastric cancer tumors and the 34 normal
samples at a feature selection of P<0.005. Many miRNAs
that are overexpressed in the gastric cancer group
belong to the miR-17-92 and 106b-25 clusters, as pre-
viously reported [6,7]. Quantitative real-time reverse
transcription polymerase chain reaction (Q-RT-PCR)
analyses confirmed the differential expression of some
of these miRNAs in gastric cancer samples (Figure 2).
Although miR-25 was significantly up-regulated by array
analysis in the tumors, this did not reach statistical sig-
nificance by Q-PCR, perhaps due to the limited number
of samples that were available for assay. Although a pre-
vious study reported that miR-486 is downregulated in
gastric cancer, we found expression of miR-486 to be
elevated in our set of gastric cancer patients both by
microarray and Q-PCR (Additional file 1: Figure S1).

Identification of a miRNA signature for resistance to CF
therapy
Time to progression (TTP), not radiographic response,
was used as the clinical indicator for chemotherapy
response, primarily because we wished to include
patients who did not have quantifiable disease using
standard imaging modalities. To define a from 82 sam-
ples as the training set to develop a predictor (Figure 1).
These 82 pretreatment samples were collected from
patients who did not undergo second biopsies. Fifty-
eight miRNAs were significantly correlated with the
TTP of these 82 patients (feature selection P value<0.05)
(Table 3). The overexpression of 30 miRNAs was asso-
ciated with delayed TTP whereas the overexpression of
28 miRNAs was associated with a more rapid TTP. Six
*miRNAs that were associated with chemoresistance,
including miR-518f*, miR-520a, miR-520d*, miR-519e*,
miR-363*, and miR-517*, whereas no *miRNAs were
associated with chemosensitivity.
Figure 3 depicts a Kaplan-Meier curve for risk groups

stratified by these 58 miRNAs. A permutation signifi-
cance level for the log-rank statistic of leave-one-out
cross-validated Kaplan-Meier curves was 0.021, suggest-
ing that the association between miRNA expression data
to TTP is statistically significant.

Expression of the chemoresistance signature correlates
with the evolution of chemoresistance in tumors that
were previously chemosensitive
The 58 miRNA signature identified above is predictive for
identifying patients who are or are not likely to respond
favourably to CF therapy. We postulated that patients who
initially demonstrated a favourable 58 miRNA expression
signature would switch to an unfavourable expression
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signature at the time they developed resistance to CF ther-
apy. In order to test this possibility as a proof-of-principle,
8 pairs of test set samples (endoscopically obtained pre-

and post-treatment) were collected from 8 patients who
initially demonstrated a clinical response to CF treatment
but who eventually showed progressive disease at which

Table 1 Clinico-pathological characteristics of patients

Gastric cancer patient Healthy volunteer

Training
set

Proof-of-principle
test set
(responder)

Number 82 8 34

Age - yr

Median 56 56 48

Interquartile range (44-63) (44-58) (43-57)

Sex - no. (%)

Male 64 (78.0%) 7 (87.5%) 23 (67.6%)

Female 18 (22.0%) 1 (12.5%) 11 (32.4%)

Performance status (PS) - no. (%)

ECOG1 PS 0 or 1 73 (89.0%) 8 (100%)

ECOG PS 2 or 3 9 (11.0%) 0

Histological type - no. (%)

Lauren’s intestinal 34 (41.5%) 3 (37.5%)

Lauren’s diffuse 48 (58.5%) 5 (62.5%)

Location of primary lesion - no. (%)

Upper 1/3 11 (13.4%) 1 (12.5%)

Middle 1/3 18 (22.0%) 5 (62.5%)

Lower 1/3 43 (52.4%) 1 (12.5%)

Entire stomach 10 (12.2%) 1 (12.5%)

Chemotherapy regimen - no. (%)

Cisplatin/Fluorouracil 80 (97.6%) 8 (100%)

Cisplatin/Capecitabine 2 (2.4%) 0

*Relative dose intensity - %

Median 81.2 76.6

Interquartile range (75.3-87.3) (64.7-84.9)

Number of chemotherapy cycles

Median 4 10

Interquartile range (2-5) (7-11)

Chemotherapy response (WHO criteria) -no (%)

PR2 16 (24.6%) 6 (100%)

SD3 25 (38.5%)

PD4 24 (36.9%)

Unmeasurable 16 2

Unevaluable 1

Second-line chemotherapy 55 (67.1%) 6 (75.0%)

Median follow-up for survivors 35.5 months -

Overall survival - mo.

Median 8.2 16

Interquartile range (6.8-10.5) (11.3-26.7)

Time to progression - mo.

