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Abstract

Background: Lung cancer is the worldwide leading cause of death from cancer. Tobacco usage is the major
pathogenic factor, but all lung cancers are not attributable to smoking. Specifically, lung cancer in never-smokers
has been suggested to represent a distinct disease entity compared to lung cancer arising in smokers due to
differences in etiology, natural history and response to specific treatment regimes. However, the genetic aberrations
that differ between smokers and never-smokers’ lung carcinomas remain to a large extent unclear.

Methods: Unsupervised gene expression analysis of 39 primary lung adenocarcinomas was performed using
[lumina HT-12 microarrays. Results from unsupervised analysis were validated in six external adenocarcinoma data
sets (n=687), and six data sets comprising normal airway epithelial or normal lung tissue specimens (n=467).
Supervised gene expression analysis between smokers and never-smokers were performed in seven
adenocarcinoma data sets, and results validated in the six normal data sets.

Results: Initial unsupervised analysis of 39 adenocarcinomas identified two subgroups of which one harbored all
never-smokers. A generated gene expression signature could subsequently identify never-smokers with 79-100%
sensitivity in external adenocarcinoma data sets and with 76-88% sensitivity in the normal materials. A notable
fraction of current/former smokers were grouped with never-smokers. Intriguingly, supervised analysis of never-smokers
versus smokers in seven adenocarcinoma data sets generated similar results. Overlap in classification between the two
approaches was high, indicating that both approaches identify a common set of samples from current/former smokers as
potential never-smokers. The gene signature from unsupervised analysis included several genes implicated in lung
tumorigenesis, immune-response associated pathways, genes previously associated with smoking, as well as marker
genes for alveolar type Il pneumocytes, while the best classifier from supervised analysis comprised genes strongly
associated with proliferation, but also genes previously associated with smoking.

Conclusions: Based on gene expression profiling, we demonstrate that never-smokers can be identified with high
sensitivity in both tumor material and normal airway epithelial specimens. Our results indicate that tumors arising in
never-smokers, together with a subset of tumors from smokers, represent a distinct entity of lung adenocarcinomas.
Taken together, these analyses provide further insight into the transcriptional patterns occurring in lung adenocarcinoma
stratified by smoking history.
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Background

Due to high incidence and poor survival, lung cancer is
the worldwide leading cause of death from cancer. Small
cell lung cancer accounts for about 15% of all lung can-
cer diagnoses whereas non-small cell lung cancer
constitutes the majority of cases, primarily including
adenocarcinoma (AC) and squamous cell carcinoma. Al-
though the use of cigarettes is the major pathogenic fac-
tor, not all cases of lung cancer can be attributable to
smoking [1]. Lung cancer in never-smokers has been
suggested to represent a different disease entity com-
pared to lung cancer arising in smokers [2, 3]. Specific-
ally, lung cancer in never-smokers has been associated
with female sex, East Asian ethnicity, AC histology, dif-
ferences in mutational pattern of EGFR, KRAS, and
TP53, and response to EGFR inhibitors [2—4]. However,
despite numerous reports of gene expression derived AC
subtypes [5-10], a distinct subtype comprising only or
predominantly of never-smokers has not been identified.
Taken together, this warrants further investigation of the
transcriptional differences between AC arising in never-
smokers and smokers.

In the present study, we aimed to delineate transcrip-
tional differences between never-smokers and current/
former smokers with AC by both unsupervised and
supervised gene expression analysis, combined with con-
ventional molecular assays, measurements of pathway
activation by different gene expression metagenes, and
histopathological data, across several AC data sets.

Methods

Ethics statement

The study was approved by the Regional Ethical Review
Board in Lund, Sweden (Registration no. 2004/762 and
2008/702). Written informed consent was obtained from
all patients diagnosed after 2004, whereas for the retro-
spective part of the material, i.e. patients diagnosed earl-
ier than 2004, study inclusion was approved by the
Regional Ethical Review Board in Lund, Sweden, if
patients (or their family members/survivors) not stated
otherwise when they were informed about the study in
2006.

Patient material

39 AC were obtained from patients selected for surgery
of early stage, primary lung cancer between 1989-2007
at the Skane University Hospital, Sweden. Smoking his-
tory was obtained from patient charts and included 13
current smokers, 14 former smokers, and 10 never-
smokers. Among the former smokers four patients quit
smoking less than one year before surgery. None of the
patients had received neoadjuvant treatment prior to
surgery. Within an hour after lobectomy/pulmectomy, a
biopsy from a macroscopically representative area of the
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tumor was selected by a lung cancer pathologist (most
often LJ) and freshly frozen in -80 °C. DNA and RNA
were subsequently extracted from the freshly frozen spe-
cimens, according to published protocols [11]. Tumor
histology of all original tumor blocks was confirmed by
a lung cancer pathologist (LJ). With the exception of
one node positive (N1) and one with non-evaluable N-
status, all cases were T1-4NOMO. Clinical and histo-
pathological data are summarized in Table 1.

