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patient with global developmental delay,
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Abstract

Background: Currently, diagnosis of affected individuals with rare genetic disorders can be lengthy and costly,
resulting in a diagnostic odyssey and in many patients a definitive molecular diagnosis is never achieved despite
extensive clinical investigation. The recent advent and use of genomic medicine has resulted in a paradigm shift in
the clinical molecular genetics of rare diseases and has provided insight into the causes of numerous rare genetic
conditions. In particular, whole exome and genome sequencing of families has been particularly useful in
discovering de novo germline mutations as the cause of both rare diseases and complex disorders.

Case presentation: We present a six year old, nonverbal African American female with microcephaly, autism,
global developmental delay, and metopic craniosynostosis. Exome sequencing of the patient and her two parents
revealed a heterozygous two base pair de novo deletion, c.1897_1898delCA, p.Gln633ValfsX13 in ASXL3, predicted to
result in a frameshift at codon 633 with substitution of a valine for a glutamine and introduction of a premature
stop codon.

Conclusions: We provide additional evidence that, truncating and frameshifting mutations in the ASXL3 gene are
the cause of a newly recognized disorder characterized by severe global developmental delay, short stature,
microcephaly, and craniofacial anomalies. Furthermore, we expand the knowledge about disease causing mutations
and the genotype-phenotype relationships in ASXL3 and provide evidence that rare, nonsynonymous, damaging
mutations are not associated with developmental delay or microcephaly.
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Background
Obtaining a molecular diagnosis for many rare diseases
can be an arduous task [1]. The process is often hin-
dered by the rarity of conditions, which is further exacer-
bated by the clinical heterogeneity, genetic heterogeneity
(genocopies) and phenocopies that rare diseases tend to
exhibit [2]. Frequently, this results in a process that has
been termed the diagnostic odyssey [3]. The NIH Office of
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Rare Diseases Research reported that it took 1 to 5 years
to reach a proper diagnosis for 33% of patients with rare
disorders and more than 5 years for 15% of these patients
[4]. The recent advent and use of genomic medicine has
resulted in a paradigm shift in the clinical molecular ge-
netics of rare diseases – from phenotype-driven diagnosis
to genotype-driven diagnosis – and has provided insight
into the causes of numerous rare genetic conditions [1].
Briefly genomic medicine, defined as the structured ap-
proach to disease discovery, diagnosis, and management
that prominently features next-generation sequencing and
analysis at a genome scale [5], has provided the impetus
for a paradigm shift in the clinical evaluation of rare dis-
eases to identify underlying molecular genetic causes.
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Whole exome and genome sequencing of families has
been particularly useful in discovering de novo germline
mutations as the cause of both rare diseases and complex
disorders. For example, de novo mutations have recently
been associated with multiple rare diseases including rare
growth disorders characterized by megalencephaly due
to mutations in three genes, AKT3, PIK3R2, PIK3CA,
[6] and Baraitser-Winter syndrome, characterized by
brain malformations due to de novo mutations in the
actin genes ACTB and ACTG1 [7]. We recently de-
scribed a de novo mutation in MTOR as a cause of
megalencephaly and intractable seizures (Smith et al.,
submitted). In addition, new research has implicated de
novo mutations in the complex disorders of autism
[8-10] and schizophrenia [11,12].
First described in 1999, Bohring-Optiz syndrome (BOS)

