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Abstract

drastic deterioration of T1D.

on DNBs validated the computational results.

Background: Type 1 diabetes (T1D) is a complex disease and harmful to human health, and most of the existing
biomarkers are mainly to measure the disease phenotype after the disease onset (or drastic deterioration). Until
now, there is no effective biomarker which can predict the upcoming disease (or pre-disease state) before disease
onset or disease deterioration. Further, the detail molecular mechanism for such deterioration of the disease, e.g,,
driver genes or causal network of the disease, is still unclear.

Methods: In this study, we detected early-warning signals of T1D and its leading biomolecular networks based on
serial gene expression profiles of NOD (non-obese diabetic) mice by identifying a new type of biomarker, ie,
dynamical network biomarker (DNB) which forms a specific module for marking the time period just before the

Results: Two dynamical network biomarkers were obtained to signal the emergence of two critical deteriorations
for the disease, and could be used to predict the upcoming sudden changes during the disease progression.

We found that the two critical transitions led to peri-insulitis and hyperglycemia in NOD mices, which are
consistent with other independent experimental results from literature.

Conclusions: The identified dynamical network biomarkers can be used to detect the early-warning signals of T1D
and predict upcoming disease onset before the drastic deterioration. In addition, we also demonstrated that the
leading biomolecular networks are causally related to the initiation and progression of T1D, and provided the
biological insight into the molecular mechanism of T1D. Experimental data from literature and functional analysis

Background

Biomarkers or biological markers in biology are indica-
tors of biological state for living organisms, which are
objectively used to measure and evaluate normal biologi-
cal processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention. In medicine, a
biomarker as an indicator is used to examine organ
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function or other aspect of health. However, traditional
molecular biomarkers are usually used to examine only
the current disease status of an organ based on the mea-
surements of individual proteins or metabolites. It means
that a traditional biomarker measures the disease state of
an organ, after the organ has presented the characteristic
of disease. In other words, it is to distinguish disease
state from normal state, rather than early diagnosis. Gen-
erally, a disease progression can be divided into three
stages, i.e., normal state, pre-disease state, and disease
state [1], as shown in Figure 1A. A normal state is a rela-
tively healthy stage including the chronic inflammation
period or the period that the disease is under control,
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Figure 1 Disease stages and disease biomarkers. A). three stages during disease progression, i.e, normal state, pre-disease state and disease
state. A normal state is a relatively healthy stage including the chronic inflammation period or the period during which the disease is under
control, whereas a pre-disease state is the limit of the normal state just before the critical transition of the disease. At this stage, the pre-disease
state is considered to be reversible to the normal state if appropriately treated. However, if the system passes over the critical point to the
disease state, it usually becomes very difficult irreversibly to the normal state. B). Traditional biomarkers are indicators on the disease state and
static measurements on the disease, and can distinguish disease samples from normal. C). The dynamical network biomarkers (DNBs) are signal
of the pre-disease state and dynamical measurements on the pre-disease, and can distinguish pre-disease samples from normal samples, thus

providing the early-warning signals for the pre-disease state.

whereas a pre-disease state is the limit of the normal
state just before the critical transition. At this stage, the
pre-disease state is considered to be reversible to the nor-
mal state if appropriately treated. However, if the system
passes over the critical point to the disease state, it
becomes very difficult to be reversed to the normal state
even by advanced medical treatment. Therefore, it is cru-
cial to identify the pre-disease state (or achieve early
diagnosis) so as to take the prevention action, which not
only save the human lives but also medical resources.
Hence, detecting pre-disease state or early-warning signal
before the disease onset is more useful and important for
the prevention of a disease. Although more and more
computational and biological methods were developed to
identify the biomarkers in different fields of disease [1-3],
most of these biomarkers are mainly to distinguish dis-
ease state or phenotype from normal state, rather than to
identify the pre-disease state, as shown in Figure 1B.