External lung AC expression data sets

The DCC [12] (n=444, Affymetrix U133A), GSE10072
[13] (n=58, Affymetrix U133A), GSE12667 [14]
(n=75, Affymetrix U133 2 plus), Beer et al. [7] (n=286,
Affymetrix HU6800), GSE32863 (n=58, Illumina WG6
version 3), and GSE11969 [9] (n=158 including 90 AC,
Agilent GPL7015) gene expression data sets were used for
supervised analysis and to validate the gene signature
derived from unsupervised analysis. The GSE7895 [15]
(n=104, Affymetrix U133A), GSE19027 [16] (n =52, Affy-
metrix U133A), GSE19667 [17] (n=121, Affymetrix U133
2 plus), GSE11952 [18] (n=83, Affymetrix U133 2 plus),
GSE32863 (n=58, Illumina WG6 version 3), and
GSE10072 (n=49, Affymetrix U133A) data sets were used
to investigate the gene signature from unsupervised analysis
in histologically normal bronchial airway epithelial cells or
normal adjacent lung tissue (GSE32863 and GSE10072).
Only probe sets present on the U133A chip were used for
U133 2 plus arrays in all analyses. Affymetrix data sets were
MASS5 normalized and updated for probe annotations as
described [19] and individually mean-centered. Normalized
expression data for GSE11969 were converted to log2 scale
and mean-centered using all 158 samples from GEO. Nor-
malized expression data for GSE32863 was obtained from
GEO and were mean-centered using either all AC samples,
or all normal samples respectively. Only samples in external
data sets with smoking annotations were used in compari-
sons. Clinical and histopathological data for cases in exter-
nal data sets are summarized in Table 1. Never-smoking
patient history was inferred if a specific annotation existed,
and/or if pack-years were equal to zero (Beer et al. and
GSE11969). Pack-year data for smokers were available for
GSE11969, Beer et al. GSE32863, GSE19027, GSE7895,
GSE19667 and GSE11952.

Unsupervised gene expression analysis

Unsupervised gene expression analysis was performed on a
set of 39 AC analyzed by Illumina Human HT-12 V3
microarrays (Illumina, San Diego, Ca). Total RNA was la-
beled in a 96-well format using the Total Prep-96 RNA
amplification kit, hybridized and scanned according to
manufacturer’s instructions. Seventy-two lung carcinomas
of various histologies were profiled similarly and quantile
normalized gene expression data were extracted for all 39



Table 1 Baseline data for used AC cohorts

lllumina DCC GSE10072 GSE12667 Beer et al. GSE32863 GSE11969
Data set type Original cohort External External External External External External
Microarray platform [llumina HT12 Affymetrix U133A Affymetrix U133A Affymetrix U133 2plus Affymetrix HU6800 lllumina WG6 Agilent
Number of AC cases* 39x*x 349 58 51 81 58 90
Stage IA/IB/IIA/IIB/IIIA 10/18/4/3/2 84/133/16/64/45 5/17/3/18/9 2/9/0/2/2 NA 16/18/9/2/12 28/24/4/9/20
Median age (years) 69 (36-83) 65 (35-87) 67.5 (45-81) NA 64 (41-85) 70 (39-86) 62 (32-84)
Female/Male 21/18 187/162 23/35 24/27 47/34 45/13 43/47
Never-smokers/Smokers 10/27 49/300 16/42 8/43 9/72 29/29 45/45
Never/Current/Former smokers 10/13/14 49/32/268 16/24/18 8/18/25 9/NA/NA 29/29/0 45/NA/NA
Percentage never-smokers 27% 14% 28% 16% 11% 50% 50%
Never-smokers (Female/Male) 6/4 40/9 13/3 6/2 9/0 23/6 35/10
EGFR mutation/wt 4/35 NA NA NA NA NA 32/58
KRAS mutation/wt 12/27 NA NA NA 36/44 NA 10/80
P53 +/wt NA NA NA NA 16/64 NA 29/61
Mean follow-up OS (years)** 6.2 (0-15.5) 43 (0-17) NA NA 3(0.1-9.2) NA 55 (05-9)

* Number of cases with smoking history.

** OS: Overall survival.

***: Two cases are not annotated for smoking.
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AC cases from this cohort. Gene expression data for the
72 cases is available through Gene Expression Omnibus
[20] (GEO) as series GSE29016. Normalized gene expres-
sion data for the 39 AC cases were subsequently mean-
centered across tumors for each probe. Probes with stand-
ard deviation >1 of expression (log2ratio) across samples
were used in unsupervised analyses. Hierarchical cluster-
ing was performed in MeV [21] using Pearson correlation
and complete linkage. Significance Analysis of Microarrays
(SAM) analysis [22], performed in MeV, was used to iden-
tify genes discriminating between groups identified from
unsupervised analysis. A centroid-based gene expression
signature was constructed based on discriminating genes
from SAM analysis between the two clusters identified by
unsupervised analysis of AC cases. Centroid values for
each gene correspond to the average expression of the
gene across samples in each group. Illumina probes in the
gene expression signature were merged on gene identifier
prior to validation in external data sets. When multiple
Agilent or Affymetrix probe sets from external data sets
matched a gene in the gene signature, the probe set with
the highest log2ratio standard deviation across samples
was selected to represent the gene. Classification of sam-
ples was performed by calculating Pearson correlations
between samples and centroids, assigning samples to the
gene expression centroid with the highest correlation. The
latter implies that there are no unclassified samples.

Supervised gene expression analysis based on smoking
history

Supervised analyses between never-smokers and smo-
kers (current or former) were performed for the original
[lumina cohort and the DCC, GSE11969, GSE10072,
GSE12667, Beer et al., and GSE32863 data sets. For each
data set probes/probe sets with log2ratio standard devi-
ation >1 across samples were identified and used in SAM
analysis performed in MeV of annotated never-smokers
versus smokers. Probes with false discovery rate <5%
from SAM analysis were used to create a never-smoker
and a smoker gene expression centroid. Due to the fixed
false discovery threshold centroid probe numbers differed
between data sets. To ensure that sufficient number of
up-regulated/down-regulated probes were present in
the centroids for the correlation analyses, centroids
were checked for number of up- or down-regulated
genes. If a centroid contained < 20 probes with log2 ratio
fold change <0, or >0, respectively, then probes with
higher false discovery rate were added to the centroids (up
to 20 probes in either direction). Centroids for a data set
were subsequently used to classify all seven data sets into
either smokers or never-smokers. Probes/probe sets in
gene expression signatures were merged on gene identifier
prior to validation in other data sets. When multiple Agi-
lent, Affymetrix or Illumina probe sets matched a gene in
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a gene signature, the probe set with the highest log2ratio
standard deviation across samples was selected to repre-
sent the gene. Classification of samples was performed by
calculating Pearson correlations between samples and
centroids, assigning samples to the gene expression cen-
troid with the highest correlation. The latter implies that
there are no unclassified samples. To investigate the effect
of different classification thresholds, we also applied fixed
Pearson correlation cut-offs for the DCC-derived centroid
classifier, ranging from 0 (all samples classified) to 0.4.
This introduced unclassified samples with increasing cut-
offs.

