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Polymorphism in glutamate cysteine ligase
catalytic subunit (GCLC) is associated with
sulfamethoxazole-induced hypersensitivity in
HIV/AIDS patients
Danxin Wang1*, Amanda Curtis1, Audrey C Papp1, Susan L Koletar2 and Michael F Para2
Abstract

Background: Sulfamethoxazole (SMX) is a commonly used antibiotic for prevention of infectious diseases
associated with HIV/AIDS and immune-compromised states. SMX-induced hypersensitivity is an idiosyncratic
cutaneous drug reaction with genetic components. Here, we tested association of candidate genes involved
in SMX bioactivation and antioxidant defense with SMX-induced hypersensitivity.

Results: Seventy seven single nucleotide polymorphisms (SNPs) from 14 candidate genes were genotyped and
assessed for association with SMX-induced hypersensitivity, in a cohort of 171 HIV/AIDS patients. SNP rs761142
T>G, in glutamate cysteine ligase catalytic subunit (GCLC), was significantly associated with SMX-induced
hypersensitivity, with an adjusted p value of 0.045. This result was replicated in a second cohort of 249 patients
(p = 0.025). In the combined cohort, heterozygous and homozygous carriers of the minor G allele were at
increased risk of developing hypersensitivity (GT vs TT, odds ratio = 2.2, 95% CL 1.4-3.7, p = 0.0014; GG vs TT, odds
ratio = 3.3, 95% CL 1.6 – 6.8, p = 0.0010). Each minor allele copy increased risk of developing hypersensitivity 1.9 fold
(95% CL 1.4 – 2.6, p = 0.00012). Moreover, in 91 human livers and 84 B-lymphocytes samples, SNP rs761142
homozygous G allele carriers expressed significantly less GCLC mRNA than homozygous TT carriers (p< 0.05).

Conclusions: rs761142 in GCLC was found to be associated with reduced GCLC mRNA expression and with
SMX-induced hypersensitivity in HIV/AIDS patients. Catalyzing a critical step in glutathione biosynthesis, GCLC may
play a broad role in idiosyncratic drug reactions.

Keywords: Idiosyncratic drug reaction, Sulfamethoxazole, Hypersensitivity, Glutamate cysteine ligase catalytic
subunit (GCLC), Association, HIV/AIDS
Background
Sulfamethoxazole (trimethoprim-sulfamethoxazole, TMP-
SMX, cotrimoxazole) is a commonly used antibiotic
against opportunistic infections associated with HIV/
AIDS or other immuno-compromised states, including
organ transplantation and cancer chemotherapy [1,2].
SMX-induced hypersensitivity, characterized by fever,
skin rash, lymphadenopathy, and multiple organ toxicity
[2], is considered an idiosyncratic adverse drug reaction
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with uncertain mechanisms. Such idiosyncratic adverse
drug reactions common to numerous drugs (e.g., isonia-
zid, carbamazepine, phenytoin, abacavir, etc) are consid-
ered to be multifactorial and multigenic. Individual
susceptibility appears to be determined by both genetic
predisposition and environmental factors [3-5]. At least
three distinct processes contribute: (1) production of
reactive metabolites via drug metabolism/bioactivation;
(2) reactive oxygen species (ROS) processing, and (3) bind-
ing of reactive metabolites to proteins/DNA, resulting
in inflammation, cell damage, neo-antigen formation, and
immune response. Polymorphisms in genes involved in all
these processes may modify risk of developing idiosyncratic
drug reactions.
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iginal work is properly cited.