Median 3.1 8.2

Interquartile range (2.5-3.9) (4.3-21.2)
1Eastern Cooperative Oncology Group, 2partial response, 3stable disease, 4progressive disease

*Relative dose intensity

*Mean of relative dose intensities of cisplatin and fluorouracil. Dose intensity is defined as the amount of drug administered per unit of time, expressed as
milligrams per square meter per week. Relative dose intensity is defined as the actual dose intensity relative to the planned dose intensity of each drug.
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Figure 1 Study scheme to identify and test miRNAs predictive of resistance to CF.

Table 2 miRNAs differentially expressed in gastric cancer
and normal stomach epithelium.

Overexpressed in gastric cancer p FDR Ratio

hsa-miR-25 < 1e-07 < 1e-07 1.64

hsa-miR-106b < 1e-07 < 1e-07 1.85

hsa-miR-93 < 1e-07 < 1e-07 1.49

hsa-miR-503 < 1e-07 < 1e-07 2.17

hsa-miR-18a < 1e-07 < 1e-07 2.27

hsa-miR-224 1.00E-07 2.59E-06 3.85

hsa-miR-451 1.00E-07 2.59E-06 3.23

hsa-miR-18b 2.00E-07 4.60E-06 2.17

hsa-miR-17-5p 2.00E-06 3.60E-05 1.61

hsa-miR-486-5p 3.00E-06 5.18E-05 2.22

hsa-miR-144 9.60E-06 0.000159 5.56

hsa-miR-552 1.03E-05 0.000164 2.38

hsa-miR-425-5p 1.32E-05 0.000195 1.35

hsa-miR-92 1.88E-05 0.000268 1.39

hsa-miR-106a 2.61E-05 0.000347 1.52

hsa-miR-223 2.68E-05 0.000347 2.13

hsa-miR-205 2.98E-05 0.000363 4.76

hsa-miR-196b 4.42E-05 0.000508 1.67

hsa-miR-19a 0.0001836 0.00181 1.69

hsa-miR-191 0.0003112 0.0028 1.27

hsa-let-7i 0.0004468 0.00385 1.20

hsa-miR-185 0.0004764 0.00394 1.32

hsa-miR-769-5p 0.0006683 0.00532 1.37

hsa-miR-196a 0.0008274 0.00646 1.45

hsa-miR-301 0.0009715 0.00745 1.82

hsa-miR-21 0.0012598 0.00948 1.49

hsa-miR-130b 0.0015411 0.0112 1.30

hsa-miR-19b 0.0015959 0.0114 1.39

hsa-miR-424 0.0019249 0.0135 1.52

hsa-miR-484 0.0020451 0.0139 1.33

hsa-miR-767-5p 0.0048511 0.03 1.64

hsa-miR-183 0.0050428 0.0305 1.52

hsa-miR-210 0.0053848 0.0318 1.35

Table 2 miRNAs differentially expressed in gastric cancer
and normal stomach epithelium. (Continued)

hsa-miR-302c* 0.006328 0.0364 1.41

hsa-miR-520g 0.0070896 0.0402 2.13

hsa-miR-324-5p 0.0095742 0.0497 1.23

hsa-miR-103 0.0095861 0.0497 1.16

hsa-miR-376b 0.0096083 0.0497 1.85

hsa-miR-151 0.0100422 0.0513 1.20

hsa-miR-596 0.011231 0.0556 1.61

hsa-miR-545 0.011422 0.0556 1.69

hsa-miR-221 0.0129139 0.0608 1.27

hsa-miR-20a 0.0133176 0.0619 1.35

hsa-miR-181b 0.0148487 0.0655 1.28

hsa-miR-181d 0.0154891 0.0668 1.16

hsa-miR-623 0.0189476 0.0809 1.43

hsa-miR-519d 0.0220958 0.0915 1.59

hsa-miR-563 0.0229302 0.094 1.37

hsa-miR-505 0.0241657 0.097 1.25

hsa-miR-107 0.0242694 0.097 1.11

hsa-miR-320 0.0282982 0.111 1.20

hsa-miR-96 0.0285699 0.111 1.39

hsa-miR-339 0.0312524 0.12 1.32

hsa-miR-181a 0.0318141 0.121 1.20

hsa-miR-345 0.0322275 0.121 1.19

hsa-miR-20b 0.0325811 0.122 1.28

hsa-miR-33b 0.0339343 0.125 1.64

hsa-miR-135b 0.0352682 0.129 1.59

hsa-miR-431 0.0374687 0.134 1.41

hsa-miR-193a 0.0377098 0.134 1.35

hsa-miR-550 0.0380645 0.134 1.30

hsa-miR-565 0.0446875 0.15 1.20

Underexpressed in gastric cancer p FDR Ratio

hsa-miR-146a < 1e-07 < 1e-07 0.39

hsa-miR-133a < 1e-07 < 1e-07 0.34

hsa-miR-625 < 1e-07 < 1e-07 0.56

hsa-miR-375 < 1e-07 < 1e-07 0.27
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time a second endoscopic biopsy was taken. As shown in
Table 4 all of the 8 pretreatment samples from the clinical
responders were correctly predicted by the 58-miRNA
predictor to be in the low-risk group (accuracy, 100%).
Notably, 6 out of 8 pairs were correctly identified for che-
mosensitivity (i.e., posttreatment samples were assigned a
higher predictive index for chemotherapy response than
pretreatment samples, and therefore, predicted to be more
resistant to therapy) (accuracy, 75%). When the same pre-
diction was performed using the feature selection P value
of 0.01, the prediction result remained the same (Table 4).

