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Abstract

Background: This study aims to expand knowledge of the complex process of myocardial infarction (M) through
the application of a systems-based approach.

Methods: We generated a gene co-expression network from microarray data originating from a mouse model of
MI. We characterized it on the basis of connectivity patterns and independent biological information. The potential
clinical novelty and relevance of top predictions were assessed in the context of disease classification models.
Models were validated using independent gene expression data from mouse and human samples.

Results: The gene co-expression network consisted of 178 genes and 7298 associations. The network was dissected
into statistically and biologically meaningful communities of highly interconnected and co-expressed genes. Among
the most significant communities, one was distinctly associated with molecular events underlying heart repair after
MI (P < 0.05). Col5a2, a gene previously not specifically linked to MI response but responsible for the classic type of
Ehlers-Danlos syndrome, was found to have many and strong co-expression associations within this community

(11 connections with p > 0.85). To validate the potential clinical application of this discovery, we tested its disease

characteristic curve above 0.8.

discriminatory capacity on independently generated Ml datasets from mice and humans. High classification
accuracy and concordance was achieved across these evaluations with areas under the receiving operating

Conclusion: Network-based approaches can enable the discovery of clinically-interesting predictive insights that
are accurate and robust. Col5a2 shows predictive potential in MI, and in principle may represent a novel candidate
marker for the identification and treatment of ischemic cardiovascular disease.

Keywords: Systems-based approaches, Co-expression networks, Myocardial infarction, Collagen proteins, Col5a2

Background

In the era of modern reperfusion therapies, acute myocar-
dial infarction (MI) remains associated with substantial
morbidity and mortality. MI is underpinned by complex,
intertwined biological processes [1]. These processes oper-
ate in the context of large, intricate biological interaction
networks. Despite over 60,000 reports on MI [2,3], there is
still a pressing need to better define the disease biology of
this condition based on integrative, systematic approaches.
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Indeed, systematic network-based approaches can bridge
the gap between our knowledge of the functional roles of
molecular entities, disease phenotypes and new clinical
applications [4,5]. We and others have shown that such an
approach may generate new targets and markers for MI,
which may become clinically useful [6-9].

Crucial requirements should be met as necessary condi-
tions to leverage the power of systems-based approaches: 1.
Models should be capable not only to describe biological
phenomena, but also to make predictions about phenom-
ena; 2. The resulting predictive models should provide the
basis for potentially novel, clinically-driven applications;
and 3. model-based predictions should stand up to the test
of independent validations.
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At the center of our systems-based knowledge discovery
strategy is the detection of functionally relevant network
communities. A community, also often referred to as a
module, is here defined as a group of genes that is both
highly inter-connected and strongly co-expressed. We
identified a weighted gene co-expression network in MI by
estimating similar gene expression patterns across mice-
derived samples. We implemented a new computational
approach to network community detection, and searched
for potentially clinically relevant communities, including
those involving genes relatively uncharacterized in the
context of MI. To demonstrate the predictive potential of
our top prediction, we implemented computational models
to distinguish MI from control samples using this gene’s
expression data. After estimating the discriminatory cap-
acity of this model on the network-generating dataset, we
implemented an independent evaluation of the model on
quantitative real-time PCR data. Additional independent
validations of the classification model were successfully
carried out on public microarray data.

In this investigation, we aimed to analyze a gene
co-expression network of ML This effort allowed us to: a.
determine the potential predictive role of a relatively
uncharacterized gene, Col542, and its associated tran-
scriptional partners in MI; and b. demonstrate the
disease discriminatory capacity and reproducibility of such
network-derived insights.

Methods

Datasets

The co-expression network in MI was derived from a
microarray dataset consisting of 36 MI and 23 control
cardiac tissue samples published in Tarnavski et al. [10]
(GEO accession code: GDS488). MI samples were obtained
from mice that underwent ligation of the left coronary
artery, and control samples originated from sham-operated
mice. Details of experimental protocol are published in
Tarnavski et al. [10]. Hereafter this dataset is referred to as
the model derivation dataset.