[OMIM, 605039] has recently been shown through the
use of next-generation exome sequencing, to be due to de
novo heterozygous mutations in the additional sex combs-
like 1 gene (ASXL1) [13]. Two further cases of de novo
mutations in ASXL1 in patients with BOS supported the
disease-gene association and gave limited insight into
genotype-phenotype relationships [14]. Prior to this, the
presence of seven of ten features were needed for a clinical
diagnosis: trigonocephaly, microcephaly, flammeus nevus,
prominent eyes, micro- or retrognathia, abnormal palate,
typical BOS posture, feeding difficulties, intrauterine
growth restriction (IUGR), and severe/profound learning
difficulties [15].
Here, we report on the use of exome sequencing of a

proband with considerable overlap with the BOS pheno-
type and her parents to discover a heterozygous frame
shift variant in the additional sex combs-like 3, (ASXL3)
gene. ASXL3 is in the same gene family as ASXL1 and mu-
tations in ASXL3 appear to be associated with a disorder
that is paralogous to BOS.
Figure 1 Patient at 6 years of age. Note microcephaly, trigoncephaly, hy
fullness, anteverted nares, and posteriorly rotated ears.
Case presentation
The proband is a 6 year old African American female
(CMH000079) with microcephaly, autism, global develop-
mental delay, and metopic craniosynostosis (Figure 1). She
was born at 34-weeks gestation following a pregnancy
complicated by insulin-dependent diabetes, with maternal
blood sugar lability throughout pregnancy. The patient’s
mother was a 30 year old gravida 3, para 2 female, with
a history of 1 first trimester miscarriage. There was no
exposure to alcohol, tobacco, or drugs. Delivery was via
cesarean section for breech presentation. At birth the
proband had a weight of 1.88 kg (25% for gestational
age), length 40.5 cm (3% for gestational age), and
occipitofrontal circumference 30 cm (25% for gesta-
tional age). Apgar scores were 8 and 9 at one and five
minutes, respectively; however, on the first day of life
she was transferred to the Neonatal Intensive Care Unit
(NICU) for hyperinsulinemic hypoglycemia.
Family history was notable for a maternal half-sister

with type 1 diabetes mellitus, who also had a history of
hyperinsulinemia and hypoglycemic seizures in infancy,
but who has normal cognitive functioning. The mother
also had a history of hypoglycemia in childhood that
evolved to insulin dependent diabetes mellitus. The
mother is otherwise healthy and has no history of learn-
ing problems. The patient’s father has hypertension, but
is otherwise healthy.
In the first 18 months of life the patient was hospitalized

10 times for vomiting, hypoglycemia, failure to thrive, and
episodic irritability. Blood glucose was labile, ranging from
40–215 mg/dL (reference range 60–110 mg/dL). She had
two hypoglycemic seizures. A sulfonylurea receptor defect
was suspected because of the blood sugar lability in the
proband, sister, and mother. Molecular testing of the pro-
band and her mother identified a shared novel variant in
the ABCC8 (ATP-Binding Cassette, Subfamily, Member 8)
pertelorism, upslanting palpebral fissures, epicanthal folds, periorbital
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gene (c. 2143G >A; p.Val115Met) that was considered to
be consistent with a diagnosis of Familial Hyperinsulinemic
Hypoglycemia Type 1 (HHF1 OMIM #256450) [16,17].
She was therefore placed on diazoxide; a gastrostomy tube
and a peripherally inserted central catheter (PICC) line
were placed for nutrition and glucose stabilization.
By 18 months, length and weight were between the