Gene expression metagenes for measuring activation of
different pathways

A gene expression metagene for proliferation was cre-
ated by taking the average log2ratio of genes in the
CIN70 signature [23]. Gene expression metagenes for 27
cellular processes originally reported by Bryant et al. [5],
referred to as pathways hereon, were computed as
described [5]. For external Affymetrix data sets the path-
way probe set annotations from Bryant et al. [5] were
used to compute mean pathway expression, otherwise
matching was made based on gene symbol.

Functional pathway analysis

Functional analysis was performed using LitVAn [24]
and the Ingenuity Pathway Analysis (IPA) software
(Ingenuity Systems Inc, Redwood City, CA). For IPA,
a p-value < 0.05 for a canonical pathway was consid-
ered significant.

Immunohistochemistry

Immunohistochemical (IHC) staining was performed on
3 pm sections after deparaffinization and rehydration.
Heat induced antigen retrieval was performed in low pH
buffer (PTEN, Dako S1699), high pH buffer (pAKT,
Dako S2367) or TE buffer (CD117/cKIT). Antibodies
were obtained from either Cell Signaling Technology
(PTEN; 1:100 dilution) or Dako (pAKT; 1:15 dilution,
CD117/cKIT; 1:500 dilution). Stainings were visualized
using Envision™ (pAKT, CD117/cKIT) or LSAB™ (PTEN)
(Dako). EGFR were stained using the mouse monoclonal
anti-human EGFR clone 2- antibody and the EGFR
pharmDX kit (Dako). After IHC staining, sections
were counterstained with hematoxylin, dehydrated and
mounted.

Mutation analysis

KRAS mutations were investigated using the TheraSc-
reen K-ras mutation kit (Qiagen). The assay was per-
formed according to the manufacturers’ instructions on
a Rotor Gene 3000 instrument (Corbett Research).
Mutations of exon 18 through 21 of the EGFR gene and
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of exons 9 and 20 of the PIK3CA gene were analyzed by
direct DNA sequencing using the BigDye Terminator Cycle
Sequencing Kit v1.1 (Applied Biosystems). Sequencing pro-
ducts were separated by capillary electrophoresis in an ABI
3130x] Genetic Analyzer (Applied Biosystems) and the se-
quence curves were analyzed using the 3100 data collection
software (Gene Code Corporation). All sequence alterations
were confirmed after a repeated extraction of DNA.

Quantitative real time-PCR

Quantitative real time-PCR was performed using Rotor
Gene 3000 (Corbett Research) and the binding dye
iTaqTM SYBR® Green Supermix (BIO-RAD). To deter-
mine the copy number of the EGFR gene we used the
genes for albumine and glucokinase as controls. The
ratios were compared to similar ratios of control DNA.
A standard curve for each run was constructed from serial
dilutions. The CT-threshold was set to 0.2. Amplification
mixes (20 puL) contained 10 ng sample DNA, 10pL binding
dye, 1uL primer and dH2O. Thermal cycling conditions
comprised 10 min at 95 °C and 45 cycles at 95 °C for 15's,
55 °C at 30s and 72 °C at 30s. All the samples were ana-
lyzed in triplicate and the serial dilutions were performed
in duplicates. Relative gene copy numbers were calculated
using the Pfaffl method representing average values of
EGFR gene copy numbers in relation to albumin and glu-
cokinase. Ratio >1.5 signified amplification.

Results

Unsupervised gene expression analysis identifies
subgroups of lung adenocarcinoma associated with
smoking history

To investigate whether AC arising in never-smokers dis-
play marked transcriptional differences compared to AC
arising in smokers, we first performed unsupervised ana-
lysis of 39 well-characterized AC with a comparatively
high proportion of never-smokers (Table 1). Intriguingly,
this analysis identified two main subgroups, referred to
as AC1 and AC2 hereon, of which one (AC1) harbored
all never-smokers (n=10) together with 56% of smoker
cases (p=0.02, Fisher’s exact test) (Figure 1). Moreover,
never-smokers within AC1 did not form an apparently
distinct subgroup compared to current or former smo-
kers in the same cluster (Figure 1). Since, stratification
of smokers into current and former revealed no signifi-
cant differences between AC1 and AC2, with 46% of all
current smokers and 64% of all former smokers being
classified as AC1 (p=0.45, Fisher’s exact test) (Figure 1),
we refer to current/former smokers as smokers hereon if
not stated otherwise. In addition, of the four former smo-
kers that quit smoking <1 year before surgery, 50% were
found in AC1 and 50% in AC2. To further characterize
AC1 and AC2 we used available clinical and molecular
data for the 39 AC cases. Two main differences between
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the two subgroups were observed: 1) a strong association
of AC2 with positive cKIT IHC staining (p = 0.003, Fisher’s
exact test) and KIT mRNA overexpression (p < 0.00001,
Wilcoxon’s test), and 2) association of AC1 with an
increased EGFR activity compared to AC2. The latter was
supported by: 1) three of four EGFR mutations and the
two EGFR amplifications were found in AC1 (Figure 1), 2)
elevated mRNA expression level of an EGFR metagene [5]
in AC1 cases compared to AC2 (p=0.01, Wilcoxon’s
test), and 3) a trend for association of positive EGFR
IHC staining with AC1 (p=0.17, Fisher’s exact test).
Notably, expression levels of the KIT gene and the
EGFR metagene differed between: a) smokers in AC1
compared to AC2 (p=0.0002 and 0.04, respectively
Wilcoxon’s test), b) between AC1 never-smokers and AC2
smokers (EGFR-metagene trend-like) (p <0.00001 and
0.12, respectively Wilcoxon’s test), but not between smo-
kers vs never-smokers within AC1 (p > 0.05, Wilcoxon’s
test). In contrast, the two AC subgroups were not asso-
ciated with differences in KRAS mutation status, PTEN
IHC status, pAKT IHC status, gender or overall survival
(OS) (p>0.05, Fisher’s exact test, Wilcoxon’s test, log-
rank test). The CIN70 metagene expression, used as a
proliferation estimate, did not differ between AC1
and AC2 in general, or between smokers within sub-
groups (p >0.05, Wilcoxon’s test). However, within
the AC1 group, as well as in a general comparison,
never-smokers showed lower expression of the CIN70
metagene compared to smokers (p=0.01,and p=0.007
respectively, Wilcoxon’s test).

