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Abstract

Background: Variable responses to the Hepatitis B Virus (HBV) vaccine have recently been reported as strongly
dependent on genetic causes. Yet, the details on such mechanisms of action are still unknown. In parallel, altered
DNA methylation states have been uncovered as important contributors to a variety of health conditions. However,
methodologies for the analysis of such high-throughput data (epigenomic), especially from the computational
point of view, still lack of a gold standard, mostly due to the intrinsic statistical distribution of methylomic data i.e.
binomial rather than (pseudo-) normal, which characterizes the better known transcriptomic data.
We present in this article our contribution to the challenge of epigenomic data analysis with application to the
variable response to the Hepatitis B virus (HBV) vaccine and its most lethal degeneration: hepatocellular carcinoma
(HCC).

Methods: Twenty-five infants were recruited and classified as good and non-/low- responders according to
serological test results. Whole genome DNA methylation states were profiled by Illumina HumanMethylation 450 K
beadchips. Data were processed through quality and dispersion filtering and with differential methylation analysis
based on a combination of average methylation differences and non-parametric statistical tests. Results were finally
associated to already published transcriptomics and post-transcriptomics to gain further insight.

Results: We highlight 2 relevant variations in poor-responders to HBV vaccination: the hypomethylation of RNF39
(Ring Finger Protein 39) and the complex biochemical alteration on SULF2 via hypermethylation, down-regulation
and post-transcriptional control.

Conclusions: Our approach appears to cope with the new challenges implied by methylomic data distribution to
warrant a robust ranking of candidates. In particular, being RNF39 within the Major Histocompatibility Complex
(MHC) class I region, its altered methylation state fits with an altered immune reaction compatible with poor
responsiveness to vaccination. Additionally, despite SULF2 having been indicated as a potential target for HCC
therapy, we can recommend that non-responders to HBV vaccine who develop HCC are quickly directed to other
therapies, as SULF2 appears to be already under multiple molecular controls in such patients. Future research in this
direction is warranted.
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Figure 1 MDS plot. Multiple dimensional scaling (MDS) plot of the
1000 most variable loci showing that no significant batch effect can
be detected, while samples genders are easily discriminated.
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Background
DNA methylation (addition of a methyl group to the 5th
carbon cytosine residues in CpGs islands) is stably main-
tained, inheritable and regarded as an epigenetic marker,
which augments stability and diversity of biological phe-
notypes, yet without modifying the genomic sequence.
DNA methylation not only plays a crucial role in a spec-
trum of physiological processes, such as gene imprinting
and X-chromosome inactivation [1], but is also associated
with diseases including cancer, autoimmune maladies and
psychiatric disorders [2].
Bisulfite-conversion based approaches are widely used for

DNA methylation measurements, and exploit both micro-
array and sequencing technologies, as it is the case for
other omics. Examples include Illumina HumanMethylation
450 K beadchip [3] for the former, and whole genome
short-gun bisulfite sequencing (GWSBS [4]) and reduced
representation bisulfite sequencing (RRBS [5]) for the
latter, all offering fine resolution (down to the single
nucleotide).
The degree of methylation is usually denoted as β, ran-

ging from 0 to 1. Methylation data are presented in the
same matricial form of expression data (locus × sample),
however, cautions must be used in the direct application
of transcriptiomic analysis tool to methylation data. In
particular, the assumption that most genes are not dif-
ferentially expressed no longer holds for methylation data:
in the human genome 70% to 80% of CpGs are methylated
to various extents [6]. Furthermore, the overall expression
in a transcriptome is generally assumed to be invariant,
which is the principle for ratio-intensity (R-I) plots [7], but
this is not the case for methylation data where the total
amount of CpG methylation may also differ substantially
across individuals [6]. Most importantly, unlike gene
expression data, which are generally assumed to be nor-
mally or log-normally distributed, DNA methylation data
present a peculiar bimodal distribution, which breaks
the normality assumption and defies the applications of
Gaussian distribution based statistical approaches such as
t-test or ANOVA. Although both SAM (Significance Ana-
lysis of Microarray, [8]) and LIMMA (Linear Models for
Microarray Data, [9]) utilize moderated t-statistic and do
not need the assumption of rigorous normality, their sen-
sitivity is generally affected by a non-normal distribution.
Despite these difficulties, the ubiquity of methylation