Recently, a novel theoretical method has been developed
to detect the pre-disease state before the disease state or
onset [1], based not on traditional static biomarkers but
on a new type of dynamical network biomarkers (DNBs).
Because of the early-warning signal of the pre-disease
state, a DNB (a group of molecules, e.g., genes, RNAs,
proteins or metabolites) can directly be used to early
diagnosis of the disease. In addition, DNB is of signifi-
cance from both biological and medical viewpoints since
it has been proven to be the leading network of the dis-
ease, which makes the first move from the normal state
to the disease state, and therefore is strongly related to
the driver genes or causal genes of the disease. As shown
in Figure 1C, DNB is a new concept and indicator which
has strong fluctuations among pre-disease samples, com-
pletely different from the conventional biomarkers which
are required to keep consistent values for the respective
disease and normal samples.
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Type 1 diabetes (T1D) is a form of diabetes mellitus
that is a clinically heterogeneous group of glucose intol-
erance syndromes, and usually has an autoimmune T
cell-mediated etiology in which the pre-diabetic state is
characterized by development of autoantibodies against
certain proteins expressed by B cells, including insulin
[4,5]. T1D is a complex disease and threatens the
human health in the world, and the prediction of early-
warning signals for T1D before the disease onset has
not been reported. Also, the detail molecular mechan-
ism for the disease progression, e.g., driver genes or cau-
sal network of the disease, is still unclear.

The non-obese diabetic (NOD) mouse strain [4-7] is a
useful and important model of autoimmune disease and
also an excellent tool for understanding the onset
mechanism of T1D. The pancreatic lymph nodes are an
important organ to preserve the antigen-specific T cell
and surround the pancreatic islet [8,9]. And many
reports have considered that they are related to T1D
[4,6] and a number of research works used them to
identify the potential biomarkers of T1D. In this study,
instead of traditional molecular biomarker, we identify
the pre-disease state of T1D by the new type of biomar-
ker, i.e., dynamical network biomarker which forms a
specific module of molecules (e.g., genes, RNAs, pro-
teins, or metabolites) for marking the time period just
before the drastic deterioration of T1D. Specifically, we
detected early-warning signals of T1D and its leading
networks based on the serial gene expression profiles of
pancreatic lymph nodes in NOD mice by identifying
two dynamical network biomarkers (DNB) in two differ-
ent time points. By the theory of early-warning signals
of complex diseases [1], a dynamical network biomarker
will form a specific module in the pre-disease stage or
near critical point before disease phenotype occurrence.
Hence, the two critical points which were identified by
the two respective DNBs would correspond to the early
stages of disease onset for T1D. Actually, it is consistent
with the reports about the pre-disease stage or disease
onset time point of NOD mouse in the public references
[5,6]. In addition, the two DNBs are also the leading
networks, which are closely related to the driver mole-
cules of the disease progression. Therefore, the two
DNBs not only can be used to predict the upcoming
disease onset before the drastic deterioration of the T1D
phenotype, but also can reveal the molecular mechanism
on the disease initiation and progression. Moreover, the
computational results and the leading networks were
also validated by experimental data from literature and
functional analysis of the two DNBs. In particular, we
found that the two DNBs could affect several famous
pathways in T1D, such as “T cell receptor signaling
pathway”, “NF-kappa B signaling pathway” and “Insulin
signaling pathway”, on the pre-disease stages of the
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disease onset, which are all consistent with the existing
results and other independent experimental results of
literature.

Methods

Gene expression profiles

The non-obese diabetic (NOD) mouse is a useful and
important model for autoimmune T1D. The pancreatic
lymph nodes are the site of islet-cell-specific self-antigen
presentation and important for the development of
T1D. The gene expression profiles of pancreatic lymph
nodes for T1D were obtained from GEO database (ID:
GSE15150). The dataset includes the expression profiles
of pancreatic lymph nodes of 35 female NOD mice sam-
ples at 6 different time points (10 days (7 samples), and
4 weeks (6 samples), 8 weeks (4 samples), 12 weeks
(7 samples), 16 weeks (6 samples), and 20 weeks of age
(5 samples)).

The original data was normalized by the logarithm
ratios: Logl0 (NOD processed signal / control signal),
but this ratio cannot be directly used to calculate the
correlation between genes. So the normalized data was
transformed back to the general ratio (NOD processed
signal / control signal) by exponent 10 operation.

Criteria for DNB or the leading network

DNB can be detected from high throughput data (e.g.,
gene expression, protein expression, or metabolite
expression data) based on three conditions, which are
both theoretically and numerically proven [1]. Specifi-
cally, when the system approaches the critical point or
pre-disease state, a dominant group or DNB appears
and these DNB (or dominant group) members satisfy
the following three conditions.