Discussion
This study has utilized a prospective approach to iden-
tify a miRNA signature for gastric cancer vs. normal sto-
mach epithelium and a miRNA signature that predicts
response to standard CF therapy.
Since routine histopathology techniques sometimes do

not lead to a definitive diagnosis of gastric cancer, the
addition of a miRNA signature from such patient sam-
ples may improve the accuracy of a diagnosis of gastric
cancer. In previous miRNA microarray studies of gastric
cancer, control tissues were obtained from regions of
the stomach of gastric cancers patients that were deter-
mined to be histologically normal and not from stomach
tissue of healthy normal volunteers [6,7]. Since molecu-
lar abnormalities are often found in histologically nor-
mal-appearing tissue adjacent to tumor tissue, we chose
to obtain control tissues from endoscopic biopsy sam-
ples from normal, cancer-free volunteers. Most of the
differentially expressed miRNAs reported to be charac-
teristic of gastric cancer in previous microarray studies
[6,7] were also identified within the gastric cancer signa-
ture in our current analyses. However, in addition to
these previously reported miRNAs in gastric cancer, we
additionally identified potential tumor suppressor miR-
NAs (at P<0.05 [6]and P<0.01 [7], including miR-1 [8,9]
and let-7 [10] that we found to be underexpressed in
gastric cancer (at P<0.001) (Table 2). Interestingly, Oh
et al found expression of miR-486 to be reduced in
many gastric cancers, in some cases, associated with a
genomic loss of that region [11]. We found miR-486 to

Table 2 miRNAs differentially expressed in gastric cancer
and normal stomach epithelium. (Continued)

hsa-miR-133b < 1e-07 < 1e-07 0.32

hsa-miR-195 < 1e-07 < 1e-07 0.47

hsa-miR-148a < 1e-07 < 1e-07 0.47

hsa-miR-1 < 1e-07 < 1e-07 0.27

hsa-miR-26a < 1e-07 < 1e-07 0.67

hsa-miR-204 2.00E-07 4.60E-06 0.26

hsa-let-7c 7.00E-07 1.53E-05 0.74

hsa-let-7a 9.00E-07 1.86E-05 0.72

hsa-let-7g 1.10E-06 2.17E-05 0.71

hsa-miR-497 1.70E-06 3.20E-05 0.56

hsa-miR-26b 1.28E-05 0.000195 0.58

hsa-miR-145 2.04E-05 0.000282 0.65

hsa-miR-34a 2.89E-05 0.000363 0.75

hsa-miR-143 4.28E-05 0.000506 0.63

hsa-miR-650 9.15E-05 0.00101 0.57

hsa-miR-150 9.25E-05 0.00101 0.49

hsa-miR-768-5p 0.0001037 0.0011 0.65

hsa-let-7d 0.0001302 0.00132 0.76

hsa-miR-203 0.0001311 0.00132 0.52

hsa-miR-29c 0.0002112 0.00203 0.52

hsa-let-7f 0.0002446 0.0023 0.69

hsa-miR-30d 0.0002592 0.00238 0.78

hsa-miR-642 0.0004345 0.00383 0.62

hsa-miR-30c 0.0004556 0.00385 0.75

hsa-miR-155 0.0004998 0.00406 0.66

hsa-miR-34b 0.0013651 0.0101 0.64

hsa-miR-551b 0.0019808 0.0137 0.53

hsa-miR-28 0.0027537 0.0184 0.85

hsa-let-7e 0.0034793 0.0227 0.84

hsa-let-7b 0.0035019 0.0227 0.85

hsa-miR-212 0.0039061 0.0249 0.76

hsa-miR-564 0.0047906 0.03 0.72

hsa-miR-770-5p 0.0050814 0.0305 0.71

hsa-miR-30b 0.0060842 0.0355 0.76

hsa-miR-30a-5p 0.0077597 0.0434 0.80

hsa-miR-199b 0.0083572 0.0461 0.67

hsa-miR-125a 0.0085563 0.0466 0.77

hsa-miR-621 0.0093423 0.0497 0.69

hsa-miR-31 0.0106862 0.054 0.66

hsa-miR-365 0.0113404 0.0556 0.78

hsa-miR-381 0.0123061 0.0592 0.70

hsa-miR-626 0.0128738 0.0608 0.78

hsa-miR-127 0.0138033 0.0635 0.69

hsa-miR-660 0.0142991 0.0651 0.75

hsa-miR-342 0.0146193 0.0655 0.75

hsa-miR-146b 0.0148729 0.0655 0.77

hsa-miR-361 0.0152056 0.0663 0.86

hsa-miR-489 0.0191692 0.081 0.71

hsa-miR-29a 0.0204334 0.0854 0.79

hsa-miR-95 0.0243644 0.097 0.54

hsa-miR-567 0.0265025 0.104 0.54

Table 2 miRNAs differentially expressed in gastric cancer
and normal stomach epithelium. (Continued)

