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Abstract

Background: Insulin resistance is a key element in the pathogenesis of type 2 diabetes mellitus. Plasma free fatty
acids were assumed to mediate the insulin resistance, while the relationship between lipid and glucose disposal
remains to be demonstrated across liver, skeletal muscle and blood.

Methods: We profiled both lipidomics and gene expression of 144 total peripheral blood samples, 84 from
patients with T2D and 60 from healthy controls. Then, factor and partial least squares models were used to
perform a combined analysis of lipidomics and gene expression profiles to uncover the bioprocesses that are
associated with lipidomic profiles in type 2 diabetes.

Results: According to factor analysis of the lipidomic profile, several species of lipids were found to be correlated
with different phenotypes, including diabetes-related C23:2CE, C23:3CE, C23:4CE, ePE36:4, ePE36:5, ePE36:6; race-
related (African-American) PI36:1; and sex-related PE34:1 and LPC18:2. The major variance of gene expression profile
was not caused by known factors and no significant difference can be directly derived from differential gene
expression profile. However, the combination of lipidomic and gene expression analyses allows us to reveal the
correlation between the altered lipid profile with significantly enriched pathways, such as one carbon pool by
folate, arachidonic acid metabolism, insulin signaling pathway, amino sugar and nucleotide sugar metabolism,
propanoate metabolism, and starch and sucrose metabolism. The genes in these pathways showed a good
capability to classify diabetes samples.

Conclusion: Combined analysis of gene expression and lipidomic profiling reveals type 2 diabetes-associated lipid
species and enriched biological pathways in peripheral blood, while gene expression profile does not show direct
correlation. Our findings provide a new clue to better understand the mechanism of disordered lipid metabolism
in association with type 2 diabetes.
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Background
Skeletal muscle and hepatic insulin resistance are key
elements in the pathogenesis of type 2 diabetes mellitus
(T2D) [1]. However, T2D is caused by not only insulin
resistance [2], but also a heterogeneous cluster of condi-
tions rather than a uniform entity [3]. Due to both
environment and heredity heterogeneity, gene expres-
sion profiling is limited in exploring molecular mechan-
ism of type 2 diabetes [4,5].
As a comprehensive indicator, plasma free fatty acids

were assumed to mediate the insulin resistance. Lipid
profiling has already been applied in type 2 diabetes stu-
dies [6,7], such as free fatty acids built linkage between
the resistance and obesity [8]. However, the relationship
between lipid and glucose disposal remains to be
demonstrated across liver, skeletal muscle, and blood
[9,10]. Here, we have integrated lipidomic analysis with
gene expression profiling to discover the relationship
between versatile lipid species and bioprocesses that are
associated with type 2 diabetes. Using our model analy-
sis, the statistically significant biological pathways were
retrieved, and the findings provide a new strategy to
link blood lipid species and illuminate the mechanism of
insulin resistance associated with lipid and gene expres-
sion in blood.

Results
Study subjects
This study comprised a balanced distribution of the stu-
died subjects in gender and race: among 60 controls, 28
were African American (AA) including 14 females and
14 males; 32 were Caucasian (CAU) including 14 females
and 18 males. Among 84 patients with T2D, 44 were AA
including 22 females and 22 males; 40 were CAU includ-
ing 23 females and 17 males. As compared to AA, CAU
had a significantly higher level of blood triglycerides
(TG) in both the controls (106 ± 54.3 mg/dl in AA vs.
153 ± 77.8 mg/dl in CAU, p = 0.0009), and the patients

(157 ± 128 mg/dl in AA vs. 207 ± 98.3 mg/dl in CAU,
p = 0.037). There were no significant differences in other
studied clinical parameters between two races (data for
racial differences were not shown). As compared to all
controls (mixed), patient’s group was 4.5 years older, had
significantly higher body mass index (BMI), blood TG
and fasting glucose, and lower high density apolipopro-
tein (HDL). There were no differences in low density
apolipoproteins (LDL) and total cholesterols (Table 1)
between controls and T2D patients.