phenomena makes them interesting candidates to explain
number of open clinical problems. In particular, Hepatitis
B virus (HBV) vaccine is an effective prevention of HBV
infection, yet not all people can benefit from it because of
varying degrees of responsiveness. We have already shown
[10] that genetic effects have a dominant role in such a re-
sponse, however, the characterization of the phenomenon
is far from being complete, and we here propose to en-
large the picture to epigenetic (methylation) aspects.
Given the importance of the clinical phenomenon
(infection rate in Southeast Asia, parts of China and trop-
ical Africa above >8% [11]) and the numerous computa-
tional issues involved in the analysis of methylation data,
we chose to adopt a custom pipeline, based on multiple
filtering and non-parametric statistics to rank differentially
methylated (DM) loci in 25 infants showing different
responses to the HBV vaccine. Further, as a mean to better
filter the list of DMs, we backed this analysis with pub-
lished transcriptional (mRNA screens) and post-transcrip-
tional (miRNA screens) data to gain more insight into the
molecular effects of altered methylation.

Methods
Ethical statement
The study protocols and consent procedure were ap-
proved by The Medical Ethical Committee of Children’s
Hospital of Fudan University, Shanghai, China. Written
informed consent forms were obtained from parents on
the behalf of the participants involved in the study, con-
ducted in accordance with the guidelines proposed in
the World Medical Association Declaration of Helsinki.

Whole-genome DNA methylation data & study subjects
All subjects were recruited at their 1-year-old regular phy-
sical examination performed at the children-care clinics of
five comprehensive hospitals in Urumqi (Xinjiang Uygur
Autonomous Region, China) after they received the 5 μg
recombinant HBV vaccine recommended by the Chinese
Ministry of Health (KT60, 2004 L00065, Kangtai Biological
Product, Shenzhen, Guangdong, China). Sampling was



Table 1 Methylation levels’ stratification

β 0 ~ 0.2 0.2 ~ 0.5 0.5 ~ 0.8 0.8 ~ 1.0

Classification No methylation Low methylation High methylation Full methylation

Discretization ranges used to transform methylation β data for Fisher Exact test.

Figure 2 SAM plot. SAM plot depicting the observed d-statistic
versus the null distribution (built by permutation) and the two lines
parallel to the diagonal quantifying the deviation (effect). Ideally, points
with an effect large enough, be it positive (passing the upper line on
the right) or negative (passing the lower line on the left) qualify as
being differential. Transcriptional SAM plots present a typical S-shape
(see Additional file 7), rather than the current flat trend.
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done at each of the three injections, following the national
0-1-6 HBV vaccination schedule. The inclusion and exclu-
sion of subjects, HBV biomarker examination and data col-
lection are described elsewhere [10].
Twenty-five infants were selected for genome-wide DNA

methylation analysis. Thirteen of these were non- or low-
responders to the vaccine (cases, anti-HBs < 100mIU/ml)
and 12 were normal responders (controls, anti_HBs >
500mIU/ml). Whole blood (2 ml) was collected for testing
DNA methylation levels using the Illumina HumanMethy-
lation 450 K microarray, processed and filtered according
to the standard Illumina protocol in 2 batches: the first
with 17 samples and the second with 8 samples. Clinical
data are listed in Additional file 1 and expression data
are deposited at the National Center for Biotechnology In-
formation Gene Expression Omnibus (GEO, [12]) public
repository http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE48300.

Methylomic data preprocessing
Quality Control (QC) assessment was performed with the
open-source R package minfi [13]. Data distribution and
intensity of internal control probes including bisulfite I, II,
hybridization, extension, specificity I, II, target removal
were checked and no major defects were spotted for the
QC. To evaluate the presence of any batch effect, we per-
formed multiple dimensional scaling (MDS), a dimensional
reduction approach to visualize the distances (similarities)
of individual cases in a dataset, using the function mdsPlot
in the package “minfi”, on the 1000 most variable positions
of the merged raw data. No significant batch effect was de-
tected while the samples’ genders were well discriminated
(see Figure 1). Basic quality filtering was then performed
to the control-normalized and background-subtracted data
exported from Illumina software GenomeStudio. Stringent
data filtering was done according to recent recommen-
dations [14] to control statistical power and reduce false
discoveries. In particular, loci with detection p-value > 0.01
were removed along with loci having more than 20% NAs
(number of detecting beads < 3) in control or case. Po-
tential confounding factors were additionally controlled by
removal of the X/Y chromosomes. Dispersion filtering
measured by standard deviation (SD) and interquantile
range (IQR) with cutoffs set to remove 80% of the least
varying loci [14] was also performed. To achieve stringent
filtering, at this stage, the intersection of the results of the
2 metrics (SD and IQR) was preserved, overall reducing
the candidate loci list from ~450,000 (485,577) to 76,074.
Differential methylation analysis
The approach uses multiple metrics and statistics to
ensure that different and complementary characteristics
are retained in the final ranked list.
Methylation differential values were quantified as: (i) abs