hsa-miR-152 0.0376121 0.134 0.78

hsa-miR-429 0.0378151 0.134 0.65

hsa-miR-200b 0.0396617 0.138 0.75

hsa-miR-504 0.0412648 0.142 0.63

hsa-miR-668 0.041717 0.143 0.77

hsa-miR-186 0.0437991 0.149 0.83

hsa-miR-135a 0.0468793 0.157 0.58

hsa-miR-485-5p 0.047683 0.158 0.82
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Figure 2 Validation of miR expression by quantitative real-time reverse transcription polymerase chain reaction (Q-RT-PCR). Q-RT-PCR
analyses of miR-18a, miR-25, miR-1, and let-7g in 4 normal (shown in white) and 4 cancer samples (shown in black), confirming over-expression
of miR-18a and miR-25 and under-expression of miR-1 and let-7g as observed in the microarray data of the cancer samples. The Student t-test P
value between 4 normal and 4 cancer samples is shown for each miRNA. Fold change (FC) of -1 indicates a 50% decrease in RNU6-normalized
expression of a given miRNA.

Table 3 miRNAs whose expression is associated with chemosensitivity or chemoresistance.

miRNAa whose expression is associated with chemoresistance p FDR Hazard Ratio

hsa-miR-526a 0.0000 0.0103 1.482

hsa-miR-122a 0.0002 0.0379 1.545

hsa-miR-518f* 0.0004 0.0537 1.298

hsa-miR-591 0.0007 0.0598 1.492

hsa-miR-524-3p 0.0010 0.0682 1.268

hsa-miR-320 0.0013 0.0701 1.865

hsa-miR-520a* 0.0014 0.0701 1.252

hsa-miR-183 0.0031 0.119 1.39

hsa-miR-516-5p 0.0034 0.119 1.306

hsa-miR-629 0.0036 0.119 1.42

hsa-miR-595 0.0043 0.119 1.858

hsa-miR-640 0.0054 0.132 1.3

hsa-miR-520d* 0.0063 0.143 1.326

hsa-miR-519e* 0.0091 0.164 1.24

hsa-miR-363* 0.0096 0.166 1.407

hsa-miR-513 0.0137 0.193 1.347

hsa-miR-328 0.0163 0.211 1.736

hsa-miR-519a 0.0170 0.211 1.118

hsa-miR-185 0.0189 0.217 1.697

hsa-miR-658 0.0200 0.223 1.532

hsa-miR-517* 0.0218 0.226 1.305

hsa-miR-515-5p 0.0349 0.301 1.145

hsa-miR-519c-5p 0.0368 0.304 1.157

hsa-miR-661 0.0392 0.315 1.437
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be overexpressed in our gastric cancer cohort by both
microarray and Taqman PCR analysis (Additional file 1:
Figure S1). It is possible that this difference in results is
due to very different patient populations studied.
In this study, we report for the first time to our

knowledge, a miRNA predictor for response to CF ther-
apy. The 58 miRNA signature that provides an index for
assessing potential response to CF therapy may be useful
in stratifying patients into a group that should receive
standard therapy and a group that will likely not benefit
from such therapy and should be placed on a different
therapeutic trial. Several of the 58 miRNAs we identified
in Table 2 that are associated with TTP are consistent
with published reports relating their expression with
chemoresistance and tumor biology. Prominent among
the upregulated miRNAs associated with a prolonged

TTP (defined by a hazards ratio <1) were miRNAs that
have been shown to induce apoptosis in gastric and
other cancer cells, such as miR-16, let-7g, miR-181,
miR-342, miR-1, and miR-34 [8,12-18]. miR-16 aug-
ments apoptosis induction by nutlin and genistein [12],
and modulates multidrug resistance of human gastric
cancer cells [13].
Overexpression of let-7c or let-7g has been shown to

decrease expression of Bcl-xL in Huh7 and HepG2 cell
lines [14]. Let-7g and miR-181b are positively correlated
with clinical responsiveness of colon cancer to S-1, an
oral fluorouracil [4]. miR-181a and miR-181b have been
shown to function as tumor suppressors which trigger
growth inhibition, induce apoptosis and inhibit invasion
in glioma cells [15]. Reconstitution of hsa-miR-342 in
the colorectal cancer cell line HT-29 induces apoptosis