Validation of the association of adenocarcinoma
subgroups with smoking history in external AC data sets
To validate the association between the AC1 gene expres-
sion pattern and never-smoking status we first delineated
transcriptional differences between the original AC clus-
ters by SAM analysis. This analysis identified 176 differen-
tially expressed probes, representing 140 genes, at a false
discovery rate of <3.5% between the two subgroups. Next,
we constructed a centroid-based gene expression signa-
ture using significant probes from the SAM analysis for
validation in external gene expression studies (in Add-
itional file 1: Table S1). We applied this signature to the
DCC, GSE10072, Beer et al, GSE11969, GSE12667, and
GSE32863 gene expression data sets comprising a total of
811 AC cases, of which 687 had available smoking status.
These 687 cases represent tumors of various stage, differ-
entiation, patient ethnicity, sex, and age, and, notably, have
been analyzed by different microarray platforms. Convin-
cingly, the gene expression signature showed high sensi-
tivity (79-100%) in classifying cases annotated as never-
smokers as AC1 in all data sets (Table 2). Also, the pro-
portions of smokers classified as AC1 in the AC data sets
were similar to our original data (Table 2). Stratification of
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Figure 1 Molecular profiling identifies two subgroups of lung adenocarcinoma with differences in smoker status. Unsupervised analysis
of 39 AC cases identifies two AC groups, where one (AC1) comprises all never-smoker cases. Hierarchical clustering was performed on 706
lllumina probes with log2ratio SD >1 across the 39 cases using Pearson correlation and complete linkage. The color-coded beadchip annotation
bar indicates which of the seven beadchips that a specific sample was hybridized to. Approximately Unbiased (AU) p-values (%) provided by
pvclust [35] analysis using 1000 bootstraps are indicated for certain branches of the hierarchical tree, where values close to 100% indicate that

clusters are highly supported by data.

AC smokers into former or current smokers for the DCC,
GSE10072, GSE32863 and GSE12667 data sets showed
that 55-67% of former smokers and 31-46% of current
smokers were classified as AC1, again representing similar
proportions as in our original data set (Table 2). In
addition, analysis of pack-year data from Beer et al,
GSE32863, and GSE11969 revealed no significant differ-
ence between smokers in AC1 compared to AC2 (p > 0.05
all comparisons, Student’s ¢-test).

Comparison of adenocarcinoma subgroups with results
from supervised analysis based on smoking history

Given the high sensitivity but low specificity of the AC1/
AC2 classification in identifying never-smokers we sought

to further investigate transcriptional differences between
never-smokers and smokers. Using supervised gene expres-
sion analysis in the original 39 AC cohort and six validation
data sets we generated never-smoker and smoker gene ex-
pression centroids for each data set (in Additional file 1:
Table S1). Centroids for a data set were subsequently used
to classify all other data sets into either smokers or never-
smokers (see Methods). The centroid classifiers derived
from the DCC and GSE10072 data sets showed the best
performance in correctly identifying never-smokers across
different data sets (Table 3), with performance similar to
validation results from the unsupervised analysis (Tables 2
and 3). Similar to the AC1 and AC2 classification a high
percentage of smokers were classified as never-smokers by

Table 2 Association of AC1/AC2 subgroups in external AC data sets with smoking history

Data set Nbr NS/smokers* Nbr NS/CS/FS* Nbr NS classified % smokers classified Fisher’s exact test
as AC1 as AC1 (AIll/CS/FS) P-value **
DCC 49/300 49/32/268 45 (92%) 53/31/55 4x107/001
GSE10072 16/42 16/24/18 15 (94%) 55/46/67 0.005/0.22
GSE12667 8/43 8/18/25 8 (100%) 49/33/60 0.007/0.12
Beer et al. 9/72 9/NA/NA 8 (89%) 53/NA/NA 0.07/NA
GSE11969 45/45 45/NA/NA 37 (82%) 58/NA/NA 0.02/NA
GSE32863 29/29 29/29/0 23 (79%) 38/38/NA 0.003/NA

* NS: never-smoker, CS: current smoker, FS: former smoker.

** Calculated from a 2x2 contingency table summarizing number of never-smokers and smokers for each AC subgroup (first p-value), or number of CS and FS for

each AC subgroup (second p-value).
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all centroid classifiers across data sets (14—60%) (in Add-
itional file 2: Table S2). Moreover, stratification of smokers
into current and former smokers revealed that notable frac-
tions of both current (4-52%) and former smokers (28—
61%) were classified as never-smokers by the centroid clas-
sifiers across data sets (in Additional file 2: Table S2). Not-
ably, the classifier from GSE32863 generated from
comparison of 29 never-smokers and 29 current-smokers
did not perform better than classifiers from the DCC and
GSE10072 data sets constructed from comparison of
never-smokers versus a mix of current and former smokers
(Table 3). To further explore this finding we also con-
structed a classifier from SAM analysis of current versus
never-smokers in the DCC set. However, this classifier did
not show improved sensitivity in identifying never-smokers
across the seven data sets compared to the original DCC-
classifier (data not shown), in line with findings by Landi
et al. [13] that lung cancer gene expression is to a large ex-
tent similar in current and former smokers.