We validated models on several independently gen-
erated datasets. First, we measured gene expression of
Col5a2 using qPCR data in MI and control samples
(details are shown below). A second independent
evaluation was performed on a (microarray) expression
dataset (GDS2329) that consisted of 10 MI and 10 control
samples from mice [11]. We also tested the disease
discriminatory potential of Col542 in human data from
the Harvard’s CardioGenomics project (32 ischemic
cardiomyopathy vs. 14 control samples) [12]. We note
that the time between ligation and the acquisition of the
samples varied across the different independent datasets.
However, we emphasize that in our qPCR validation
dataset the time between ligation and sample extraction
was the same for all the mice.
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Animal model

To independently validate our findings, we first
implemented a mouse model of MI as follows. MI was
induced by ligation of the left anterior descending coronary
artery (LAD). Control samples were obtained from
sham-operated mice, which underwent the same surgery
procedure as MI mice without occlusion of the LAD. Heart
samples (left ventricular myocardium) were obtained
4 weeks after surgery in both groups: 15 MI and 6
control samples.

Mice were anesthetized with a 1:10 dilution (diluted
with 0,9% NaCl) of a mixture of Ketaminhydrochlorid
(100 mg/kg) and Xylazinhydrochlorid (10 mg/kg). Ten
minutes after administration, movement of whiskers and
reflexes was tested. Lack of reaction ensured a stable
and deep sedation for about 40 minutes. Mice were
euthanized by an intraperitoneal application of an un-
diluted mixture of Ketaminhydrochlorid (100 mg/kg)
and Xylazinhydrochlorid (10 mg/kg). Details are available
in Additional file 1.

The study was approved by the animal Ethics Committee
of Saarland University, Germany, and animal handling
was performed according to the European directive
on Laboratory Animals (86/609/EEC) and the Guide
for Care and Use of Laboratory Animals by the US
National Institute of Health (NIH Publication No. 85-23,
revised 1996).

Quantitative real-time PCR experiments

Total RNA was extracted from frozen tissue samples
with a Trizol (Invitrogen, Carlsbad, CA) isolation proto-
col. 1 ug of RNA were reverse transcribed into cDNA
using the SuperScript II reverse transcriptase (RT).
¢DNAs were diluted 10-fold and 4 pL were mixed with
16 uL of SYBR®Green Master Mix (Biorad, Nazareth,
Belgium) containing 300 nM of each primer (final
volume 20 pL). After each run a melting curve analysis
was analyzed, ranging from 55°C to 95°C in 20 min. A
negative control without ¢cDNA template was run in
every assay and measures were performed in duplicates.
Intron-flanking primers were designed with the Beacon
Designer Pro 7.8 software (Premier Biosoft, Palo Alto,USA).
Specificity was assessed using the NCBI BLAST tool
[13]. Melting curves were analyzed and amplicons were
observed on agarose gel to confirm the specificity of the
reaction. HPLC-purified primers were obtained from
TIB MOLBIOL (Berlin, Germany). Expression levels
were calculated using the CFX manager 2.1 software
(Biorad) via the delta-Cq method, incorporating the
calculated amplification efficiency for each primers pair.
GAPDH was used as reference gene. The mean raw Cq
values were the inputs to the PCR data analysis. Details,
including compliance with MIQE guidelines [14], are
available in Additional files 2 and 3.
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Gene co-expression network: generation

Flat expression patterns across samples in the derivation
dataset were filtered out by excluding genes with standard
deviations < 0.1. Spearman co-expression coefficients,
p, were calculated among all pairs of the remaining
genes. All gene pairs with p > 0.1 represented gene-gene
associations in the network. A weighted gene co-expression
network in which nodes and edges denote genes and
co-expression values respectively was next generated.
Figure 1 illustrates fundamental network concepts
used in this article.

Gene co-expression network: community detection

Candidate biologically meaningful communities were
detected by applying A-CODE (association-centered
community detection algorithm) (Additional file 1).
This approach is based on the notion that strong commu-
nities are built around strong edges in the community.
Moreover, candidate communities should also represent
tightly interconnected webs of neighboring edges.
Thus, A-CODE searches for strong, highly-interconnected
communities around each edge in the network (examples
in Figure 1). Candidate communities are characterized by
their co-expression compactness, which is here based on
the mean co-expression value observed in the candidate
community. To reduce possible bias towards highly
variable co-expression patterns, compactness is computed
as the mean co-expression value divided by the standard
deviation of the values found in a candidate community.
The expected rate of false discoveries, ¢, for each observed
compactness value is computed with a statistical test
based on random permutations. Thus, strong candidate
communities are those displaying high co-expression
compactness with corresponding low g values. At each
search step, A-CODE adds a new edge to the candidate
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community. Each new edge is derived from the direct
neighborhood of the current candidate community. At
each search step the neighboring edge with the highest
co-expression value, p, is selected for inclusion. This
process continues until either a minimum ¢ (min_g) can-
not be obtained or until a maximum number of edges in
the candidate community has been reached. Experiments
reported here are based on min_g = 1E-4, and minimum
and maximum numbers of 5 and 20 edges respectively
in each candidate community. The latter was suitable
to assist expert visualization and interpretation. Also
the min_g value selected is stringent enough to filter
out communities for which more than 1 permutation
experiment (out of 10000 implemented) reported com-
pactness values equal or higher than that observed in
the candidate community. At the end of this process,
each network edge gives rise to a candidate community.
Thus, unlike the conventional view of network clustering, a
key feature of our approach is that it allows the identifica-
tion of not only candidate communities formed around
highly connected nodes, but also of candidate communities
defined by highly connected, strong edges.