1. Pearson correlation coefficients (PCCs) between any
pair of members in DNB become very high (i.e., drastic
increase).

2. PCCs between one member of DNB and any other
molecule of non-DNB become very low (i.e., drastic
decrease).

3. Standard deviation (SD) for any member of DNB
becomes very high (i.e., drastic increase).

Actually, it can also be shown that SD for any mem-
ber of non DNB, and the PCCs between non-DNB
members have no significant change. Clearly, the mole-
cules in the dominant group are strongly and dynami-
cally correlated in the pre-disease state. These molecules
in the dominant group are expected to form a subnet-
work or functional module from a network viewpoint,
i.e, DNB. Therefore, the three conditions are considered
as three criteria to detect the DNB or early-warning sig-
nals of the pre-disease state. Besides, since the three cri-
teria are in fact the generic properties of the DNB
members in dynamics whenever the system approaches
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a critical tipping point, these properties should lie in
many complex diseases with sudden deterioration phe-
nomena. The three measurable conditions can be sum-
marized into a single index to detect the DNB, i.e., eqn.
(1) as described next in details. Note that DNB is also
the leading network, which makes the first move into
the disease state from the normal state, and therefore, is
causally related to the initiation and progression of the
disease [1].

Hierarchical clustering

In every time point, the gene expression data was used to
produce the modules or candidate DNBs by hierarchical
clustering based on the distance of Pearson Correlation
Coefficient (PCC), according to the three conditions of
the DNB. In the hierarchical clustering, two modules can
be combined into a new module, only if the average PCC
inside the new module was greater than threshold PCC.
The threshold also was used to control the end of
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clustering (Figure 2). For balancing the different sample
size in every time point, we utilized an empirical rando-
mization method to choose thresholds of high PCC in
hierarchical clustering. Firstly, two random number vec-
tors with the same length of the sample size in this time
point were randomly produced and then the PCC
between them was calculated; secondly, the random pro-
cess was repeated 100,000 times and all of the PCCs were
sorted by descending order; Thirdly, the PCC at the 5%
position of the 100,000 descending order PCCs was
regarded as the threshold for high PCC in this time
point, and the average of 100,000 PCCs can be consid-
ered as the basic PCC value in this time point.

Identification of dynamic network biomarkers (DNB)

The dynamic network biomarkers (DNB) were identified
by a new method [1,17] which can be utilized to detect
the early-warning signals before the onset of T1D,
according to the three conditions. The three conditions
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are summarized into a single index or score (i.e., a com-
posite index) by the following formula:

_ SD;, - PCC;,

’ 1
PCCoy @

where s is the score of a module or a candidate DNB,
SDj, is the average standard deviation of genes expres-
sion in the module, PCC;, is the average Pearson corre-
lation coefficient among genes inside of the module, and
PCC,,; is the average Pearson correlation coefficient
between inside and outside genes of the module. Clearly,
(1) represents the three conditions of the DNB.

For every time point, the score of every module was
calculated by the above formula based on the gene
expression of the module in this time point and the best
module with the highest score was regarded as the
potential DNB in this time point. Then, these identified
potential DNBs in every time point were compared each
other, and the highest score DNB in all time points was
the DNB for detecting the early-warning signals before
the disease onset (Figure 2). The time point correspond-
ing to the DNB was called critical point, which is the
early stage of the disease onset. Also, the DNB is the
leading network, which leads the system to the disease
state.

Regulated gene of the DNB

The regulated genes by the identified DNB module are
picked up from the onset time point. The genes, which
are highly correlated with DNB module in onset time
point and are also differential expression genes between
the critical point and onset time point, are regarded as
regulated genes by the DNB module. If a gene is highly
related with at least 10 genes of DNB, we deem that the
gene is highly related to the DNB module. Here the
threshold of high relation is set to 0.05 of P-value of
PCC and the threshold of differential expression is 0.05
of P-value of student’s t test.