10-25th percentiles but head circumference was below
the 3rd percentile. She was hypotonic and hyperreflexic.
She had dysmorphic facial features including a sloping
forehead with metopic ridging, a flat nasal bridge, wide-set
eyes and slightly posteriorly rotated ears. The nose had a
short columella and hypoplastic alae nasae. Nasolabial
folds were smooth and the upper lip had a prominent Cu-
pid’s bow. She had no other dysmorphic features. Develop-
mental milestones were delayed. At 18 months, she could
army crawl, had inconsistent visual attention, and was
nonverbal. She had episodic irritability with fits of scream-
ing lasting hours, self-injurious behavior, and very poor
sleep. She developed repetitive movements, predominately
lateral head shaking. Developmental testing demonstrated
delay: on the Cognitive Adaptive Test [18], her visual-
motor/problem-solving quotient was 33 (mean 100, SD
10); on the Clinical Linguistic and Auditory Milestone
Scale [18], language quotient was 42 (mean 100, SD 10).
Brain MRI demonstrated mild white matter loss with en-
larged lateral ventricles and mild prominence of the sulci.
Brain spectroscopy was normal. A head CT confirmed
suspected metopic synostosis. Surgical correction of
synostosis resulted in less irritability, but did not affect
development. An echocardiogram was notable for mild
pulmonary artery stenosis, an aortopulmonary collateral
vessel, and a small patent foramen ovale. Because of the
differences in her development and phenotype from
those of her mother and sister, who share the HHF1
diagnosis, additional genetic testing was obtained.
Karyotype, microarray, FMR1 gene analysis, MECP2 se-
quencing, and MECP2 deletion/duplication testing were
normal. She remained nonverbal, microcephalic, and
globally delayed with repetitive motor behaviors and
was diagnosed with autism. She began to walk at around
3 years of age. Through age 6, she continued to be a
diagnostic enigma. Several, but not all, of these features
have been reported in BOS (Table 1).
At age 6, the proband and her parents were enrolled

in an undiagnosed disease program at the Children’s
Mercy Hospital in which trios undergo a research exome
sequencing study. Briefly, DNA isolated from peripheral
blood cells was enriched for all coding exons, UTR, and
promoter regions in more than 20,000 characterized
genes using the Illumina TruSeq exome enrichment kit
and sequenced 2x101 base pairs on an Illumina HiSeq
2000 instrument (Additional file 1: Methods). Alignment
and variant characterization were conducted as stated in
the Supplement and previously described [19,20]. The pa-
tient’s exome was analysed as a trio (two healthy parents
and one affected child) for potential mitochondrial [19],
de novo dominant, and autosomal recessive causes of
disease. Zero rare (defined as frequency of 1% or less in
dbSNP v137 [21], the 1,000 Genomes Project [22] or
CPGM internal variant database [19,20]), likely patho-
genic mitochondrial variants were discovered. However,
CMH00079 was found to be heterozygous for two appar-
ent de novo mutations. A nonsynonymous de novo muta-
tion in VAX1 (c.267C >G, p.Ile89Met) and a two base pair
de novo deletion, c.1897_1898delCA (p.Gln633ValfsX13)
in ASXL3, predicted to result in a frameshift at codon 633
with substitution of a valine for a glutamine and introduc-
tion of a premature stop codon 13 amino acids down-
stream were discovered (Additional file 1: Figure S1). The
ASXL3 deletion was seen in 41 of 90 reads covering the re-
gion in CMH000079, but not observed in the mother,
CMH000080, or father, CMH000081, despite adequate
sequence coverage at that nucleotide (Additional file 1:
Figure S1). Heterozygous de novo truncating variants in
ASXL3 have recently been reported in 4 patients with a
novel clinical phenotype similar to Bohring-Opitz syn-
drome, and are consistent with this patient’s clinical
findings (Table 1, [23]). In addition, two, rare, non-
synonymous, compound heterozygous mutations were
also discovered in LYST (c.597C > G; p.Asp199Glu &
c.298C > T; p.Leu100Phe). After expert review the
variants in VAX1 and LYST were deemed unlikely to be
pathogenic as the patient did not fit clinical or genetic
descriptions of syndromic Microphthalmia type 11
(OMIM, 604294), which is an autosomal recessive dis-
order with prominent microphtalmia (not seen in our pa-
tient) or Chediak-Higashi syndrome (OMIM, 606897), a
primary immunodeficiency with partial albinism, leaving
the de novo mutation in ASXL3 as the highest candidate
disease causing mutation. Of note, analysis of ASXL1 re-
vealed two non-pathogenic inherited variants and zero de
novo mutations, ruling out Bohring-Optiz syndrome. The
ASXL3 mutation was confirmed by capillary sequencing in
a clinical lab prior to reporting to the family (Additional
file 1: Figure S2).
To better understand the rare, nonsynonymous variant