Table 3 miRNAs whose expression is associated with chemosensitivity or chemoresistance. (Continued)

hsa-miR-182 0.0416 0.315 1.408

hsa-miR-206 0.0417 0.315 1.606

hsa-miR-193b 0.0419 0.315 1.433

hsa-miR-601 0.0436 0.317 1.599

miRNAS whose expression is associated with chemosensitivity p FDR Hazard Ratio

hsa-miR-195 0.0007 0.0598 0.593

hsa-miR-146b 0.0016 0.0733 0.565

hsa-miR-26b 0.0037 0.119 0.686

hsa-miR-374 0.0042 0.119 0.84

hsa-miR-199b 0.0051 0.132 0.729

hsa-miR-132 0.0068 0.143 0.62

hsa-miR-140 0.0069 0.143 0.759

hsa-miR-487b 0.0088 0.164 0.679

hsa-let-7g 0.0091 0.164 0.539

hsa-miR-340 0.0103 0.171 0.82

hsa-miR-155 0.0109 0.174 0.704

hsa-miR-95 0.0115 0.176 0.856

hsa-miR-186 0.0137 0.193 0.662

hsa-miR-130a 0.0140 0.193 0.72

hsa-miR-342 0.0151 0.202 0.685

hsa-miR-577 0.0173 0.211 0.804

hsa-miR-128b 0.0184 0.217 0.701

hsa-miR-146a 0.0209 0.226 0.776

hsa-miR-16 0.0214 0.226 0.698

hsa-miR-503 0.0241 0.243 0.721

hsa-miR-224 0.0259 0.25 0.853

hsa-miR-223 0.0259 0.25 0.794

hsa-miR-128a 0.0294 0.276 0.704

hsa-miR-181b 0.0300 0.276 0.668

hsa-let-7f 0.0312 0.281 0.725

hsa-miR-1 0.0339 0.298 0.839

hsa-miR-421 0.0367 0.304 0.738

hsa-miR-127 0.0404 0.315 0.783

hsa-miR-34c 0.0435 0.317 0.74

hsa-miR-497 0.0493 0.351 0.769
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[16]. miR-1 sensitizes lung cancer cells to doxorubicin-
induced apoptosis [8]. Ectopic miR-34 expression
induces apoptosis, cell-cycle arrest or senescence in nor-
mal and tumor cells [17]. Thus, overexpression of these
pro-apoptotic miRNAs in primary tumors appears to be
a highly consistent feature of patients who benefits from
CF.
Interestingly, we identified six *miRNAs that were

associated with chemoresistance, including miR-518f*,
miR-520a, miR-520d*, miR-519e*, miR-363*, and miR-
517*, whereas no miRNAs were associated with chemo-
sensitivity. Only one miR, miR-302*, was identified in
the gastric cancer miR signature. miR*s are considered
to be passenger strands that are thought to normally be
degraded from the pre-miR which results in the mature
22 nt strand that enters the RISC complex. The func-
tions of *miRNAs remain unclear, although it is possible
that they result from impaired processing of pre-miR-
NAs (Tchernitsa et al J of Pathology, 2010) or may play
a role in targeting mRNA translation (Gu and Lu, Plos
One, 2010).

We also observed that while 21 miRNAs were found
in common between the GC and chemoresistance
miRNA signatures, 37 miRNAs were unique to the che-
mosensitivity signature.
Analysis of the sample pairs pre- and post-treatment

from 8 patients who initially responded to CF therapy but
later became resistant to therapy served as a proof-of-prin-
ciple for demonstrating that the predictive index of the 58
miRNA signature would switch from a favourable index
(at the pre-treatment stage) to an unfavourable index
(post-treatment when resistance developed). Unfortu-
nately, it was not possible to obtain additional matched
pairs of samples from similar patients to provide a more
robust statistical analysis. Nevertheless, the results are con-
sistent with a model of clonal selection of pre-existing
resistant tumors cells residing within the primary tumor.
According to the conventional clonal selection model

for the development of acquired resistance to che-
motherapy resistance, resistance of initially responsive
tumors develops due to the selective outgrowth of che-
moresistant clones that already exist within the tumor

Figure 3 Kaplan-Meier curves for the time to progression (TTP) of 2 risk groups stratified according the expression of 58 miRNAs
correlated with TTP at a feature selection P < 0.05. The association of miRNA expression data to TTP was statistically significant (permutation
P value for log-rank statistics of cross-validated Kaplan-Meier curves = 0.021).
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[18]. Given that a rapid TTP specifically indicates an
intrinsic resistance to chemotherapy [19], the 58 miR-
NAs whose expression levels are correlated with a short
TTP may represent chemoresistance-related miRNAs
already present in the majority of the tumor cells in the
primary tumor. However, primary tumors that appear
not to express this miRNA signature of resistance, initi-
ally respond to therapy until preexisting, resistant cells
selectively grow despite CF therapy. At the time a sam-
ple is obtained when resistance is observed, the bulk of
the tumor expresses the unfavourable, chemoresistant
miRNA signature. Given that resistance in most of these
patients develops over a relatively short period of time
(months, not years), it seems unlikely that resistance
results from the accumulation of multiple individual
genetic changes.
The results of this study provide important new data

and miRNA signatures, especially predicting response to
CF therapy and regarding the emergence of tumor resis-
tance. However, larger studies need to be conducted in
the future to further validate these findings and deter-
mine whether they can be applied in a clinical setting.