Functional analysis of the DNB

The confidence of the identified DNB which is asso-
ciated with early-warning signals before the disease
onset can be proven by the evidence of disease pheno-
type from published references. The genes in the identi-
fied DNB have been linked and correlated to some
pathways of KEGG (http://www.genome.jp/kegg/), and
these pathways can be related to the disease initiation
and progression. First, the genes of the DNB were
mapped to pathways by the KEGG Mapper tools (http://
www.genome.jp/kegg/mapper.html) which are the online
tools for KEGG mapping. Subsequently, the correlations
between the DNB and each pathway in KEGG were cal-
culated in two time points that are the critical point and
the disease onset point.
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Results

Potential DNBs in every time point

Based on the criteria of DNB for PCC, we conducted the
hierarchical clustering. In every time point, the genes were
divided into different groups by hierarchical clustering
based on expression data in this time point. The PCC was
used as the distance of the hierarchical clustering, and a
threshold can be used to control the end of the clustering.
For balancing the different sample size for gene expression
profiles in every time point, we utilized an empirical ran-
domization method to choose thresholds of high PCC at
the same level in hierarchical clustering. We chose the 5%
position of sorted random PCC values, and it means that
there is only 5% probability to randomly obtain such a
high PCC value. In every time point, every module’s score
was calculated based on the expression data in this time
point by formula (1), and the module of the highest score
was regarded as a candidate or potential DNB in this time
point. Therefore, we got 6 potential DNBs in 6 different
time points and the scores of the potential DNBs were
shown in Figure 3. We found that the scores of potential
DNBs in the first (10 days) and the third (8 weeks) time
point were obviously higher than other 4 time points, so
the two potential DNBs in the first and the third time
points were considered the real DNBs for signaling the
drastic deteriorations of the disease during the progression
of T1D. The first DNB in the first time point included 95
genes (Additional file 1) that were enriched to the biologi-
cal processes of “regulation of cellular process”, “cellular
nitrogen compound metabolic process”, “ncRNA proces-
sing” and so on by DAVID online tools (http://david.abcc.
ncifcrf.gov/). The second DNB in the third time point
included 96 genes (Additional file 1) that were enriched to
the biological processes of “apoptosis”, “programmed cell
death”, “cell death” and so on. The apoptosis of pancreatic

Score of potential DNB

Time points
Figure 3 Scores of potential DNBs in every time point. The
scores in the first and third time points are obviously higher than
other time points, and therefore, the molecule modules in the first
and the third time points are considered as the DNBs, which signal
the drastic deteriorations of the disease during the progression of
T1D.
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B-cell plays an important role in the development of insu-
lin deficiency and the onset progression of T1D, and the
cell death of pancreatic B-cell also causes insulin defi-
ciency and leads to hyperglycemia to trigger to diabetes
[10,11]. The second DNB is early-warning signals of
12 weeks which is the time point of onset of T1D with
hyperglycemia in female NOD mice [6,12]. Hence, the
functional enrichment of the second DNB is consistent
with not only the reports of existing literature, but also the
phenotype of glycemic change.

Early-warning signals of DNB in T1D development

The two identified DNBs were exhibited by the score of
module in every time point of T1D development, shown
as Figure 4. From Figure 4 A-D, we can see that the first
(10 days) time point was the critical time point of the first
DNB, so the disease onset will appear at the next time
point (4 weeks) of the critical point. In the critical point,
the genes in the DNB module were strongly fluctuated
with high deviation in their gene expression, were highly
correlated with each other inside the module, and were
lowly correlated with the genes not in the DNB module.
Such a clear early-warning signal will appear at the critical
point, at which that the genes in the DNB module are clo-
sely interconnected each other and hardly connected with
those genes not in the DNB module. The disease pheno-
type of T1D would present after the critical time point. It
is consistent with the report of public references about the
development of T1D in female NOD mice [5,6,12]. The T
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cell initiation and lymphocytic infiltration would occur in
the 4 weeks of age for female NOD mice [12], and the
immune cell infiltrates surround the islet (peri-insulitis) at
approximately 3 to 4 weeks of age in NOD mice [5,6].
Clearly, the first (10 days) time point is the critical point
and the DNB can be used to detect the early-warning sig-
nals of the phenotype of peri-insulitis on the initiation
stage of T1D.

From the score of the second DNB in every time point
(Figure 4 E-H), we can see that the third (8 weeks) time
point had the high score which can be the critical time
point of the DNB module. Because the disease onset will
appear at the next time point of the critical point, the
phenotype of disease onset would present at the fourth
time point (12 weeks). It is consistent with the reports of
public reference and some biological experiments about
the development of T1D in female NOD mice [5,6,12,13].
Disease onset of diabetes usually occurs at 12 to 14 weeks
of age in female NOD mice[6], and destructive insulitis,
leading to overt hyperglycemia, occurs around 12 weeks
of age or later [5,12,13]. It validates that the third (8
weeks) time point is the critical point and this DNB can
be utilized to detect the early-warning signal of pheno-
type before the disease onset of T1D.