Disease classification model

To demonstrate the disease discriminatory capacity of
Col5a2, a classification model based on logistic regres-
sion was implemented (Ridge estimation value: 1E-08).
Classification performance was assessed with areas
under the receiving operating characteristic curve (AUCs).
Using the derivation dataset, a classification model was
built and its discriminatory capacity was first estimated
with leave-one-out cross-validation. The resulting model
was next tested on independent datasets using Col5a2
as model input after standardization (mean value = 0,
standard deviation = 1).

B

Thicker edge: higher
co-expression

Thinner edge: lower
co-expression

Figure 1 lllustration of fundamental network analysis concepts. A and B show hypothetical examples of candidate communities that can be
detected by our approach. Nodes and edges represent genes and co-expression values respectively. The thickness of the edges can be used to
graphically represent co-expression levels.
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Software tools

The derivation dataset was pre-processed with the Gepas
tool [15]. Other datasets were pre-processed with the
(R-platform) afty package [16]. The weighted co-expression
network was generated with BioLayout [17] and visualized
with Cytoscape [18]. We applied the DAVID tool to exam-
ine network candidate communities on the basis of their
associations with functional annotations [19]. A-CODE was
coded in Java (Additional file 1). Classification models were
implemented in Weka [20]. Additional statistical analyses
were completed with SigmaPlot [21]. Statistical significance
of differential expression was estimated using Student’s
t-test, and P values were adjusted for multiple testing
using Benjamini & Hochberg test.

Results

A gene co-expression network in Ml

We generated a co-expression network using the derivation
dataset as outlined above. The resulting network consists of
178 nodes and 7298 edges highly interconnected as a single,
large unit (Figure 2A, Additional file 4). As further
illustrated by basic network topology parameters, genes
are in relatively close proximity to each other and are
tightly grouped (characteristic path length: 1.76, clustering
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coefficient: 0.92). This made analysis with standard
network community detection techniques difficult.
Our A-CODE algorithm revealed the complexity and
potential relevance of the community structure of the
network in more detail. As expected, the vast majority
of candidate communities detected are statistically
irrelevant (Figure 2B). Nevertheless, our approach
detected hundreds of potentially interesting communities
(g < 0.001) that exhibit highly transcriptionally com-
pact patterns. Additional file 5 shows examples of top
candidate communities.

Col5a2 has predictive value in cardiac repair after Ml

One of the top candidate communities (¢ = 1E-4) showed a
statistically detectable association with extracellular matrix
re-organization and angiogenesis, and other processes
relevant to cardiac repair after ML In particular, the Gene
Ontology (GO) biological process terms: extracellular
matrix organization (P = 0.004), organ morphogenesis
(P = 0.01) and blood vessel development (P = 0.02) were
highly represented in this community. This community is
defined by 18 genes with diverse, but strong co-expression
relationships between them (all with p > 0.85; Figure 2C).
Moreover, the global expression pattern of this community

04

02

00
1 N 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001
b Candidate communiies

Figure 2 Gene co-expression network in Ml encodes clinically interesting knowledge. A. Graphical view of the network. Nodes and edges
represent genes and co-expression relationships respectively. Because genes are highly densely interconnected, edges are difficult to graphically
discern, and here are shown as a grey area inside the (circle) network layout. B. Overview of the statistical landscape of network communities
detected. The g values reflect the statistical relevance of the candidate communities. C. A highly interconnected and co-expressed community, in
which Col5a2 is shown as a potential relevant gene with predictive value. The thickness of the edges reflects the observed co-expression values.