burden and impact of mutations in the ASXL3 gene, we
examined the number of variants of a frequency of less
than 1% in the ASXL3 gene in the CPGM internal vari-
ant database [19,20]. This database collates every variant
detected at the CPGM including the frequency of occur-
rence and associated clinical phenotypes. The database
contains children with suspected rare genetic disorders
as well as healthy unaffected family members. In the
more than 1,300 exomes sequenced at the CPGM, the
proband is the only patient with a heterozygous frame-
shift mutation in ASXL3, predicting a truncated gene



Table 1 Comparison of clinical features of CMH000079,
patients with ASXL3 mutations described by Bainbridge
et al. [23], and those reported in patients with BOS

CMH000079 Reported in
Bainbridge

et al.

Reported in
Bohring-Opitz

Trigonocephaly Y N Y

Microcephaly Y Y Y

Flammeus nevus N N Y

Prominent eyes Y Y Y

Micro- or
retrognathia

N Y Y

Abnormal palate N Y Y

Typical BOS
posture

N N Y

Feeding difficulties Y Y Y

IUGR Y Y Y

Severe/profound
learning difficulties

Y Y Y

Upslanting palpebral
fissures

Y NA Y

Posteriorly rotated
eats

Y Y Y

High arched palate N Y N

Deep palmar creases N* Y N

Slight ulnar deviation
of the hands

N Y N

Recurrent infections Y NA Y

Seizures N NA Y

Arrhythmias N NA Y

Apneas Y# NA Y

Epicanthal folds Y NA Y

Broad alveolar ridges N NA Y

Cleft/notch lip N NA Y

Cleft palate N NA Y

Buccal frenulae N NA Y

Depressed nasal
bridge

Y Y Y

Anteverted nares Y Y Y

Strabismus N NA Y

Anterior chamger
abnormalities

N NA Y

Myopia Y NA Y

Retinal/optic nerve
abnormalities

N NA Y

Low hairline N NA Y

Hypertrichosis Y NA Y

Fixed contractures N NA Y

Congenital
dislocations

N NA Y

Hypotonia Y (trunk) Y Y

Table 1 Comparison of clinical features of CMH000079,
patients with ASXL3 mutations described by Bainbridge
et al. [23], and those reported in patients with BOS
(Continued)

Hypertonia Y (distal) Y Y

Brain abnormalities Y Y Y

Genital abnormalities N NA Y

Renal abnormalities N NA Y

Cardiac abnormalities N NA Y

Table adapted from [15], bolded symptoms are the 10 common/specific
features of BOS.
NA- Feature not commented on.
*- Some redundancy of skin on hands and palms noted.
#- History of obstructive sleep apnea; no history of central sleep apnea.
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product. However, there are 29 single nucleotide variants
of with a frequency of less than 1 percent in our database
(Additional file 1: Table S1). Characterization of these 29
rare variants revealed 19 that were predicted to deleterious
by SIFT (Sorts Intolerant From Tolerant substitutions)
[24] and 11 predicted to be probably or possibly damaging
by PolyPhen2 (Polymorphism Phenotyping 2) [25].
Phenotypic evaluation of the samples with these rare,
non-synonymous variants revealed no patients with de-
velopmental delay, microcephaly, or other craniofacial
anomalies, suggesting that these variants are unlikely to
be pathogenic in a heterozygous state.