mailto:wang.808@osu.edu
http://creativecommons.org/licenses/by/2.0


Wang et al. BMC Medical Genomics 2012, 5:32 Page 2 of 9
http://www.biomedcentral.com/1755-8794/5/32
SMX is predominantly inactivated through N-acetylation
by two polymorphic enzymes, N-acetyltransferase 1
(NAT1) and NAT2 [6,7](Figure 1). Alternatively, SMX
can be activated by cytochrome P450s (mainly CYP2C9)
in the liver, or by peroxidases (MPO) [8], flavin-
containing monooxygenases (FMOs) [9], and prostaglandin-
endoperoxide synthase (PTGSs) [10] in liver or target
tissues, producing toxic N4-hydroxylamine-SMX (HA-
SMX). HA-SMX can auto-oxidize via nitroxide-SMX to
nitroso-SMX [11]. This highly reactive product [6,12]
binds to cellular proteins, forming neo-antigens, and trig-
gers human major histocompatibility complex (HMC)
restricted T-cell mediated immune response [13]. Nitroso-
SMX can be reduced by glutathione (GSH) into HA-SMX,
then HA-SMX is reduced back to SMX by NADH-
cytochrome b5/cytochrome b5 reductase. Therefore, GSH
is the main cellular antioxidant, scavenging reactive meta-
bolites and preventing tissue damage (Figure 1).
Genetic association studies, including genome wide

association studies, have identified genetic polymorph-
isms in HLA loci as strong risk factors for idiosyncratic
drug reactions induced by abacavir [14], nevirapine [15],
carbamazepine [16], allopurinol [17], lumiracoxib [18],
flucloxacillin[19] and ximelagatran [20]. However, the
involvement of HLA variants in SMX-induced hypersen-
sitivity is unclear. Previously serological typing indicated
an association between HLA-A30 B13 CW6 haplotype
and SMX-induced skin toxicity [21]. Recently, one study
has demonstrated weak association between HLA B*38
and SMX induced Stevens-Johnson syndrome [22], while
another study failed to find association between SMX
hypersensitivity and HLA-DRB1 (MHC class II) [23].
Although HLA polymorphisms appear to be the most
penetrant risk factors for idiosyncratic adverse drug
reactions in general, other genetic factors are likely to
contribute as well, because 2% to 10% of HLA risk allele
carriers do not develop idiosyncratic adverse drug reac-
tions [19,20,24].
NAT2 slow acetylator genotype/phenotype was sug-

gested to predispose to SMX hypersensitivity in non-
HIV/AIDS individuals [25,26], while no such associations
Figure 1 Pathways of SMX metabolism, bio-activation and detoxificat
1 and 2; 2C9, cytochrome p450 2C9; MPO, myeloperoxidase; PTGS, prostag
Cyb5R, NADH-cytochrome b5/cytochrome b5 reductase complex; GSH, glu
regulatory subunits GCLC and GCLM; GSS, glutathione synthetase.
were observed in HIV/AIDS patients in several studies
[27-29], possibly owing to reduced activities of liver drug
metabolizing enzymes during HIV infection. Similarly,
loss of function alleles *2 and *3 of CYP2C9 decrease
bio-activation of SMX, potentially protecting against
adverse effects [30]. However, these CYP2C9 alleles were
not significantly associated with SMX hypersensitivity
in HIV/AIDS patients [28]. Recently, we reported the
gain of function alleles *10 and *11 in NAT1 to be pro-
tective against SMX-induced hypersensitivity in HIV/
AIDS patients, but this was only observed in patients
who are slow acetylators for NAT2 [31], a rare example
of a gene-gene-drug interaction.
We hypothesized that additional polymorphisms in

genes involved in SMX bio-activation, reactive metabol-
ite detoxification and GSH homeostasis could modify
risk of SMX-induced hypersensitivity. To test this hypo-
thesis, we genotyped 77 tagging SNPs selected from 14
candidate genes in a cohort of HIV/AIDS patients who
were taking cotrimoxazole to prevent opportunistic
infections. Our results indicate that a polymorphism in
glutamate cysteine ligase catalytic subunit (GCLC), the
rate limiting enzyme in GSH bio-synthesis, is signifi-
cantly associated with SMX-induced hypersensitivity.