To investigate whether classification sensitivity and
specificity could be improved we applied a series of
more stringent classification thresholds for the DCC-
derived classifier specifically (see Methods). Notably,
increased classification stringency improved sensitivity
only slightly, specificity less, while introducing a large
number of unclassified samples across the seven tested
data sets for this classifier (in Additional file 3: Figure S1).
Notably, in the DCC, GSE10072, GSE12667, GSE11969,
Beer et al., GSE32863, and original Illumina cohort 87%,
92%, 71%, 82%, 80%, 78% and 95%, respectively, of samples
classified as never-smokers by the DCC classifier were
also classified as AC1. Moreover, analysis of pack-year
data from Beer et al, GSE32863, and GSE11969
revealed no significant difference between smokers
classified differently by the DCC-classifier (p > 0.05 all
comparisons, Student’s -test). Taken together, these
comparisons indicate that the unsupervised and super-
vised approaches both identify a core set of samples as “po-
tential never-smokers” that comprises both true never-
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smokers and smokers, with the latter including both
current and former smokers.

Functional analysis of gene signatures from unsupervised
and supervised analysis
Functional analyses of the AC1/AC2 and DCC-derived
gene signatures were performed using LitVAn [24] and
IPA. For the AC1/AC2 signature LitVAn analysis revealed
that genes with lower expression in AC1 showed enrich-
ment for only a few gene ontology terms, e.g., fibrinogen.
In contrast, LitVAn, and IPA both identified a strong asso-
ciation of genes overexpressed in AC1 with different im-
munological functions (in Additional file 4: Table S3).
LitVAn analyses of the centroid classifiers from super-
vised analysis showed that terms associated with prolifera-
tion were the main functional associations of classifiers
derived from analysis of the DCC (in Additional file 4:
Table S3), GSE12667, and GSE10072 data sets. The strong
influence of proliferation was further highlighted by the
marked differences in CIN70 metagene expression be-
tween classification groups for the DCC classifier across
investigated data sets (in Additional file 5: Figure S2). Not-
ably, the AC1/AC2 classification showed a similar CIN70
expression pattern as the DCC classifier across the major-
ity of data sets, with lower expression in the AC1 group
harboring the true never-smokers, despite differences in
functional associations (in Additional file 5: Figure S2).
This similarity in CIN70 expression is likely explained by
the previously described high overlap between the two
classifiers. Moreover, in the GSE11969 data set, represent-
ing the only external data set with EGFR, KRAS, and
TP53 mutation data, both the AC1/AC2 signature
and the DCC derived classifier were strongly asso-
ciated with EGFR mutations (p=0.002 and 0.001 re-
spectively, Fisher’s exact test), but not with KRAS or TP53
mutations. In further support of the latter finding, the
AC1/AC2 signature and the DCC-classifier were also not
associated with p53 status or KRAS mutations in the Beer
et al. data set.

Table 3 Identification of never-smokers based on supervised analysis of never-smokers versus smokers in seven AC

data sets
pcch GSE10072* GSE11969* GSE12667" GSE32863" Beer® llumina®*

DCC centroids 88%** 88% 93% 100% 86% 89% 80%
GSE10072 centroids 90% 10006** 87% 100% 76% 100% 80%
GSE11969 centroids 78% 88% 89%** 100% 59% 89% 80%
GSE12667 centroids 76% 88% 82% 10096** 66% 56% 60%
GSE32863 centroids 78% 81% 93% 88% 97%** 100% 90%
Beer centroids 84% 94% 87% 100% 76% 10096** 70%
llumina centroids * 76% 75% 89% 88% 76% 78% 10096*

A Sensitivity in identifying true never-smokers of a supervised classifier (rows) when applied to a specific data set (columns).

* The original cohort of 39 AC.
** Classifier applied to its own training data.
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Association of tumor derived gene signatures with
smoking history in normal airway epithelial samples and
adjacent lung tissue

To further investigate results from unsupervised and
supervised analysis of tumor cases we applied the
AC1/AC2 gene signature and the DCC classifier to
four data sets comprising 360 gene expression profiles
of histologically normal bronchial airway epithelial
specimens. Convincingly, for both the AC1/AC2 sig-
nature and the DCC classifier similar results were
obtained as for classification of AC data sets, i.e. high sen-
sitivity in identifying never-smokers however with a
notable fraction of smoker cases classified as “poten-
tial never-smokers” (Table 4). Stratification of smokers
into former or current smokers showed that 55-61% of
former smokers and 23-54% of current smokers were
classified as AC1 across the different data sets, while cor-
responding numbers for the DCC-classifier were 45—
75% and 21-40% (Table 4). Analysis of pack-year data
from smokers in GSE19027, GSE7895, GSE19667 and
GSE11952 revealed no significant difference between AC1
smokers compared to AC2 smokers, or for smokers clas-
sified differently by the DCC-classifier (p>0.05 all
comparisons, Student’s ¢-test, in Additional file 6: Figure
S3). For former smokers in GSE7895 with available data
on time since smoking cessation there was no difference
between AC1 and AC2 classified cases, or between DCC-
classification (p=0.46 and p=0.14, respectively, Wilcox-
on’s test). Moreover, there was no difference between clas-
sifications (AC1/AC2, DCC-classifier) regarding whether
smokers in GSE19027 developed cancer or not (p=0.38,
AC1/AC2 and p=0.40 DCC-classifier, Fisher’s exact
test). Overlap between the two classifications were lower
in the normal airway data sets compared to AC data sets,
as 49%, 64%, 55%, and 61% of cases classified as never-
smokers by the DCC derived signature were also classified
as ACl in GSE7895, GSE19027, GSE19667, and
GSE11952 respectively. The higher discrepancy between
classifications was also evident in the expression of the
CIN70 metagene in the four data sets (in Additional file 7:
Figure S4).