Discussion
In this study we provide the second report and fifth
patient with pathogenic mutations in ASXL3. Our case
provides additional evidence that, indeed, truncating
frameshift mutations in the ASXL3 gene are the cause
of a newly recognized distinct disorder characterized by
global developmental delay and craniofacial anomalies
that shares significant clinical features with Bohring-
Opitz syndrome. Our patient, CMH000076, exhibited
multiple overlapping clinical features of BOS, most not-
ably trigonocephaly, microcephaly, feeding difficulties, and
severe learning difficulties (Table 1). Unlike the previously
reported cases with ASXL3 mutations, our patient had
trigonocephaly, thus, the lack of trigoncephaly may not be
a useful in differentiating BOS from this newly recognized
condition [23]. To date, none of the five patients described
with ASXL3 mutations has displayed the typical BOS-
posture, whereas 100 percent of the 30 described patients
with ASXL1 mutations did [14], suggesting that this fea-
ture might be useful in discriminating between the two
related conditions.
The mutation in our patient was at amino coding

position 633, which is closest to subject #3 reported by
Bainbridge et al. [23] (659_660del). In contrast to subject
#3, however, CMH000079 exhibited a severe phenotype
with feeding difficulties, growth restriction and severe
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global developmental delay. Both the mutation described
here and that of the previously described subject #3
occur in an evolutionarily conserved serine-rich motif
found between residues ~600-800 [23]. The considerable
clinical variability between our patient and that of subject
#3 emphasize the need for additional studies of the com-
plex phenotype-genotype associations in this disorder and
the paralogous disorder BOS. The diagnosis of HHF1 due
to mutation in ABCC8 in this patient likely contributed to
her recurring hospitalizations and growth difficulties, and
may have impacted her early development. Importantly,
the ABCC8 variant (c. 2143G >A; p.Val115Met) was also
identified by the whole exome sequencing. Labile maternal
blood glucose during pregnancy was also considered in
the early differential of her developmental delay. However,
both the mother and sister of the proband share HHF1
diagnosis and have histories of severe hypoglycemia and
with resultant episodes of altered mental status and sei-
zures in early childhood; both have normal cognitive func-
tioning and achieved normal growth parameters.
To date, all reported potential pathogenic mutations in

ASXL3 have been either frameshifting or truncating [23].
To further examine the variant burden in ASXL3 and
the genotype-phenotype relationship, we utilized our
clinical grade variant database with more than 1,300
exomes to evaluate rare variation (defined as present in
less than 1% of samples) in the ASXL3 gene. Unlike what
has been reported in other large-scale databases, our in-
ternal warehouse does not contain samples with truncat-
ing, nonsense mutations [23]; however we did uncover 29
rare, single nucleotide variants (SNVs) (Additional file 1:
Table S1). ASXL3 is 6,747 nucleotides long and composed
of 12 exons with the 3’ exons 11 and 12 being dispropor-
tionately large; comprising 1,957 and 3,708 nucleotides,
respectively. The vast majority of the variants from our
database were in exon 11, which included our de novo
deletion or exon 12 (Additional file 1: Table S1). Interest-
ingly, although our database contains 107 samples with
neurodevelopmental disorders, none of the discovered
rare variants were in any of these patients, suggesting that
these variants are unlikely to be pathogenic in a hetero-
zygous state and providing additional support that only
frameshifting or truncating mutations in ASXL3 are
pathogenic. However, additional functional studies to
investigate the pathogenicity of ASXL3 variants are
needed to completely conclude that SNVs are expected
to be nonpathogenic.

Conclusions
In summary, we describe the use of familial exome
sequencing to discover a de novo framshift mutation in
the ASXL3 gene in a patient with feeding difficulties,
microcephaly, severe global developmental delay, and
craniofacial anomalies. Furthermore, we provide additional
evidence that heterozygous, frameshift, truncating mu-
tations in ASXL3 are the cause of a newly recognized
disorder [23]. In addition, we expand the knowledge
about disease causing mutations and the genotype-
phenotype relationships in ASXL3 and provide evidence
that rare, nonsynonymous, and predicted damaging
mutations are not associated with developmental delay
or microcephaly, rather that pathogenic are likely to be
either frameshifting or truncating.
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1897_1898delCA, p.Gln633ValfsX13 in patient with forward and reverse
PCR primers and control sample. Table S1. Variants at a frequency of
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