Conclusions
Although limited by the small sample size of the valida-
tion set, this study identifies miRNAs that may comprise
a clinically relevant signature for intrinsic resistance of

gastric cancer to CF and suggests that these miRNAs
were selected for during the development of acquired
chemoresistance. Since this miRNA predictor may possi-
bly provide a useful guide to personalized chemotherapy
in the future, it warrants further investigation and vali-
dation in large prospective studies.

Methods
Patient enrolment and treatment
Tissue samples were collected at the hospital of Korean
National Cancer Center by endoscopy from 2001 to 2006
under a protocol approved by the Institutional Review
Board (IRB) of the National Cancer Center Hospital in
Goyang, Korea. All patients and volunteers signed IRB-
approved informed consent forms. Eligibility for enrol-
ment into the study included the following parameters: 1)
age ≥ 18 years; 2) histologically confirmed gastric adeno-
carcinoma; 3) documented distant metastasis; 4) no pre-
vious or concomitant malignancies other than gastric
cancer; 5) no prior chemotherapy, either adjuvant or pal-
liative; and 6) adequate function of all major organs. 34
healthy volunteers underwent gastroscopy for routine
screening for gastric cancer and had normal gastric
mucosa by histology. There was no gastritis among the 34
healthy volunteers.
This miRNA study has been performed as a parallel

study to a study of mRNA expression analysis [20]

Table 4 Prediction for chemoresistance in the proof-of-principle test set

Sample ID Feature selection P < 0.05 Feature selection P < 0.01

Predictive
Index
Percentile1

Prediction
For
Pretreatment
Sample2

Overall
Prediction3

Predictive
Index
Percentile

Prediction
for
Pretreatment
Sample

Overall
Prediction

1 pre 39% low incorrect 35% low incorrect

1 post 22% 24%

2 pre 48% low correct 49% low correct

2 post 79% 77%

3 pre 55% low correct 46% low correct

3 post 73% 77%

4 pre 13% low correct 24% low correct

4 post 72% 73%

5 pre 31% low correct 33% low correct

5 post 48% 46%

6 pre 13% low correct 27% low correct

6 post 16% 66%

7 pre 7% low correct 12% low correct

7 post 66% 57%

8 pre 52% low incorrect 50% low incorrect

8 post 17% 24%
1The predictive index was computed for each sample by this supervised principal component method, where a high value of the predictive index corresponds to
a rapid progression after chemotherapy (i.e., short TTP). If the predictive index of a sample in the test set corresponded to the median predictive index of the
training set, the sample was assigned a 50% predictive index.
2The risk was predicted low, if predictive index percentile of the pretreatment sample was less than 67%
3The prediction was considered correct if post-treatment samples were assigned a higher predictive index than pre-treatment samples.
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designed to identify mRNA predictors of chemoresistance.
Ninety pre-treatment biopsy samples collected from 2001
to 2006 were analyzed in this miRNA study. After an
initial endoscopic biopsy, all of the 90 patients were trea-
ted with cisplatin (60 mg/m2, D1) in combination with
either fluorouracil (1 g/m2 for 5 days; n = 88) or capecita-
bine (Xeloda; Roche; 1,250 mg/m2 BID for 2 weeks; n = 2)
every 3 weeks. Clinical responders were asked to undergo
the second endoscopy at the time progressive disease (PD)
was observed according to World Health Organization
(WHO) criteria. The following two criteria were used to
define clinical responders: 1) patients whose tumors
demonstrated more than a 50% decrease in the sum of the
products of the two largest perpendicular diameters of
measurable lesions for at least 4 weeks; or 2) patients who
did not have measurable disease at presentation and had a
dramatic decrease in pleural effusion/ascites for at least 4
weeks [21]. Post-treatment miRNA microarray data could
be obtained from samples collected when chemoresistance
developed (PD) in 8 clinical responders. Post-treatment
samples were collected at least 2 weeks after the last dose
of the fluorouracil, and before second-line chemotherapy
was started, in order to avoid any acute drug effects on
influencing the expression profile. For these 8 clinical
responders, pre- and post-treatment samples (which were
collected at the time of progressive disease) represent che-
mosensitive and chemoresistant tumors, respectively. Pre-
treatment samples from the remaining 82 patients were
used to identify a miRNA predictor for chemotherapy
response. This predictor was applied to 8 sample pairs col-
lected from the same patients pre- and post-treatment.
The prediction was considered correct if post-treatment
samples were assigned a higher predictive index for che-
moresistance than the pre-treatment samples. Biopsy sam-
ples were similarly collected from 34 healthy volunteers.
Tissue samples containing at least 50% tumor cells were

processed for RNA as previously described [22]. The
extracted RNAs were assayed using the Agilent Bioanaly-
zer 6000 Total RNA assay and the Nanodrop spectrophot-
ometer following manufacturer’s protocols. 500 ng of total
RNA was subjected to a custom miRNA microarray. A
mixture of total RNA isolated from three gastric cancer
cell lines (SNU-601, SNU-638, and AGS) was used as the
reference RNA for competitive hybridization.