Il g values

Most significant
candidate communities
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offered indication of its potential disease discriminatory
capability (Figure 3). In this signature, those MI samples
showing relatively lower expression values (Figure 3)
represent those cases derived from mice at earlier times
after MI (< 4 hrs). We also note that this community is
highly enriched in genes known to be expressed in
both the heart (P = 0.007) and blood plasma (P = 0.08)
(David tool analysis). All these observations led us to
further investigate this top candidate community.

At the center of this community, Col5a2 displays a
relatively large number of connections, which suggests a
potential influential role. Prior to this research, Col5a2
had not been specifically linked to ischemic injury and
has not been widely characterized in other domains.

Within this community, other genes are functionally
related to Col542. The following GO annotations are
shared by Col5a2 and the other genes (P < 0.0001):
collagen fibril organization (Anxa2, Collal), extracellular
matrix structural constituent (Collal, Col4al), pro-
teinaceous extracellular matrix (Anxa2, Bgn, Collal,
Col4al, Postn). Other collagen genes found to be signifi-
cantly deregulated are: Col4al (adjusted P = 1.3E-07),
Col4a2 (P = 4.7E-07) and Collal (P = 7E-05).

The network topological properties of Col5a2 and the
potential novelty of this finding further motivated us to
choose this gene as our top prediction. To further assess
its potential relevance and to put it in a clinically-related
context, we investigated the disease discriminating capacity
of this gene in different sample cohorts.
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Col5a2 accurately distinguishes disease phenotypes
Col5a2 was over-expressed in MI samples in relation to
the mean value observed in control samples, though not
at the level of P = 0.05 (summarized in Figure 4 as
“model derivation data”). Despite this relatively weak
differential expression, the disease discriminatory capability
of Col5a2 was demonstrated when using it as an input
to a relatively simple classification model (Methods).
This model correctly distinguished MI from control
samples in the derivation dataset with an AUC = 0.86
(P < 0.0001 vs. random model, Figure 5). This indicated that
Col5a2 expression may accurately reflect pathophysiological
effects or events characterizing MI.

Independent evaluation on qPCR data

To validate the observed Col5a42 transcriptional responses,
we independently measured its expression in myocardial
tissue in another mice cohort (Methods). As previously
shown in the model derivation dataset, Col5a2 is similarly
over-expressed in the MI samples in relation to the control
group (Figure 4, P < 0.05). After standardizing the qPCR
data, we next applied the previously obtained classification
model to this independent dataset. The classification
capacity of the model was remarkably concordant with
that obtained on the derivation dataset (tested on qPCR
data, AUC = 0.83, P = 0.02 in relation to a random
model, Figure 5). This provided additional evidence of
both the discriminatory capacity and robustness of Col5a2
in the MI setting.

Case

of differential expression are shown as adjusted P values.

Figure 3 Gene expression patterns of top candidate community. Expression values are color-coded: from low (blue) to high (red), and levels

CO“tl’Ol p-values
Anxa2 9.71E-04
Msn 9.20E-05
Rtn4 2.33E-04
Rbm3 1.42E-04
Pabpc1  1.93E-03
Cstb 250E-03
$100a11 1.19E-03
Cfl1 1.26E-03
Tpm4 8.77E-05
Colda1 2.46E-06
Emp1 5.08E-06
Collal  542E-04
Bagn 7.36E-04

Lyz2 1.07E-02
Ctss 1.01E-02

Col5a2  1.19E-02
Coltal  1.09E-02
Postn 7.35E-03
Bgn 3.46E-03

Fsti1 3.63E-02
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Figure 4 Col5a2 expression values in multiple independently generated datasets. * denotes significant differences between mean values
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Further independent evaluations on public data
Motivated by our results, we further assessed the potential
relevance of Col5a2 in MI by estimating its disease dis-
criminatory capability in previously generated microarray
datasets (Methods). First, we analyzed a (MI vs. control)
microarray dataset from myocardial tissue of mice
(Methods). As verified before, the expression of Col5a2
tends to be higher in MI samples (P > 0.05, Figure 4).
We applied the classification model obtained above on
this independent dataset. This was done after standardizing
expression values in the validation dataset, i.e., expression
values in the derivation and validation datasets were
placed on the same value scales (Methods). The model
again showed a substantial capacity to distinguish between
MI and control samples (tested on independent mice
microarray dataset, AUC = 0.86, P < 0.0065 vs. random
model, Figure 5).