(mean(βcase) −mean(βcontrol)) and (ii) abs(median(βcase) −
median(βcontrol)).
Similarly, statistical tests (p-value < 0.05) were run with:

(i) Wilcoxon rank-sum test (WRST, [15]) and (ii) Fisher’s
exact test (FET, [16]) after data discretization (see Table 1
and [17]).
To ensure robustness of the ranking, the intersection

of the statistical and differential approaches was pre
served (namely: {WRST ∪ FET}∩ {mean ∪median}), listed
in Additional file 2. Comparative analyses were also run
with SAM [8] (3000 permutations and delta set to 0.2,
other parameters by default) and LIMMA [9] (prior esti-
mation of DMs set to 0.002, based on the goal of obtaining
150 candidates, others parameters by default) results are
shown in Figure 2 and Table 2, respectively.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48300
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48300


Table 2 Top 10 DM loci obtained with LIMMA

Locus Gene Mean β t-statistic P-value Adjusted p-value B-statistic

cg27427514 - 0.103 −5.541 6.96E-06 0.529 2.195

cg19938535 LRRC16A 0.668 4.980 3.15E-05 1.000 0.808

cg25548594 - 0.322 −4.717 6.39E-05 1.000 0.158

cg01821429 - 0.171 −4.697 6.75E-05 1.000 0.107

cg21899558 PRKAR1B 0.820 4.679 7.09E-05 1.000 0.063

cg01600516 ALOX12 0.690 4.376 1.60E-04 1.000 −0.688

cg26143874 - 0.815 4.252 2.23E-04 1.000 −0.991

cg15773974 - 0.629 4.167 2.81E-04 1.000 −1.201

cg01074767 C1RL; LOC283314 0.597 −4.046 3.87E-04 1.000 −1.495

cg03424554 WWP2 0.467 −3.990 4.49E-04 1.000 −1.633

Column 1 contains the locus ID; Column 2 the gene symbol(s) to which the probe is annotated; Column 3 the average methylation level (β) across all samples;
Column 4 moderated t-statistic with standard errors shrunken to a common value; Column 5 nominal p-value; Column 6 multiple testing corrected
p-value; column 7 Bayesian odd ratio of DM. In the last column in bold are the odd ratios greater than 0, suggesting differential methylation.
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Differential expression analysis
We collected data from 3 datasets in Gene Omnibus Ex-
press (GEO, [18]): GSE3049 [19] for the transcriptomic
level, GSE19980 [20] and GSE22378 (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE22378) for the post-
transcriptomic level. All 3 studies use immortalized hu-
man hepatoma cell line HepG2 as HBV free model and
HepG2.2.15, infected with HBV and transformed from
HepG2, to mimic human chronic HBV infection.
The expression of mRNAs was monitored by CapitalBio

cDNA 22 K long oligo dye-swap microarray, and com-
pared between the two cell lines. Downloaded data were
filtered by space- and intensity-dependent normalization
Figure 3 Variance-vs-mean plot of β and M. Panels A, B show the depe
panels) on mean values of β. Panels C, D report the same plots for M (logi
when SD is used as variance indicator, either toward the middle (for β) or
logit transformation does not significantly improve heteroscedasticity.
(LOWESS), and already summarized as ratio changes for
each probe set. No additional pre-processing was per-
formed and fold-change was used with a cut-off 2 to select
differentially expressed genes (DEs) in each comparison,
leading to 478 DE genes (Additional file 3).
The 2 miRNA datasets were pre-processed (separately,

as based on different versions of the CapitalBio mamma-
lian miRNA array) by summarizing the expression value
for each set of probes with the median (3 probes for one
miRNA). Quality filtering was achieved by removing
empty entries, probes for quality control (non-human) and
data with more than 40% NAs. Overall 313 and 545 miR-
NAs remained in GSE19980 and GSE22378, respectively.
ndence of variance (SD in the upper panels and IQR in the lower
t transformation of β). Both show a bias of the dispersion especially
toward the 2 extremes (for M). Collectively these plots show that the

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22378
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22378
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After pre-processing, t-test, SAM and LIMMA were all ap-
plied for differential analysis in each dataset. The union,
for completeness, of the results from the 2 datasets was
finally retained (Additional file 4).
For DE miRNAs, targets were obtained by searching

experimentally validated as well as predicted miRNA
target databases, i.e. miRTarBase (release 2.5) [21] and
TarBase (version 5) [22] for experimentally validated tar-
gets; TargetScan (release 6.2) [23] and microRNA.org
(August 2010) [24] for predictions. Results are listed in
Additional file 4 and details on the query settings can be
found in Additional file 5.