Molecular mechanism of DNB

For analyzing the mechanism of DNB during the devel-
opment of T1D, the genes of the first DNB were
mapped to the pathways of mouse in KEGG, and only
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Figure 4 The criteria of early-warning signals for T1D in NOD mice. A) is the composite index for the first DNB in first time point, which
combines the three conditions of DNB, i.e, B) standard deviation (SD), C) inner Pearson correlation coefficient (PCC;,) and D) outer Pearson
correlation coefficient (PCCqyy). E) is the composite index for the second DNB in third time point (which also combines the three conditions of
DNB, ie, F) SD, G) PCC;, and H) PCC,y. For balancing the different sample size for gene expression profiles in every time point, each Pearson
correlation coefficient in the figure was divided by the average value of 100,000 times repeated randomly Pearson correlation coefficient with
same sample size in this time point.
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12 genes were identified from 21 pathways in KEGG. It
means that many genes in the DNB would take part in
more than one pathway and could affect the cross-talk-
ing among different pathways. In these pathways, the
“Insulin signaling pathway” is an important one that reg-
ulates many metabolism and signal pathways, and is also
associated with T1D development. It also includes some
virus related pathway in the DNB mapped pathways,
such as “Epstein-Barr virus infection”. It is consistent
with the theory which considers that T1D is a virus-trig-
gered autoimmune response [14].

The genes of the second DNB were also mapped to
the pathways of mouse in KEGG, and 11 genes were
identified from 23 pathways in KEGG. There were also
many genes which took part in more than one pathway,
and they could affect the cross-talking among different
pathways. There were three immune related pathways in
which the genes of the second DNB participate, such as
“T cell receptor signaling pathway”, “NF-kappa B signal-
ing pathway” and “Intestinal immune network for IgA
production”. Because T1D is an autoimmune disease
and pancreatic lymph nodes are a major tissue to pre-
serve T cell in pancreas, the “T cell receptor signaling
pathway” would play an important role in the disease
onset of T1D. The “NF-kappa B signaling pathway” is
an important pathway in the T cell autoimmune and
related to the onset of T1D [13,15].

T1D is a form of diabetes mellitus that results from
autoimmune destruction of insulin-producing beta cells
of the pancreas, and usually has an autoimmune T cell-
mediated process in which insulin would be against by
autoantibodies [4]. “T cell receptor signaling pathway”,
“NEF-kappa B signaling pathway” and “Insulin signaling
pathway” are three important pathways which are
related to the disease onset of T1D. The correlation
between the DNB and pathways was calculated by
counting the number of high correlation pairs between
genes in DNB and in pathway based on the threshold of
5% position of descending order random PCC. From the
critical point to disease onset point, the number of high
correlation gene pairs between DNB and different
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pathways was shown in Table 1. We can see that there
are more genes of the pathway to correlate with DNB
genes in disease onset point than critical point. It is pos-
sible that there are few relationships between DNB and
pathways in the critical point, but many genes of DNB
would take part in the regulation process for these
important pathways in the disease onset point.

The regulated genes by DNB

If the DNB can modulate the T1D onset in next time
point after critical transition, the regulated genes by
DNB should be T1D related genes. Hence, the regulated
genes by two DNBs were separately picked up, and the
T1D related genes were identified based on publication
literature by T1Dbase website (http://www.tldbase.org/).
Finally, 20899 genes were mapped to T1Dbase database
from 21000 genes of NOD mouse genome, and 3458 of
these genes were identified as T1D related genes based
on existing databases and publication literature. The
number of the regulated genes by two DNBs were sepa-
rately 1049 (additional file 2) and 1453 (additional
file 3), and 209 and 283 of these regulated genes were
identified as T1D related genes (Figure 5). Hypergeo-
metric distribution was used to test the enrichment of
regulated genes in the T1D related genes, and P-value of
the regulated genes by the first DNB is 0.00177 and by
the second DNB is 0.0012. We can see the regulated
genes by two DNBs are significantly enriched to T1D
related genes, and therefore, the two DNBs are really
early-warning signals for development of T1D.