Plasma lipid profile reveals phenotype factors
Plasma lipid profile is associated with various types of
diseases or phenotypes. In order to illustrate the rela-
tionship between lipid species and gene expression level
of peripheral blood, we performed unsupervised explora-
tory factor analysis and found significant linkages
between lipid profile and phenotypes, including race,
sex, and diabetes at the significant levels 1.87e-6, 9.28e-
4, and 3.17e-3 by Wilcoxon Rank Sum Test, respec-
tively. As shown in Figure 1, three types of CE species
(C23:2CE, C23:3CE, C23:4CE) were found to be posi-
tively correlated with diabetes, while three types of ePE
were shown to be negatively correlated. For sex, more
than five and six lipid species were found to be corre-
lated: PE40:5, PE36.4, and PE34.1 tend to be higher in
female samples, while LPC18:2 and LCP18:1 were a little
higher in male samples. For race, two types of SM
(SM22:1 and SM22:0) were a little higher in black, while
PE (PE34:2, PE36:3) and PI (PI36:1, PI38:3) were higher
in white samples.

Phenotype factors have lesser effect on gene expression
profile
Unlike the lipid profile, the gene expression profile does
not show direct correlation with phenotype indicators,
according to both a hierarchical clustering (Figure 2) and
principal component analysis (PCA). As shown in the
clustering, all of the data can be divided in to four main
classes, but none of the factors (sex, diabetes, age, and
race) were significantly correlated with main classes. How-
ever, race and sex were shown to be non-randomly distrib-
uted in the dendrogram, which implies underlying
correlation with gene expression profile (GEP). Moreover,
significant correlation was identified between GEP and
phenotype factors based on PCA scores in the correlation
test. GEP was correlated with race, and many genes may
be differentially expressed between black and white sam-
ples. Race was the factor most known to be GEP-corre-
lated, and tested as correlated with the third component
(p = 7.20e-4, Kruskal test), which contains 5.8% variances.
Diabetes was then tested to be correlated with the fifth
component (p = 8.67e-3, Kruskal test), which contains
4.7% variances, and sex with the tenth component (p =

Table 1 The clinical characteristics of the study subjects

Normal controls
(n = 60)

Diabetic
(n = 84)

Age, yr (mean ± SD) 58.5 ± 16.1 63 ± 13

Sex (female/male) 28/32 45/39

Race 32 Caucasian 40 Caucasian

28 African American 44 African American

Body Mass index (kg/m) 30.1 ± 7.3 34.2 ± 8.4**

Triacylglycerol (mg/dl) 134 ± 76.9 186 ± 113.8**

HDL cholesterol (mg/dl) 56.6 ± 17.5 49.1 ± 15.4**

LDL cholesterol (mg/dl) 112 ± 44.8 109.8 ± 36.5

Total cholesterol (mg/dl) 197 ± 44.8 195 ± 46.8

Glucose (mg/dl) 88.8 ± 10.8 142.7 ± 56.8***

Data are mean ± SD. Statistical analyses were performed using the Student’s
t-Test. **p < 0.05 ***p < 0.001, values are based on differences from controls.
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2.02e-2, Kruskal test) containing 2.1% variances. There is
almost 87.4% variance or unknown information in GEP.
Direct differential expression genes were difficult to
understanding in terms of biological meanings, which
enriched in seemingly unrelated pathways (Table 2) such
as ECM-receptor interaction and Riboflavin metabolism.

Significant biological pathways link gene expression
profile with lipid profile and diabetes
To overcome the limitation of the unknown variances in
gene expression profile, and to recover the relationship

between gene expression profile and lipid profile, PLS
regression model was adopted. A list of significant path-
ways from the gene expression profile was found to
explain the lipid profiles, and also the lipid profile asso-
ciated T2D (Table 3). Six of the top ten pathways have
direct linkage with diabetes, including one carbon pool
by folate, arachidonic acid metabolism, insulin signaling
pathway, amino sugar and nucleotide sugar metabolism,
propanoate metabolism, and starch and sucrose metabo-
lism. None of them can be retrieved from a differential
expression gene selection.