Results
Our study cohort comprises of a total of 420 HIV/AIDS
patients who used cotrimoxazole (TMP-SMX) to prevent
opportunistic infections, divided into two sub-cohorts
according to time of enrollment (Table 1). Differences in
age and distribution of sex between patients with hyper-
sensitivity and patients without hypersensitivity were
insignificant in cohort1 and the combined cohort, while
small differences are present in cohort 2. Over 70% of
patients were Caucasians, consistent with the HIV/AIDS
population demographics in central Ohio in 1990s.
Seventy seven SNPs were successfully genotyped in

samples from cohort 1 (Table 2) with call rates over
90%. The percentage of concordance is 98% for 10 dupli-
cated samples. All SNPs followed the distribution of
Hardy Weinberg’s Equilibrium with a p value >0.05.
ion, and pathway of GSH biosynthesis. NAT1/2, N-acetyltransferase
landin-endoperoxide synthase; FMO, flavin containing monooxygenase;
tathione; GCL, glutamate-cystein ligase, including catalytic and



Table 1 Patient demographics

Characteristics All patients Patients with
hypersensitivity

Patients without
hypersensitivity

P value

Cohort 1

Number (n) 171 39 132

Sex, % male 89% 95% 89% 0.12

Age (years) 38 ± 9 38 ± 11 37 ± 8 0.55

Race, % Caucasian 74% 77% 73 0.68

Cohort 2

Number (n) 249 63 186

Sex, % male 89% 81% 92% 0.016

Age (years) 36 ± 8 34 ± 7 37± 8 0.014

Race, % Caucasian 78% 79% 77% 0.86

Cohort 1 + cohort 2

Number (n) 420 102 318

Sex, % male 92% 92% 92% 1

Age (years) 37 ± 8 36 ± 9 37± 8 0.47

Race, % Caucasian 86% 87% 86% 0.86
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Single-SNP analysis showed 12 SNPs were significantly
associated with SMX-induced hypersensitivity (basic
allele test, p< 0.05) (Table 3), with a GCLC SNP scoring
with the lowest p value (rs761142 T>G, p = 0.0006)
(Figure 2). After adjusting for multiple comparisons
using Bonferroni correction, rs761142 remained signifi-
cant with p = 0.045.
To replicate this result, we genotyped rs761142 in

DNA samples from cohort 2 and tested association with
SMX-induced hypersensitivity. SNP rs761142 again
showed significant association in the same direction with
a p value of 0.025 (basic allele test). To further test the
validity of the rs761142 association, we combining data
from cohort 1 and cohort 2 and fitted the data into dif-
ferent genetics models. The data fitted best into an addi-
tive model, with odds ratio for TG vs TT being 2.2 (95%
CL 1.4 – 3.7, p = 0.0014) and odds ratio for GG vs TT
3.3 (95% CL 1.6 – 6.8, p = 0.0010) (Table 4). Each copy
of the minor G allele was associated with a 1.9 fold in-
crease in risk (95% CL 1.4 – 2.6, p = 0.0001).
Two additional SNPs in GCLC were also significantly

associated with SMX-induced hypersensitivity (Table 3,
Figure 2), owing to their LD with rs761142. SNP
rs670548 had been associated with GCLC expression in
bronchial airway epithelial cells [32], but it did not reach
significant association with SMX-induced hypersensitiv-
ity in cohort 1(Table 3 and Figure 2, P = 0.065). In the
combined cohort, the association P value for rs670548
was 0.051. Because rs670548 is unevenly distributed in
different populations and has very low allele frequency
in African American population, we tested the asso-
ciation of rs670548 in Caucasians, where rs670548 was
significantly associated with SMX-induced hypersensitiv-
ity (P = 0.025). However, rs761142 showed stronger asso-
ciation in the same cohort (P = 0.00015), indicating
the association observed for rs670548 in Caucasians is a
result of LD with rs761142 (D’=0.8 in Caucasian popula-
tion, Figure 2). With the current study design (unmatched
1:3 case control ratio), and under the assumption of addi-
tive model with effect size of 2, we calculated the statis-
tical power for cohort 1, cohort 2 and combined cohort
to be 73%, 88% and 98%, respectively, to detect the effects
of a polymorphism (for example rs761142) with minor
allele frequency of 0.3 at α=0.05.
Previous studies have indicated that promoter SNP