Bridge between two DNBs

In the regulated genes by the first DNB, we found that 4
genes ('2410003K15RIK’, ‘TIMMS50’, ‘HOXA4’, ‘LIN28A’)
are also in the second DNB, so it is possible that the
second DNB can be affected by the first DNB and there
is a bridge link between the two DNBs. We picked up
the high correlation genes with the second DNB from
the regulated genes by the first DNB, and differential
expression was used to filter the selected genes. Finally,
110 genes (additional file 4) ware identified to link the

Table 1 Number of genes and interaction pairs with high correlations between DNB and pathways.

Pathway name Time points The first DNB The second DNB
DNB pathway pairs DNB pathway pairs
T cell receptor signaling pathway Critical point 93 32 493 96 7 327
Disease onset point 89 105 677 93 107 844
NF-kappa B signaling pathway Critical point 94 28 372 96 9 425
Disease onset point 92 87 588 89 87 705
Insulin signaling pathway Critical point 95 31 606 59 5 152
Disease onset point 94 133 839 93 134 1023

The column item “DNB” represents the number of genes in DNB which are highly correlated with the pathway in corresponding time point, the item “pathway”
denotes the number of genes in the pathway which are highly correlated with the DNB in corresponding time point, and the item “pairs” means number of
gene pairs which are highly correlated between genes separately in DNB and pathway in the corresponding time point.
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Figure 5 The distribution of the regulated genes by DNB and T1D related genes in existing databases and publication literatures. A)

The distribution of regulated genes by the first DNB and T1D related genes, and B) the distribution of regulated gene by the second DNB and

T1D related genes.
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two DNBs. Function enrichment analyses of the 110
genes showed that function of these genes was enriched
to “mitochondrion” and “electron transport”. Mitochon-
dria are important subcellular fractions for cell apoptosis
and play a crucial role in regulating cell death, and
apoptosis can lead to hyperglycemia and trigger to dia-
betes onset [10,11]. The electron transport in mitochon-
drion is an important process for redox reactions and
oxidative stress which can cause to islet cell autoimmu-
nity and lead to T1D [16]. Hence, it is possible that the
deterioration process from peri-insulitis to diabetes
(hyperglycemia) is linked by the redox reactions and
oxidative stress based on mitochondrion electron trans-
port, and dysfunction of mitochondrion electron trans-
port makes the disease worsening.

Discussion

During the development of T1D, the disease progression
will pass a pre-disease stage which is a critical transition
period from normal stage to disease stage. After it passes
through the critical point, the disease progression is gen-
erally irreversible [1]. As a novel biomarker, dynamical
network biomarker (DNB) was developed to detect such
a critical point just before the disease onset. In this study
by proposing a new computational algorithm, we identi-
fied two DNB modules which can be separately used to
predict the peri-insulitis on the early stage of diabetes
and diabetes onset with overt hyperglycemia.

We consider that there are two kind of potential
mechanisms for the DNB triggering the disease deteriora-
tion or phenotype change. On the one hand, the genes in
the DNB were gathered together in the critical point, so
they could interact and affect one another. Because most

genes in DNB take part in more than one pathway, so
these interactions and effects could make these genes devi-
ate from the major pathway and regulate the disease
related pathway together in disease onset point. For exam-
ple, the genes in the two DNB modules were highly corre-
lated with the three pathways on Table 1 in the disease
onset point. It is possible that the genes in DNB regulate
and control these pathways and make them move to dis-
ease phenotype. The “MAPK signaling pathway” is one of
important pathways to regulate the glycogen and glucose
metabolism and contains 267 known genes in KEGG data-
base. In the critical point of the second DNB, there were
only 15 genes of “MAPK signaling pathway” correlated
with the DNB, and in the following time point, there were
260 genes of “MAPK signaling pathway” (additional file 5)
correlated with the DNB. It means that there were more
genes of “MAPK signaling pathway” to be regulated by the
same DNB module in the disease onset point. It is possible
that there were also stronger regulation effects of the DNB
module to the metabolism of glycogen and glucose in the
disease onset point. Although most of the genes in DNB
belong to different pathways or metabolic processes,
finally, these genes would induce these different pathways
to the same disease phenotype in the disease onset point.
On the other hand, the genes in the DNB were gath-
ered together to form a module by upstream signal in the
critical point, the module can also regulate a small num-
ber of genes in some pathway in the critical point. These
genes which were mediated by the module in the critical
point could play important role in corresponding path-
ways and trigger the change of the disease phenotype in
the disease onset point. For example, we can see from
Table 1 that all genes in the second DNB modules were
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highly correlated with only 7 genes in the “T cell receptor
signaling pathway” in the critical point. However, the 7
genes in the “T cell receptor signaling pathway” are
located in the up- and middle-stream of this pathway in
KEGG database, so it is possible that the 7 genes are the
important or driving factors for the pathway to trigger
disease phenotype change in the disease onset point.
Actually, the DNB has been proven to be the gene group,
which makes the first move from the normal state to the
disease state. The peri-insulitis is the early-stage of T1D
in NOD mice, and the link from peri-insulitis to diabetes
is interesting for understanding the disease deterioration
process. From the bridge of two DNBs, we can see the
possible process that mitochondrion electron transport
induces the apoptosis function of the second DNB and
pushes the peri-insulitis to diabetes (hyperglycemia).