Figure 1 Factor analysis of lipidomic profile. The upper panel is a heatmap of factory analysis. Factor loadings, where race, sex, and disease
correspond to the three factors. Color depth represents for factor loadings of 71 different lipid indicators, positive loading were shown in red
and negative loadings in green. The lower panel is a boxplot of the important loading lipid for three known factor, including diabetes, sex and
race. The lipid levels were scaled to the range 0 to 1, and each lipid corresponds to two boxes with different factor levels.
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Figure 2 Hierarchical clustering of all samples in filtered data set. Factors such as sex and type were represented by black or white blocks:
female was in white, male in black; diabetes in black, non-diabetes in white; Asian as 2, blacks as 3, Indian as 4, Mexican as 5 and 6, whites as 7.
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Discussion
Gene expression profiling was generally adopted for dia-
betes in the levels of cell lines and drug response [11,12].
Considering the environment and heredity heterogeneity,
the homogeneity is not easy to conclude from a snapshot
of the transcriptome for a wide cohort. Thus, we take
lipid as an assistant to guide the exploration of gene-level
mechanism of insulin resistance associated with lipid and
gene expression in blood.
As expected, a major finding in our study is that very

limited variance of transcriptome can be illustrated by
the known phenotype factors. However, lipid profile
shows an unexpected capacity on revealing the consid-
ered phenotype factors. By a lipid-guided exploration, a
set of significant biological pathways and suspected genes
were identified to be insulin resistance-associated, includ-
ing one carbon pool by folate, arachidonic acid metabo-
lism, and insulin signaling pathway, which cannot be
directly found by gene expression profile. Our findings
may prompt the understanding of the lipid associated
gene-level mechanism of insulin resistance of type 2 dia-
betes mellitus in blood.

Materials and methods
Subjects and clinical laboratory data
The study was approved by the Institutional Review
Board of Tougaloo College. All subjects provided writ-
ten informed consent for this study. T2D was diagnosed
based on American Diabetes Association (ADA) [5] and

characteristic symptoms of diabetes, a higher BMI, and
a fasting plasma glucose > 126 mg dl-1 or a 2 h plasma
glucose during an oral glucose tolerance test of > 200
mg dl-1. A total of 144 blood samples from healthy con-
trols (n = 60, 32 Caucasians and 28 African Americans),
and T2D (n = 84, 40 Caucasians and 44 African Ameri-
cans) were collected. All subjects were evaluated by age,
sex, race, body mass index (BMI), triacylglycerol (TG),
high-density lipoprotein (HDL), low-density lipoprotein
(LDL), total cholesterol (TC), and glucose levels.

Microarray experiments
Total RNA from 8-10 mls peripheral blood WBCs was
obtained using LeukoLock™ Total RNA system (Ambion
Inc, Austin, TX) according to the manufacturer’s instruc-
tions. The quantity and quality of the isolated RNA were
evaluated by Nanodrop spectrophotometry and Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA). Gene expression profiling was peerformed using
Agilent Whole Human Genome1 (4 X44K) Oligo arrays
with ~20,000 genes represented (Agilent Technologies,
Palo Alto, CA). Each sample was hybridized with a
human universal RNA control (Stratagene, La Jolla, CA).
500 ng of total RNA was amplified and labeled using the
Agilent Low RNA Input Fluorescent Linear Amplifica-
tion Kit, according to manufacturer’s protocol. For each
two color array, 850 ng of each Cy5- (universal control)
and Cy3-labeled (sample) cRNA were mixed and frag-
mented using the Agilent In Situ Hybridization Kit

Table 2 Enriched pathways of differentially expressed genes.