To explore the potential pathophysiological role of
Col5A2 in humans, we analyzed publicly available
microarray data acquired from cardiac tissue samples
of patients with ischemic cardiomyopathy and controls
(Methods). Although it does not explicitly compare MI
vs. control groups as in our animal models, this high
quality dataset offered a good opportunity to estimate
the potential clinical application value of Col5a2. Again the
expression of this gene was elevated in the disease category
(Figure 4, P < 0.05), in concordance with our previous
results in the MI animal model. More interestingly,
when we applied the mouse-derived model on this
dataset, after data standardization, a significant and
highly concordant classification performance was obtained
(tested on human microarray dataset, AUC = 0.85,
P = 0.00018 vs. random model, Figure 5).

We also independently tested Hmox1 (heme oxygenase 1).
We chose it as this gene is an example of a statistically
differentially expressed gene in our derivation dataset
(adjusted P = 0.0008, up-regulated in MI). Also its
diagnostic or prognostic value in MI has not been
established, though it has been previously linked to
atherosclerosis [22]. Moreover, Hmox1 was a candidate
community hub (10 connections). Hmox1 did not pass
our independent validations. Unlike Col5a2, the direction
of HmoxI’s transcriptional response and its classification
capacity were not reproduced. In the human dataset, for
example, this gene was found down-regulated and offered
lower classification capacity.

Discussion

We showed how a network-based approach can: a. enable
the discovery of new biologically meaningful knowledge,
and b. provide the basis for potential new clinical appli-
cations. At the center of our approach is the detection of
highly transcriptionally compact gene communities in a
gene co-expression network in MI. The analysis of one
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such community highlighted the prominent role of
Col5a2, a gene hitherto not linked to the MI setting. We
demonstrated how the disease discriminatory capacity of
this gene was both highly accurate and robust across
independently generated datasets. After independently
validating these findings, we also reported the potential
relevance of this classification model in humans. Our
research highlights that systems approaches not only can
aid in clinically motivated knowledge discovery, but also it
offers opportunities for the identification of candidate
biomarkers or targets with potential therapeutic benefits.
Our findings contribute further evidence of the predictive
power and reproducibility of insights resulting from
systems-based approaches [23,24].

We focused our attention on Col5a2 because it was
included in our top candidate community. Moreover,
within this community Col5a2 can be defined as a hub,
with 11 strong connections. Lastly, our interest was
increased as this gene has not been widely characterized in
cardiovascular disease. We did not choose this gene based
on its differential expression. If we had followed such a
procedure, there would not have been a significant reason
to focus on it above the hundreds of differentially expressed
genes that can be found in the data.

The extracellular matrix of the myocardium is mainly
composed of collagens. These proteins constitute a
complex biological interaction network that is key to
maintain the structural architecture of the heart and
its blood pumping capacity. Following MI, fibroblasts
and myofibroblasts enhance collagen synthesis and
deposition in the infarcted area in order to strengthen
the myocardium and minimize its dilation. Excessive
accumulation of collagen in both the infarcted and
non-infarcted areas can however lead to ventricular
stiffness and heart failure [25]. Several types of collagen
have been identified in the heart so far [26-28]. Among
them, collagens 1 and 3 are the most widely expressed,
representing approximately 90% of the heart collagens.
Although collagen 5 represents a small proportion of
cardiac collagens (less than 5%), this gene is known to play
an important role in the assembly of collagen 1-containing
fibrils [29,30]. The collagen 5 molecule has a triple-helix
structure that can be defined by different chains: al, a2 and
a3. While expression of col5al is detected in the ventricular
myocardium, no significant clinically relevant expression of
Col5a2 has been reported in this tissue [28,31]. In our data,
collagens 1 and 3 were up-regulated in the MI samples,
and their MI-specific expression levels were higher than
those of Col5a2. However, Col5a2 consistently showed
larger (MI vs. control) fold-changes than those observed
in collagens 1 and 3.

The link between the expression of Col5a2 and MI, or
related cardiovascular responses, has not been reported
to date, though the impairment of collagen 5 expression
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seems to affect the activity of the main structural collagens
of the heart [32]. Using a systems-based approach, here we
show for the first time that Col542 expression is critically
perturbed in ML This opens the possibility for using this
gene as a new biomarker or therapeutic target of MI and
its subsequent pathophysiological responses.