Conclusion

Traditional biomarkers are usually used to distinguish
disease state from normal state, rather than pre-disease
state [18-20]. It means that a traditional biomarker mea-
sures the disease status of an organ, after the organ has
presented the characteristic of disease [21-24]. In this
study, completely different from the traditional molecu-
lar biomarkers, we distinguished the pre-disease state
from the normal state by a new type of biomarkers, i.e.,
dynamical network biomarkers. Specifically, we found
two dynamical network biomarkers which can be used
to detect the early-warning signals and predict the
upcoming disease onset of T1D by the theory of early-
warning signals of complex disease [1,17]. Based on the
three conditions of DNB, the two dynamical network
biomarkers identified two respective critical time points
which are the pre-disease stages of diabetes onset, and
the specific modules formed by the two DNBs in the
critical points signal the emergence of the critical transi-
tions of the sudden changes for the disease. For the vali-
dation of disease onset time points, the many evidence
and public reports were used to validate the onset of
T1D in the NOD mouse, and in particular, we found
that the reports of disease onset for T1D in the NOD
mouse were consistent with the disease onset time
points the DNBs marked. Hence, DNBs can be used to
detect the early-warning signals of T1D, predict upcom-
ing disease onset before the phenotype occurrence. DNB
can also be adopted to analyze the molecular mechan-
ism of the disease initiation and progression of the dis-
ease based on the identified leading networks.

Additional material

Additional file 1: function annotations for the genes of the two
DNBs. The first DNB contains 95 genes, but only 85 genes can be
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annotated by DAVID online tool. The second DNB contains 96 genes, but
only 80 genes can be annotated by DAVID online tool.

Additional file 2: the genes are regulated by the first DNB in next
time point of the DNB appearance. “Gene_Name” represents the gene
symbol. “Gene_ID" means Entrez Gene ID. “T1D_Publication” indicates the
number of T1D-specific publications associated with the gene.
“In_Beta_Cell_or_lslets” indicates that the gene is expressed in beta cells/
islets. “In_Mouse_Genetic_Region” indicates that the gene was found in
a mouse linkage region.

Additional file 3: the genes are regulated by the second DNB in
next time point of the DNB appearance. “Gene_Name” represents the
gene symbol. “Gene_ID" means Entrez Gene ID. “T1D_Publication”
indicates the number of T1D-specific publications associated with the
gene. “In_Beta_Cell_or_lIslets” indicates that the gene is expressed in beta
cells/islets. “In_Mouse_Genetic_Region” indicates that the gene was
found in a mouse linkage region.

Additional file 4: the genes linked the two DNBs. "Gene_Name”
represents the gene symbol. “Gene_ID" means Entrez Gene ID.
“T1D_Publication” indicates the number of T1D-specific publications
associated with the gene. “In_Beta_Cell_or_Islets” indicates that the gene
is expressed in beta cells/islets. “In_Mouse_Genetic_Region” indicates
that the gene was found in a mouse linkage region.

Additional file 5: This file showed the correlation between DNB and
every pathway of mouse from KEGG database. Connection Count is
the number of high correlation gene pairs between DNB and pathway.
Source number is the number of DNB genes which highly correlated
with some genes in pathway. Target number is the number of pathway
genes which highly correlated with some genes in DNB. DNB genes
count is the number of genes in this DNB. Pathway genes count is the
number of genes in this pathway.
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