Microarray experiment
miRNA microarray design
The Laboratory of Molecular Technology (LMT)_miR-
NA_v2 microarray was designed using the Sanger miR9.0
database (http://microrna.sanger.ac.uk) and manufac-
tured as a custom-synthesized 8 × 15 K microarrays (Agi-
lent Technologies, San Jose, CA). There are a total of
4,361 miRNA entries in the miR9.0 database. Some of
the miRNAs have exact sequences from different species.

We collapsed the database to 1,667 unique mature
miRNA sequences across all species, including human,
mouse, rat, etc. The mature miRNA sequences were
incorporated into 60-mer long oligonucleotide probes
with a linker sequence on the 3’ end to separate the
miRNA sequences away from the glass slide surface. The
linker sequence was a proprietary sequence from Agilent
that has minimal homology to any sequence in the Gen-
Bank. Each mature miRNA is represented by + and -
(reverse complement) strand sequences. This enables the
microarray to be used with different labeling protocols.
Depending on the protocol, one of the probes can also
serve as a negative control. Each probe has 4 replicates
within each microarray, providing technical replicates for
measuring consistency and performance of the microar-
ray. In summary, each unique mature miRNA is repre-
sented by 8 probes (4 + strand and 4 - strand). A total of
3,556 unique LMT seq IDs (miRNA, positive and nega-
tive controls, +/- strand) were on the microarray, each
with 4 replicates. Advantages of the microarray include
high sensitivity (requiring < 1 microgram of total RNA)
and high reproducibility (CV = 1%).
Validation of the LMT miRNA platform
Only 1 microgram of total RNA containing miRNAs was
required for the microarray. The sensitivity of the LMT
miRNA microarray platform was compared with other
miRNA arrays (Additional file 2: Table S1). In an experi-
ment comparing two reference RNAs - Ambion brain and
liver RNAs containing miRNAs - the LMT microarray
detected similar percentages of miRNAs as compared to
other commercial miRNA microarray platforms. It was
more sensitive than the Agilent miRNA microarray but
less sensitive than the Affymetrix FT-HSR miRNA micro-
array and the Taqman miRNA card.
To test the global specificity of the microarray, we com-

pared the results between platforms of miRNA expression
measured using two commercial reference RNAs contain-
ing microRNAs for brain and liver (Ambion). The fold-
changes observed between these two samples across the
different microRNAs microarray platforms were deter-
mined. A high degree of concordance was observed
between the microRNAs identified by the LMT miRNA
microarray vs the Agilent miRNA microarray and the
Affymetrix FT-HSR miRNA microarray (Additional file 3:
Figure S2). In addition, a high degree of correlation was
observed between the LMT miRNA microarray and the
Affymetrix FT-HSR microRNA array (0.707) (as well as
the Agilent miRNAmicroarray (0.882) (Additional file 4:
Figure S3).
miRNA determinations using the LMT miRNA microarray
The total RNAs containing the microRNAs were labeled
using the miRCURY™ LNA microRNA Array Power
Labeling kit (Exiqon Inc, Woburn, MA). The 3’-end of
the total RNA was enzymatically labeled with the Hy3
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and/or Hy5 fluorescent dye (Exiqon), and the labeled
RNA was hybridized onto the microarrays without the
need for column purification. The washed and dried
slides were scanned using the Agilent scanner. The Fea-
ture Extraction program was used to extract the spot
intensities. All microarray data has been deposited at
GEO and is available upon publication. Reviewer access:
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
token=ftixhsoiemwgyfi&acc=GSE30070

miRNA quantitative RT-PCR (Q-RT-PCR)
Q-RT-PCR reaction was performed for miR-18a, miR-25,
miR-1, and let-7g, and miR-486, using the miScript PCR
system (QIAGEN, Valencia, CA) in duplicate reactions in
a 96-well plate. Cycle threshold (Ct) values of miRNA
expression were normalized to RNU6 by subtraction. CT

values were determined, where CT represents the thresh-
old cycle or the PCR cycle number at which an increase in
reporter fluorescence crosses a threshold significantly
above the baseline signal. For data normalization, RNU6
was selected as the reference endogenous control miRNA.
Relative quantification of each mRNA was achieved by
first normalizing the specific mRNA CT values to one
reference CT value, RNU6, then comparing the test sam-
ples to control samples. Specifically, the ΔCT -Sample
value was calculated as ΔCT Sample = avg. CT Sample -
avg. CT Reference, then the ΔΔCT Test to Control =Δ CT

Sample Test - ΔCT Sample Control. RT-PCR expression
level was calculated by raising 2 to the power of - ΔΔCT

Test to Control, and compared between cancer and nor-
mal samples using the Student t-test.