It is noteworthy to stress that Col542 is not highly
(statistically) differentially expressed in the derivation
cohort at the level of P = 0.05. This underlines the
capacity of a system-based approach to generate potential
biologically meaningful hypotheses, which go beyond the
traditional and often misinterpreted idea of finding genes
with “significant” individual differential expression. More
important, this corroborates that strong differences in
mean expressions are neither necessary nor sufficient
conditions to achieve good discriminatory capacity of
disease phenotypes. Such an assumption has been
traditionally made to study new potential targets and
markers in cardiovascular disease.

In the healthy adult myocardium, collagen 1 is mostly
expressed around muscle fibers while collagen 5 is
mainly detected in the vascular matrix. In the infarcted
heart, however, collagen 1 is predominantly expressed in
the epicardium and the pericardium that extends into
the infarcted myocardium, while collagen 5 is mostly
expressed in the peri-infarcted region of the myocardium,
surrounding viable myofibers [33]. Collagen 5 may thus
play a role in ventricular remodeling following MI, probably
by regulating the formation of collagen 1-containing fibers
thereby influencing myocardium healing. Nevertheless, the
role of Col5a2 in MI still remains to be fully characterized.
Previous research has shown that Col5a2 seems to be
exclusively expressed in the heart valves [28,31,34,35].
Transgenic mice expressing a non-functional form of
Col5a2 do not present ventricular defects [32]. Moreover,
patients suffering from classic Ehlers-Danlos syndrome, a
rare connective tissue disorder mainly caused by mutations
in COL5A1 or COL5A2, do not appear to show ventricular
malformations [36]. However, mutations in Col5A2 have
been associated with vascular disease, such as cervical
artery dissection [37] and aortic dissection [38].

Our investigation showed that Col542 is highly
expressed in the left ventricle after MI. This indicates
that at least one of the different collagen 5 isoforms
containing the a2 chain may be required during post-MI
response, most probably to allow synthesis and deposition
of sufficient amounts of collagen 1 in the infarcted area.
Despite the potential relevance of this finding, additional
research will be needed to define the specific role of
Col5a2 in heart repair after MI, as well as its potential
diagnostic or prognostic value.

It has recently been observed that Col5a2 is highly
expressed in invading neoplastic epithelial cells [39], and
that it is expressed in the human fetal gut and in colon
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cancer cells [40]. This confirms that Col542 is linked to
higher extracellular matrix turnover. Furthermore,
Col5A2 has been associated with lymph node metastasis
in lung adenorcarcinoma [41]. Experiments in tendon
cells [42] and fibroblasts [43] have shown that Col5a2
plays an important role in guiding cell proliferation.

A potential limitation of our investigation is that the
model derivation dataset included samples obtained at
different time points ranging from 1 hour to 8 weeks
after MI [10]. This constrains the potential implications
of our findings in the context of MI diagnosis and post-MI
prognosis. Nevertheless, we were able to demonstrate both
the predictive accuracy and robustness of Col542 in differ-
ent independent datasets and experimental platforms. This
underscores the possible relevance of our results to the
ischemic heart disease context in general. Another aspect
that deserves further investigations is the integrated
analysis of the Col5a2-centric community identified by
our approach (Figure 3). Limitations to experimentally
measure all the genes involved this community prevented
us from validating their integrated predictive capability
here. We note, however, that our computational analysis
also indicates the disease discriminatory capability of this
community in the derivation dataset (Figure 3). Another
potential limitation is that candidate biomarkers obtained
from tissue samples may not necessarily translate into
useful circulating plasma biomarkers. Lastly, future
investigations will require comparisons with standard
biomarkers, such as troponin levels. In this article we
did not report additional comparisons due to lack of
access to these measurements in the published studies
and due to limited amounts of our samples.

Conclusions

Our systems-driven approach revealed a novel critical
predictive role of Col542 in ML This brings Col5a2 to the
pipeline of candidate biomarkers and targets with potential
therapeutic benefit. Our network-based discovery strategy
may have broad applications for studying other disease
phenotypes. Based on this approach we probed a novel
association between Col5a42 and its community of tightly
co-expressed genes with ML In the long term, Col5a2 may
represent a new prognostic or therapeutic target for
patients suffering ischemic heart disease. Additional inde-
pendent analysis, including those involving tissue-derived
and circulating proteins, will be required to further eluci-
date functional and predictive roles of Col5a2.
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represent interacting genes, third column shows co-expression values.

Additional file 5: Examples of top-ranked candidate communities.
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