Moreover, we also investigated the AC1/AC2 and
DCC classifiers in normal adjacent lung tissue (n=107)
included in two of the AC data sets (GSE32863 and
GSE10072). Notably, results for the AC1/AC2 classifica-
tion and the DCC classifier were in line with the four
normal airway epithelial data sets (Table 4). Again, ana-
lysis of pack-years in GSE32863 revealed no difference
between ACIl-smokers and AC2-smokers, or for the
DCC-classifier (p=0.35 and p=0.08, respectively, Stu-
dent’s t-test, in Additional file 6: Figure S3). Moreover,
overlap between AC1/AC2 and DCC classifications were
similar to the airway data sets as 61% and 69% of cases
classified as never-smokers by the DCC derived
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signature were also classified as AC1 in GSE10072 and
GSE32863 respectively.

Discussion

The genetic basis for initiation and development of lung
carcinoma has a clinical impact through targeted thera-
peutics, diagnostic tools, prognostics, and predictive mar-
kers. Gene expression and genomic profiling have been
used extensively in lung cancer to dissect the diversity of
the disease and to derive prognostic gene signatures [5,6,
8,10,25,26]. Furthermore, such high throughput studies
have also been performed to identify gene signatures asso-
ciated with cigarette smoking in both tumor and bronchial
epithelial tissue [13,15,16]. Indeed, lung cancer in never-
smokers is among the top ten causes of cancer mortality
in the world and successful genome-wide characterization
of lung cancer stratified by patients’ smoking history may
have large future implications for evaluation of lung can-
cer risk in the absence of smoking. However, although
lung cancer in never-smokers has been suggested to rep-
resent a different disease entity compared to cancers aris-
ing in smokers [2,3], numerous reports of gene expression
derived AC subtypes have reported consistent lack of a
never-smokers’ or a never-smoker predominant AC sub-
type [5-10].

In the current study we aimed to delineate transcrip-
tional differences between AC arising in smokers and
never-smokers in seven AC data sets by both unsuper-
vised and supervised gene expression analysis. Notably,
these data sets were analyzed by different microarray
platforms and represent patient materials of different
stage, differentiation, ethnicity, age, and sex. Our initial
unsupervised analysis of a small, but well characterized
AC cohort (n=39) broadly divided cases into two main
subgroups termed AC1 and AC2 (Figure 1). Intriguingly,
AC1 harbored all never-smokers together with more than
half of AC smoker cases, including both current and
former smokers. We next validated the association of the
AC1 group with never-smoking patient status through a
derived gene expression signature in six larger external
AC data sets (Table 2) and, notably, across all validation
sets, confirmed the existence of an AC1 profile displaying
roughly similar proportions of smokers (current/former)
and never-smokers as in the original cohort (Table 2). Im-
portantly, although the gene signature for the ACI1 and
AC2 subgroups was derived from initial analysis of a small
cohort comprising only nine never-smokers, it was suc-
cessfully validated across much larger AC data sets, e.g.,
the DCC (n=349), profiled by different microarray plat-
forms and comprising in total 687 AC tumor cases. More-
over, characteristics of the AC1 and AC2 groups appear
consistent with findings from several studies demonstrat-
ing differences between smokers and never-smokers with
AC. This includes association with female sex in two of
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Table 4 Association of the AC1/AC2 and DCC signature with smoking history in normal airway epithelial samples, and

adjacent lung tissue

Data set Number NS/ Number NS % S/CS/FS P-value AC1/AC2 Number correctly % S/CS/FS classified  P-value DCC
S/CS/FS*  classified as AC1 classified as AC1 classification**  identified NS by as never-smokers by classification**
DCC signature*** DCC signature

GSE19027  8/44/24/20 7 (88%) 55/54/55 0.12 8 (100%) 45/21/75 0.005
GSE7895 21/83/52/31 16 (76%) 37/23/61 0.003 16 (76%) 42/40/45 0.007
GSE19667  48/73/NA/NA 38 (79%) 33/NA/NA 8x 1077 31 (65%) 33/NA/NA 0.0008
GSE11952  38/45/45/0 29 (76%) 29/29/0 2x107° 21 (55%) 38/38/0 0.13
GSE32863"  30/28/28/0 23 (77%) 39/39/0 0.007 24 (80%) 39/39/0 0.003
GSE10072% 15/34/16/18 12 (80%) 44/38/50 0.03 13 (87%) 44/38/50 0.01

* NS: never-smoker, S: smoker, CS: current smoker, FS: former smoker.

** Fisher’s exact P-value calculated from a 2x2 contingency table summarizing number of never-smokers and smokers for each classification group.

*** NS classified as never-smoker by the classifier.
A Adjacent normal lung tissue data set.

the external AC data sets (DCC and GSE10072, data not
shown), successful validation in patient cohorts of differ-
ent ethnicity, higher proliferation in smoking compared to
never-smoking cases within AC1 [13], and association of
AC1 with increased EGFR activity (GSE11969 and our ori-
ginal data). Moreover, in line with subtypes reported by
Takeuchi et al. [9] AC1 cases in GSE11969 were more
often classified as terminal respiratory unit (TRU) -type
AC (p=0.03, Fisher’s exact test) proposed to represent a
subgroup of AC originating from the peripheral airway
epithelium under less influence of smoking and retaining
certain progenitor characteristics [9].