rs17883901 and 5’UTR GAG trinucleotide repeats
in GCLC are associated with schizophrenia and other
diseases [33-35]. Genotyping these polymorphisms in
cohort 1 showed that rs17883901 was not significantly
associated with SMX-induced hypersensitivity (Add-
itional file 1: Table S1). Similarly, none of GAG trinu-
cleotide repeat variants showed significant associations
(p = 0.32, chi-square test) (Additional file 1: Table S2). A
previous study had proposed the less common genotypes
(8/8, 9/9, 8/9, 7/8, ‘high risk alleles’) were associated with
higher risk of developing schizophrenia compared to the
more common repeats (7/7 and 7/9, ‘low risk alleles’)
[35]. Moreover, red blood cells or peripheral blood
mononuclear cells (PBMC) with 7/7 genotype showed
changes in GCL activity and GSH levels compared to 9/
9 or other genotypes [5,28]. However, we did not
find an association between ‘high risk alleles’ in GCLC
and SMX-induced hypersensitivity (Additional file 1:
Table S1). Furthermore, promoter SNP rs17883901 and



Table 3 SNPs significantly associated with SMX-induced
hypersensitivity (uncorrected p values)

Marker Gene MAF P value

rs761142 GCLC 0.32 0.0006

rs2179625 CAT 0.21 0.0027

rs1736557 FMO3 0.06 0.0034

rs6933870 GCLC 0.46 0.0097

rs554576 CAT 0.46 0.013

rs2236271 GSS 0.32 0.016

rs10306135 PTGS1 0.15 0.018

rs6060127 GSS 0.28 0.018

rs7104301 CAT 0.23 0.020

rs3736729 GCLC 0.50 0.028

rs10488736 CAT 0.33 0.034

rs4958873 GPX3 0.38 0.035

rs670548 GCLC 0.25 0.065

Table 2 Successfully genotyped SNPs

Gene ID SNPs

Genes involved in SMX bioactivation

MPO1 No SNPs

FMO1 rs12720462, rs10912694, rs4916192,
rs2076320, rs4433435, rs10798294

FMO3 rs2266782, rs1736557, rs1736560,
rs3754491, rs12404218, rs2064076,
rs2075992, rs7061710, rs909530

PTGS1 rs4273915, rs10306194, rs10306135,
rs3842798

PTGS2 rs4648276, rs2745557, rs5275, rs5277

Genes involved in reactive oxygen species scavenging

SOD1 rs202445, rs1041740, rs4998557

SOD2 rs2855116, rs4880, rs5746136,
rs8031, rs5746092

SOD3 rs2536512, rs8192287, rs2695232,
rs8192290

CAT rs533425, rs2179625, rs554576,
rs10488736, rs1049982, rs7104301

GPX1 rs32100, rs3811699, rs3448

GPX3 rs4958873, rs3792796, rs3828599,
rs1946234, rs8177412, rs2070593,
rs2230303, rs11548

Genes involved in GSH homeostasis

GCLM rs41303970, rs7517826, rs2301022,
rs12140446, rs7549683

GCLC rs3736729, rs636933, rs761142,
rs6933870, rs510088, rs2397147,
rs534957, rs661603, rs2066508,
rs670548

GSS rs2236271, rs6060127, rs2236270,
rs2025096

GSR rs3779647, rs2253409, rs2978663,
rs2551715, rs1002149, rs8190996

GSRG6PD No SNPs
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5’UTR GAG trinucleotide repeat polymorphisms are not
in linkage disequilibrium (LD) with rs761142 (Figure 2,
LD D’ of 0.2 and 0.08, respectively). This result indicates
that the association observed with rs761142 is unlikely
to be caused by LD with previously identified promoter
SNP rs17883901 or 5’UTR GAG trinucleotide repeat
polymorphisms.
We next tested whether rs761142 affect GCLC mRNA

expression in human livers and B-lymphocytes. The
GCLC mRNA level was ~5% of β-actin mRNA in livers
and 0.7% in B-lymphocytes. In 91 human livers and 84
B-lymphocytes, the average relative amounts of GCLG
mRNA were 49 ± 5 and 7.0 ± 0.3 (mean ± SE), respect-
ively, with considerable inter-person variability (40 fold
in livers and 6 fold in B-lymphocytes). Figure 3 shows
the relative GCLC mRNA levels grouped by rs761142
genotype in livers and B-lymphocytes. Samples with
GG genotype showed less GCLC mRNA level than
samples with TT genotype in both livers and B-
lymphocytes (P< 0.05). This result indicates that the
minor G allele of rs761142 is associated with reduced
GCLC mRNA expression.