Survival analysis
miRNA data were analyzed using BRB-ArrayTools (ver-
sion 3.6, National Cancer Institute, http://linus.nci.nih.
gov/BRB-ArrayTools.html) [23]. Array data were log-
transformed and normalized using Lowess smoother.
The survival analysis tool identified genes whose expres-
sion is correlated with TTP by fitting a proportional
hazards model relating survival to the expression of each
miRNA. P values are calculated for each gene to test the
hypothesis that survival time is independent of the
expression level for that gene. Time to progression (TTP)
was used as the clinical indicator for chemotherapy
response. TTP was calculated from the initiation of che-
motherapy to the onset of progressive disease. In patients
without any measurable lesions, time to progression was
measured to the time when a change in therapy was
required because unmeasurable lesions (such as ascites)
unequivocally progressed [24]. Prediction of chemother-
apy response was performed using the survival risk pre-
diction algorithm of BRB-ArrayTools. The survival risk
groups were constructed using a predictive index based
upon the supervised principal component method of Bair

and Tibshirani [25]. The predictive index was based on
the weighted average of the log intensities of the discri-
minatory miRNAs using a proportional hazards regres-
sion on the first two principal components of the log
intensities of those miRNAs. The predictive index was
computed for each sample by this supervised principal
component method, where a high value of the predictive
index corresponds to a rapid progression after che-
motherapy (i.e., short TTP). For instance, if the predictive
index of a sample in the test set corresponded to the
median predictive index of the training set, the sample
was assigned a 50% predictive index. We specified the
number of risk groups as 2 (high and low) and the pre-
dictive index percentile for delineating the two risk
groups as 67%, since our low risk group included 63.1%
of patients with a clinical benefit from therapy (partial
response and stable disease) and 36.9% of patients in the
high risk group with progressive disease in the training
set.
The survival risk group prediction algorithm of BRB-

ArrayTools also provides an assessment of whether the
association of miRNA expression data to survival data is
statistically significant. A log-rank statistic was computed
for the cross-validated Kaplan-Meier curves. For each
random re-shuffling, BRB-ArrayTools repeats the pro-
cess, creates new cross-validated Kaplan-Meier curves,
and computes the log-rank statistic for the random shuf-
fling. This provides a null-distribution of the log-rank
statistic created in this way. The tail area of this null dis-
tribution beyond the value LRd obtained for the real data
is the permutation significance level for testing the null
hypothesis that there is no relation between the expres-
sion data and survival. This permutation significance
level was considered significant if it was less than 0.05.

Additional material

Additional file 1: Supplemental Figure 1: Validation of miR
expression by quantitative real-time reverse transcription
polymerase chain reaction (Q-RT-PCR). Q-RT-PCR analyses of miR-486
in 12 normal (circles) and 7 cancer samples (squares), confirming over-
expression of miR-486 as observed in the microarray data of the cancer
samples.

Additional file 2: Supplemental Table 1: Cross platform comparisons
of miRNA expression. Comparing the data for detection of microRNAs
in the same two tissue samples (brain and liver), the ABI Taqman Array
MicroRNA Card platform and the Affymetrix/FlashTagHSR platforms
demonstrated the highest percent present calls and were nearly identical
on their respective platforms, followed by our LMT miRNA microarray
and the Agilent platform.

Additional file 3: Supplemental Figure 2: Concordance of matching
probes between array platforms. We compared the LMT, Affymetrix
FlashTag HSR and Agilent microRNA microarray platforms to one another
looking at matching direction of the fold change (up or down). Of the 3
planar microarray platforms, the Affymetrix FlashTag HSR had the highest
number of combined up and down regulated miRNA at 111 followed by
Agilent with 101 and LMT with 78. Ninety-one, 91, up and down
-regulated miRNAs were shared between Agilent and Affymetrix FlashTag
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HSR, 74 were shared LMT and Affymetrix FlashTag HSR, and 74 were
shared between LMT and Agilent.

Additional file 4: Supplemental Figure 3: Correlations between
miRNA array platforms. To study the correlation of the absolute fold
changes between each microarray platform, the fold change data (n =
140) was Log 2 transformed, plotted and the Pearson correlation, r,
calculated between platforms (Figure 3). We first compared all of the
platforms to our LMT legacy platform to determine which of the
commercial platforms correlates best with our reference platform. The
Agilent platform demonstrated the highest correlation to our LMT array
data (r = 0.882) based on absolute fold change.
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