Motivated by the high sensitivity, but lower specificity,
in identification of never-smokers by the AC1/AC2 gene
signature generated from unsupervised analysis, we also
performed supervised analysis between never-smokers
and smokers in seven AC data sets (n=726). For each
data set, we identified differentially expressed genes that
we used to generate a centroid classifier, which we sub-
sequently used to classify all data sets. Interestingly, the
centroid classifiers with the best sensitivity in identifying
never-smokers across the seven AC data sets (i.e. classi-
fiers from the DCC and GSE10072 data sets) showed
similar performance as the corresponding AC1/AC2
classification (Tables 2 and 3). In line with our original
findings from the unsupervised clustering, all centroid
classifiers derived from supervised analysis grouped a
notable fraction of smokers as potential “never-smokers”
, including both current and former smokers (in Add-
itional file 2: Table S2). Moreover, there was a strong over-
lap of samples classified as never-smokers by the DCC-
derived classifier and by the AC1/AC2 classification across
all analyzed tumor data sets. This overlap indicates that
the two approaches identify a core set of samples as po-
tential never-smokers that comprise both true never-
smokers and smokers. Thus, despite differences in the
type of analysis, in size of original data sets generating the
classifiers, and in apparent functional associations of the
two signatures, a consistency regarding classification of

AC stratified by smoking history could indeed be demon-
strated by the two approaches herein. These results could
indicate the existence of a potential molecular subtype of
AC with a presumed non-smoking-associated etiology.
Landi et al. recently proposed a gene expression signature
characteristic of smoking, heavily weighted on cell cycle
genes, that separated both smokers from non-smokers in
lung tumors and early stage tumor tissue from non-tumor
tissue [13]. Interestingly, the DCC-classifier showed con-
siderable overlap with results from Landi et al. [13]. Spe-
cifically, seven out of the 20 up-regulated genes reported
by Landi et al. were present in the DCC-derived classifier,
including nearly all of the genes involved in regulation of
mitotic spindle formation highlighted by Landi et al. as an
important pathway deregulated between AC arising in
smokers and never-smokers. In contrast, none of 20 up-
regulated genes reported by Landi et al. were present in
the AC1/AC2 signature. Moreover, an average metagene
expression value of the 20 up-regulated genes in the Landi
signature showed a Pearson correlation of 0.99 with corre-
sponding CIN70 expression values for cases in the original
[lumina cohort (data not shown). This correlation sug-
gests that the coherent pattern of DCC classification with
CIN70 expression (DCC classified smokers high CIN70,
DCC classified never-smokers low CIN70 expression)
resembles findings by Landi et al. [13]. However, despite
that classification by the supervised DCC classifier to a
large extent appear coherent with expression of prolifera-
tion associated genes (in Additional file 5: Figure S2), spe-
cificity in identifying never-smokers remained low to
medium even when markedly increasing the classification
threshold in the seven AC data sets, (in Additional file 3:
Figure S1).

Interestingly, when the AC1/AC2 and DCC classifiers
were applied to four data sets comprising histologically
normal airway epithelial tissue (n=360 cases), and two
data sets with normal adjacent lung tissue (n=107) sen-
sitivity in detecting never-smokers were high for both
tumor-derived classifiers. However, similar to the tumor
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analysis never-smokers could not be singled out as
unique group (Table 4). Cigarette smoke exposure has
been demonstrated to create a “field of injury” in airway
epithelial cells [27], and genes involved in regulation of
oxidant stress, xenobiotic metabolism, and oncogenesis
have been reported to be induced by smoking, while
genes involved in tumor suppression and inflammation
pathways have been reported to be down regulated [28].
The latter, in combination with findings by Landi et al.
[13] that current smoking altered expression of immune
response associated genes in non-tumor tissue, appears
consistent with the functional association of the AC1/
AC2 signature (in Additional file 4: Table S3). Moreover,
expression of several genes in the ACI/AC2 signature
appear consistent with reports about gene expression
changes in relation to smoking in airway epithelial cells.
E.g, two (CX3CLI and PLA2G10) of the 13 genes
reported to be irreversibly altered by cigarette smoke by
Spira et al. [28] are present in the AC1/AC2 gene signa-
ture. CX3CL1, a well-known chemokine, was found to
be irreversibly downregulated in smokers [28], consistent
with its lower expression in AC2 cases, while PLA2G10
was found irreversibly upregulated in smokers [28], in
line with its elevated expression in AC2 cases. Moreover,
MUCSAC, GPX2, UCHLI, and CABYR have all been
associated with increased expression in smokers com-
pared to never-smokers, in line with their higher expres-
sion in the AC2 centroid compared to the AC1 centroid
(in Additional file 1: Table S1) [28-30]. In addition to
genes associated with smoking the AC1/AC2 classifier
included several genes implicated in lung cancer tumori-
genesis, such as KIT, IDI, MMP7, MYCN, XRN2, and
CYP24A1, as well as type II pneumocyte marker genes
such as NKX2-1 (TTF1/TITFI), LAMP3 (CD208), and
surfactant proteins SFTPB and SFTPC (in Additional file
1: Table S1). Type II pneumocytes have an intriguing
role in lung disease, as anomalies in pulmonary surfac-
tant protein levels have been associated with certain re-
spiratory diseases frequently observed in smokers [31].
Moreover, type II pneumocytes in the alveoli of the lung
have been associated with progenitor-like characteristics
due to their ability to regenerate the alveolar epithelium
after injury and also play an important role in the innate
immune response of the lung through secretion of sur-
factant proteins and different proinflammatory media-
tors [32,33]. Notably, the DCC-derived classifier also
included, besides genes associated with proliferation,
genes reported to be affected by smoking in airway epithe-
lial cells, such as CX3CL1, GPX2, UCHLI, HLF [28],
CYPIBI [28], and S100A8 [34], with expression consistent
with previous reports. In summary, the findings of a con-
siderable number of reported smoking induced genes with
consistent expression in the tumor-derived gene signa-
tures suggest that these signatures are in fact related to
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patient smoking history. However, whether the relation-
ship is due to expression differences in the tumor cells or
the surrounding stromal tissue remains to be determined,
as delineation of the expression from non-microdissected
heterogeneous tissue is highly problematic.