Discussion
In this study, we have found rs761142 T>G in GCLC to
be significantly associated with SMX-induced hypersen-
sitivity in HIV/AIDS patients, with each copy of the
minor G allele increasing risk nearly 2 fold. Consistent
with this finding, the rs761142 G allele was also signifi-
cantly associated with reduced GCLC mRNA expression
in livers and B-lymphocytes. In contrast, previously
reported promoter SNP rs17883901 and 5’UTR GAG
trinucleotide polymorphisms [33-35] did not show sig-
nificant associations. Although reactive metabolites and
oxidative stress were proposed to be involved in the
pathogenesis of idiosyncratic drug reactions [4,5,36], this
is the first study implicating a gene involved in antioxi-
dant defense, affecting risk of idiosyncratic drug-induced
cutaneous reactions.
Glutamate-cysteine ligase (GCL), a rate limiting en-

zyme for biosynthesis of glutathione (GSH) (Figure 1), is
composed of a catalytic subunit (GCLC) and a modifier
subunit (GCLM). GSH is the main cellular antioxidant,
scavenging reactive metabolites and preventing tissue
damage [11,37]. In HIV/AIDS patients, GSH levels are
progressively depleted [38], consistent with the higher
incidence of SMX-induced hypersensitivity in HIV/AIDS
patients than in non-infected controls [39]. Moreover,
SMX cytotoxicity is suppressed by addition of GSH
in vitro [37], and cells with GCLC knockdown were more
sensitive to reactive metabolites induced cytotoxicity [40].



rs761142

Figure 2 Panel a. Association p value for SNPs in GCLC tested in this study. Panel b. Location of SNPs inGCLC. Panel c and d. LD plots for
SNPs in GCLC in Caucasian (panel c) and African American (panel d) populations. The numbers represent LD R2.
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Given the important role of GCLC in scavenging reactive
metabolites, variants that reduce GCLC expression have a
plausible role in increasing risk of developing SMX-
induced hypersensitivity, especially in HIV/AIDS patients
with already compromised GCLC function [38].
Previous GCLC studies have focused on promoter SNP

rs17883901 and 5’UTR GAG trinucleotide polymorph-
isms [33-35]. Promoter SNP rs17883901 was shown to
reduce basal and H2O2-induced promoter activity [33],
while the GAG trinucleotide repeat variants affect GCLC
protein expression through translation [41]. However,
the reported results have been inconsistent. For example,
the reference 7 repeat has been associated with either
lower or higher GCL activity/GSH levels compared to
variant repeats (4, 8, 9 or 10 repeats) in different cell
types or disease conditions [35,41-43], indicating tissue/
cell or environmental specific regulation of GCLC
polymorphisms, or the presence of other unidentified
functional polymorphisms in GCLC. This is consistent
with numerous conflicting clinical association studies
reported for GCLC [33-35,44-46]. Our study failed to
reveal significant association between promoter SNP



Table 4 Association between SNP rs761142 in GCLC and
SMX-induced hypersensitivity

Genotype Count (%) Odds ratio
(95% CL)

P value

With
hypersensitivity

Without
hypersensitivity

TT 31 (30%) 164 (52%) 1

TG 54 (53%) 127 (40%) 2.2 (1.4 – 3.7) 0.0014

GG 17 (17%) 27 (8%) 3.3 (1.6 – 6.8) 0.0010
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rs17883901 or 5’UTR GAG trinucleotide repeat poly-
morphisms and SMX-induced hypersensitivity. Instead,
the significantly associated rs761142 is located in the
middle of intron 1 of GCLC. Although intronic poly-
morphisms can affect gene expression by various
mechanisms [47], there is no evidence that rs761142 is
functional by itself; instead, the association observed in
this study could be caused by other functional poly-
morphisms in LD with rs761142 responsible for lower-
ing GCLC mRNA expression. Similarly, SNP rs670548,
located in intron12 of GCLC and showing significant as-
sociation in our study, had also been associated with
GCLC mRNA expression previously [32]. Taken to-
gether, the results indicate that a regulatory polymorph-
ism in GCLC that affects mRNA expression modify risk
of developing SMX-induced hypersensitivity in HIV/
AIDS patients. This result warrants replication in a lar-
ger cohort. Whether the GCLC polymorphisms are asso-
ciated with SMX-induced hypersensitivity in non-HIV
/AIDS patients will require further investigation.
There are several limitations in this observational