KEGGID P-value Odds ratio ExpCount Count Size Term

4510 2.95E-05 5.284093 2.478357 11 200 Focal adhesion

4512 7.66E-05 7.804973 1.053302 7 85 ECM-receptor interaction

740 2.81E-04 31.125 0.13631 3 11 Riboflavin metabolism

5146 9.78E-03 4.162056 1.313529 5 106 Amoebiasis

P-value is the significant level of KEGG pathway enrichment based on fisher exact test [16]. Odds Ratio and ExpCount are the corresponding Odds Ratio and
expect observed number. Count is the number of differentially expressed genes in corresponding pathway, and size is the total gene number.

Table 3 Enriched pathways of differentially expressed genes

Rank KEGG Path ID KEGG pathway name Top 5 loadings gene

1 path:hsa00670 One carbon pool by folate “MTHFD2L“ “ALDH1L1“ “MTFMT” “ALDH1L2” “MTR”

2 path:hsa00590 Arachidonic acid metabolism “PTGS2“"GPX7” “PLB1” “CYP4A11""GPX2”

3 path:hsa04910 Insulin signaling pathway “FLOT2” “PRKAB2"”MAPK8“ “PPP1R3B“ “PIK3CB”

4 path:hsa05110 Vibrio cholerae infection “TJP2” “ATP6V1C1” “ADCY9""ARF1” “ATP6V1H”

5 path:hsa04020 Calcium signaling pathway “HTR4” “TRPC1""ADCY8""CHRM5"”GRIN2A“

6 path:hsa00520 Amino sugar and nucleotide sugar metabolism “CHI3L1” “HK2“"NPL"”HEXA“ “UAP1L1”

7 path:hsa04062 Chemokine signaling pathway “CXCL5“"CXCL10” “PF4V1“”CCL8“ “CXCL11“

8 path:hsa00640 Propanoate metabolism “MLYCD” “ALDH2” “ACSS1” “PCCB""ALDH3A2”

9 path:hsa00500 Starch and sucrose metabolism “UGT2B17” “UGT2B15” “MGAM""HK1” “AMY2B“

10 path:hsa00240 Pyrimidine metabolism “DPYD""ENTPD1""TXNRD1""TK2” “TYMP“

Top Ten Enriched Pathways of most Factor Loading Genes. KEGG Path ID represents for KEGG pathway ID[ 19], which is ranked by pvalues of enrichment
analysis. Pathways in gray lines have at least one bold marked gene, which is selected as a feature in gene based classifier. And the pathways in gray lines are
the pathways that directly linked with diabetes r by the marked genes.
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protocol. Hybridizations were performed for 17 hours in
a rotating hybridization oven according to the Agilent
60-mer oligo microarray processing protocol prior to
washing and scanning with an Agilent Scanner
(G2565AA, Agilent Technologies, Wilmington, DE).
Arrays were processed and background corrected with
default settings for all parameters with the Agilent Fea-
ture Extraction software (v.9.5.3.1).

Microarray data analysis
Microarray data analyses were processed with GeneSpring
version 7.0 and 10.0. The sample quality control was
based on the Pearson correlation of a sample with other
samples in the whole experiment. If the average Pearson
correlation with other samples was less than 80%, the sam-
ple was excluded for further analysis. More detailed analy-
sis was done similar to previous description [13].

ESI-MS/MS lipid profiling
The same subjects that used for microarray experiments
were also used for lipid profiling. Plasma was directly
used for the lipid profiling, which was conducted as
described previously [14].

Statistical analyses
To evaluate the correlation between various type of data
and phenotypes, two-side Kruskal’s test were performed in
R [15]. Pathway analysis of the expression data was per-
formed by Fisher exact test with GOstats [16] package.
Factor analyses of lipid profile were also preformed in R,
where varimax rotation was used to seek a basis that most
economically represents each individual. Feature selection
and cSVM classifier were implement with CMA [17]. PLS
regression model were built [18] with leave-one-out cross-
validation.
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