Taken together, results from the current study in com-
bination with previous reports on different AC subtypes
[6, 7, 9, 10] indicate that never-smokers can not be com-
pletely separated from smokers based on transcriptional
differences, and consequently, that AC arising in never-
smokers do not appear to represent a distinct entity
based on transcriptional patterns. Instead, this may suggest
a shared biology between AC arising in never-smokers and
in a subgroup of smokers, the latter thus perhaps represent-
ing tumors that arised in smokers “by chance”, i.e., possibly
independent, or less dependent, of a positive smoking his-
tory, which warrants further investigation.

Conclusions

In the current study we have sought to identify tran-
scriptional patterns specific for never-smokers with AC
compared to tumors arising in smokers. Both unsuper-
vised and supervised gene expression analysis identified
simple classifiers (harboring both smoking induced
genes and genes implicated in lung tumorigenesis) with
high sensitivity in identifying never-smokers across mul-
tiple AC and normal tissue data sets. Furthermore, and
consistent between original and validation data sets, a
subset of tumors arising in smokers (both current and
ex) was classified together with tumors arising in never-
smokers, thus together forming a subgroup of AC with
shared transcriptional patterns and, as discussed above,
also other strong similarities. Taken together, these ana-
lyses provide further insight into the heterogeneous
transcriptional patterns occurring in AC stratified by
smoking history.

Additional files

Additional file 1: Table S1. AC1/AC2 and supervised gene expression
centroids. An Excel file, Table S1, containing gene expression centroids
for the AC1/AC2 and seven gene signatures derived from supervised
analysis.

Additional file 2: Table S2. Fraction of smokers, subdivided also into
current and former status, classified as never-smokers by classifiers
derived from supervised analysis of seven AC data sets. An Excel file,
Table S2, describing the fraction of true smokers overall, current smokers,
and former smokers classified as never-smokers by classifiers derived
from supervised analysis of seven AC data sets.

Additional file 3: Figure S1. Sensitivity and specificity of the DCC
derived classifier for identification of never-smokers across different
correlation classification cut-offs. A pdf file, Figure S1, showing the
sensitivity and specificity of the DCC derived classifier for identification of
never-smokers across different correlation classification cut-offs in seven
data sets. Sensitivity and specificity for different Pearson correlation
classification cut-offs are shown in the left subpanels, while the
corresponding number of DCC-classified never-smokers and smokers
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are shown in the right panel for respective data set. A) DCC-classifier
applied to the DCC data set. B) DCC-classifier applied to GSE10072. C)
DCC-classifier applied to GSE12667. D) DCC-classifier applied to
GSE11969. E) DCC-classifier applied to Beer et al. F) DCC-classifier applied
to GSE32863. G) DCC-classifier applied to the original 39
adenocarcinomas.

Additional file 4: Table S3. Functional analysis of AC1/AC2 gene
signature derived from unsupervised analysis, and the classifier derived
from supervised analysis of the DCC data set using LitVAn and IPA. An
Excel file, Table S3, showing results from Functional analysis of AC1/AC2
gene signature derived from unsupervised analysis, and the classifier
derived from supervised analysis of the DCC data set using LitVAn and
IPA.

Additional file 5: Figure S2 Expression of the CIN70 metagene across
seven AC data sets classified by both unsupervised and supervised
analysis. A pdf file, Figure S2, showing the log2ratio expression of the
CIN70 metagene across seven AC data sets classified by both
unsupervised and supervised analysis. CIN70 metagene expression
displayed as box plots for true never-smokers and smokers (white), true
current, former and never-smokers (gray), AC1 and AC2 classified samples
(blue), and DCC centroid classified samples (red) in A) the DCC data set,
B) GSE10072, C) GSE11969, D) GSE12667, E) Beer et al, F) GSE32863, and
G) the original lllumina cohort of 39 AC. P-values were calculated using
Wilcoxon’s test (two groups) or Kruskal-Wallis test (three groups).

Additional file 6: Figure S3. Pack-year analysis of five data sets
comprising normal airway epithelial cells or normal adjacent lung tissue
classified by both unsupervised and supervised analysis. A pdf file, Figure
S3, showing pack-year distribution for classification of five data sets using
classifiers from unsupervised and supervised analyses. Pack-years for AC1/
AC2 classification (A) or DCC-classification (B) for GSE7895, GSE11952,
GSE19027, GSE19667 and GSE32863 respectively.

P-values calculated using either Student's t-test or Wilcoxon's test.

Additional file 7: Figure S4. Expression of the CIN70 metagene across
six data sets comprising normal airway epithelial cells or normal adjacent
lung tissue classified by both unsupervised and supervised analysis. A pdf
file, Figure S4, showing the expression of the CIN70 metagene across six
data sets comprising normal airway epithelial cells or normal adjacent
lung tissue classified by both unsupervised and supervised analysis. CIN70
metagene log2ratio expression are displayed as box plots for true never-
smokers and smokers (white), true current, former and never-smokers
(gray), AC1 and AC2 classified samples (blue), and DCC centroid classified
samples (red) in A) GSE7895, B) GSE19027, C) GSE19667, D) GSE11952, E)
normal samples in GSE10072, and F) normal samples in GSE32863. P-
values were calculated using Wilcoxon’s test (two groups) or Kruskal-
Wallis test (three groups).
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