clinical association study. First, the CD4 cell counts at
the time of SMX administration were not uniformly
available, therefore the influence from CD4 cell count
cannot be evaluated; Second, patient comorbidity and
co-medication information were not available. Since
SMX is inactivated and bio-activated by drug metabo-
lizing enzymes, other disease states or concomitant
Figure 3 Relative level of GCLC mRNA in B-lymphocytes (a) and livers
(t-test).
administration of other drugs may affect the balance
between bio-activation and bio-inactivation of SMX,
influencing the level of toxic metabolites. And finally,
evaluation of rs670548 and risk of hypersensitivity in
African American may be limited by small sample size.
A prospective larger cohort study will needed in the
future to fully evaluate the association between SNPs in
GCLC and SMX-induced hypersensitivity.
We have previously reported the association between

polymorphisms in NAT1 and NAT2 and SMX-induced
hypersensitivity, and gene-gene interactions between
NAT1 and NAT2 [31]. Since idiosyncratic adverse drug
reactions are thought to be multigenic, it is likely that
the risks of developing hypersensitivity are modified
by interactions between multiple genes. Before testing
the interactions between NAT1/NAT2 and GCLC, it is
important to identify the functional polymorphism(s) and
assess the frequency, direction and effect size for each.
Although not reported for drug-induced idiosyncratic

cutaneous reaction; previous studies have associated
drug induced idiosyncratic liver injury to antioxidant
defense genes (SOD2 and GPX1) [48]. Consistently,
SOD2 knockout mice have increased sensitivity to idio-
syncratic liver injury induced by troglitazone or acet-
aminophen [49]. Similarly, mice deficient in NFE2L2
(NRF2), a transcription factor regulating antioxidant
genes expression, also have increased sensitivity to acet-
aminophen induced liver injury [50]. In the present
study, we observed additional SNPs in antioxidant
defense genes CAT, GSS and GPX3 to be associated with
SMX-induced hypersensitivity at nominal p values less
than 0.05 (Table 3). These results suggest that multiple
polymorphisms in antioxidant defense genes may modify
risk of developing idiosyncratic drug reaction in general.

Conclusions
We have identified a single nucleotide polymorphism in
GCLC that was significantly associated with reduced
(b) grouped by rs761142 genotypes. *Compared to TT, p< 0.05
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GCLC mRNA expression and with SMX-induced hyper-
sensitivity in HIV/AIDS patients. This study supports
the role of reactive metabolites and oxidative stress in
the pathogenesis of SMX-induced hypersensitivity. Since
oxidative stress caused by xenobiotics capable of redox
cycling is a common mechanism of idiosyncratic drug
reactions, it is plausible that polymorphisms in GCLC or
other antioxidant defense genes may also be associated
with idiosyncratic drug reactions caused by other drugs.

Methods
Patient information
Subjects included in this study had consented to an IRB-
approved protocol designed to collect clinical data and
specimens on HIV-infected individuals evaluated for
participation in clinical trials between 1993 to 1998 in
the HIV Clinical Research Unit at The Ohio State Uni-
versity Medical Center. A total of 420 individuals with
HIV/AIDS who were taking Cotrimoxazole (trimetho-
prim-sulfamethoxazole) for prophylaxis or treatment of
opportunistic infections and who had complete clinical
data and banked blood samples available were included.
This cohort was divided into two sub-groups: cohort 1,
171 patients, enrolled during 1996 to 1998 when blood
was drawn using acid citrate dextrose tubes; cohort 2,
249 patients, enrolled during 1993 to 1995 when blood
was drawn using heparin tubes. Since heparin was found
to interfere with the SNPlex genotyping reaction, only
samples from cohort1 were subjected to SNPlex geno-
typing. Cohort 2 served as a replication cohort with
genotyping performed using other methods as described
below. SMX hypersensitivity was diagnosed by presence
of at least two indicator adverse drug reactions, includ-
ing skin rash, fever, pruritus, etc., that disappear after
drug discontinuation [44].

Tissue samples
Human liver biopsy or autopsy samples were obtained
from the Cooperative Human Tissue Network Mid-
western and Western Division, under the approval of
The Ohio State University Institutional Review Board.
Epstein-Barr virus-transformed B-lymphocytes were
obtained from Coriell Repositories. Preparation of gen-
omics DNA, RNA and cDNA from tissues or cells was
done as described [47].

Selection of genes and polymorphisms
We selected genes based on current literatures that are
involved in SMX bio-activation, reactive oxygen species
scavenging and GSH homeostasis (Table 2 and Figure 1).
For each gene, we selected tagging SNPs from HapMap
project using the criteria of: MAF >10%, R2 = 80% in
Caucasian population (>70% of the patients are Cauca-
sians). Sixteen genes were initially selected; two genes
(MPO1 and G6PD) did not yield any SNPs that can be
successfully genotyped using SNPlex genotyping method
and were excluded.

SNPlex probe design and reagents
The select SNPs were submitted to Applied Biosystems
(Foster City, California, USA) for the design of SNPlex
panels following their proprietary selection algorithms.
SNPlex panels and reagents were provided by Applied
Biosystems as we have described previously [51].

SNPlex genotyping
SNPlex genotyping was carried out according to the
manufacture’s protocol as described in [51].

Genomic DNA preparation
Preparation of genomic DNA from blood was performed
as described [43,45].

Other genotyping methods
GCLC 5’UTR GAG trinucleotide polymorphism was gen-
otyped by PCR using fluorescently labeled primers (FAM
labeled forward primer: GGCTGAGTGTCCGTCTCG;
reverse primer (unlabeled): GAACGTCCTTGTGCCGG)
followed by capillary electrophoresis separation (ABI 3730
DNA analyzer, Applied Biosystems, Foster City, Califor-
nia, USA)) as described [52]. Promoter SNP rs17883901
was genotyped using PCR-based restriction fragment
length polymorphism methods as described [33] with
modification. Instead of running agarose gels to separate
and visualize the products, we labeled forward primer
with fluorescent dye (FAM), and separated fragments
using ABI 3730 DNA analyzer after PCR amplification
and restriction enzyme digestion. SNP rs761142 was
genotyped using allele specific PCR (common forward
primer: CAACAGTTGGTTCTAGCAAAAGGA; reverse
primer for reference allele: CCACACTGCTGGCTCT-
CTTGTAA; reverse for variant allele: CCACACTGC-
TGGCTCTCTTGTAC) as described [47].

Quantitative mRNA analysis by real-time PCR
GCLC total mRNA levels in cDNA samples were deter-
mined by real-time PCR on an ABI 7500 sequence
detection system with power SYBR Green PCR Master
mix (life Technologoes). GCLC expression levels, in
arbitrary units, were calculated by subtracting the β-actin
cycle threshold (Ct) from the GCLC Ct to get ΔCt
as described previously [47]. Arbitrary units for each
sample = 1000*(2-ΔCt).

Data analysis
HelixTree 6.4.3 (Golden Helix, Bozeman, MT) was used
to test for Hardy-Weinberg equilibrium and basic allele
Chi-square test for association with SMX-induced
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hypersensitivity. The associations between genotypes
and hypersensitivity were analyzed using logistic regres-
sion model performed using SAS 9.1.3 software (SAS
Institute, Cary, NC). The suitability of model fitting was
judged by deviance goodness of fit statistics p-value
and score test p-value, both of which should be larger
than 0.05. The differences between mRNA levels were
tested by t-test using GraphPad Prism software (Graph-
Pad Software, La Jolla, CA). Data are expressed as
mean ± SE.

Additional file

Additional file 1: Table S1 and S2. Association between promoter
SNP rs17883901 or 5’UTR GAG trinucleotide polymorphism in
GCLC and SMX-induced hypersensitivity. Distribution of 5’UTR GAG
trinucleotide repeats in patients with or without hypersensitivity.
Chi-square test P=0.319.
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