Results and discussion
Classical approaches were first tested to compute the differ-
entially methylated (DM) loci. Although Student t-test [25]
has been found to be applied to 450 K microarray data
[26], data distribution (see Additional file 6) presents a
clearly non-normal behaviour, limiting therefore the validity
of the test. Similarly, while SAM [8] and LIMMA [9] do
not require a rigorous normal distribution and -especially
the latter- shows good performance when the sample size
Figure 4 Methylation state of cg10568066 - the most significantly diffe
methylated loci annotated to RNF39 (7 hypo- and 1 hyper- methylated), cg105
is small, we observed that they are not robust enough for
cases showing dramatic deviation from normality, a fact
also mentioned in LIMMA’s manual.
Figure 2 presents the results of SAM, where the d-sta-

tistic (deviation stabilized derivative of t-statistic, free from
the normality assumption) obtained from the real (ob-
served) data versus the null (permuted) data is plotted.
Only 3 loci were identified as differential (2 hypermethy-
lated in red, 1 hypomethylated in green), and this cannot
be remedied by lowering the threshold because of the
peculiar “flat” shape of this SAM curve (compared with a
plot from normally distributed data, and showing the
well-known SAM “S” shape plot, see Additional file 7). In-
deed, although SAM exploits permutations to obtain an
empirical distribution of the d-statistic, it is largely subject
to the outliers (extreme value towards 1 or 0), which are
quite frequent and indeed expected in methylomic data,
and cannot be simply discarded as they are biologically
valid.
LIMMA [9] computes the B-statistic (posterior odds

statistic) by replacing the ordinary standard deviations
with posterior residual standard deviations, resulting in a
rential locus annotated to RNF39. Among the 8 differentially
68066 shows the maximum difference as it is hypomethylated by 0.578.



Figure 5 Transcriptional and post-transcriptional regulation of DM
loci genes. In panel A, transcriptional (x-axis) and post-transcriptional
(y-axis) differential expression (DE, log fold change) related to the
genes on the differentially methylated (DM) loci (average β differences,
data points’ diameters. SULF2 only falls beyond the axes, indicating
contribution of all 3 variations (transcriptional, post-transcriptional,
methylation) to its final state. Panel B quantifies further such variations.
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far more stable inference even when the sample size is
small. B-statistic denotes the log-ratio of a locus to be
differentially methylated over not being methylated, with
B > 0 implying p > 0.5, dependent on the prior knowledge
of the proportion of differential loci. In our instance, this
proportion was set to 0.002, based on the future planned
experimental step, which implies the validation of 150
selected loci. Table 2 shows the top 10 differential loci
obtained. Although the nominal p-values are significant,
the log-ratios (B) indicate only 5 loci with -very weak-
differential signals, which confirms the caution recom-
mended when applying LIMMA to Illumina methyla-
tion platforms [27].
Given the intrinsic difficulties in isolating statistically

significant differentially methylated loci, due to the numer-
osity of epigenomic data (curse of dimensionality and mul-
tiple hypothesis testing issue), we chose to explore the
data with two metrics to combine their diverse advantages,
and to support the ranking offered by these measures with
two non-parametric statistical tests.
To satisfy the biological rationale that a differential locus

should present a variation in β between two phenotypes,
we quantified this difference as: (i) abs(mean(βcase) −
mean(βcontrol)) to take into account all values presented by
the data and (ii) abs(median(βcase) −median(βcontrol)) to
better deal with outliers. These values were assumed to be
of relevance if above a threshold, usually set to 0.2 [14].
This ranked selection was backed by the ranking ob-

tained from two non-parametric tests, namely Wilcoxon
rank-sum test (WRST, [15]) and Fisher’s exact test (FET,
[16]) after methylation status discretization [17]. Both
statistical tests are free from any assumption on data
distribution, yet their sensitivity and specificity vary.
Wilcoxon rank-sum test is sensitive to rank orders of
β values, rather than to absolute values. For this reason,
we added Fisher’s exact test to the statistical framework
to retain the otherwise missing information on β value.
This recommendation combined with our 150 top can-

didate selection lead to threshold = 0.17 (Additional file 2).
Besides, although literature indicates the advantage

of M-value (derived from the logit transformation of β:

M ¼ log β
1−β

� �
), over the raw β value, since β exhibits

more heteroscedasticity than M [14,28,29], we still main-
tained β as the metric of choice since: (i) we compared the
heteroscedasticity between M and β, and, in our data, both
show severe dependence of the variance on the mean and
there is no clear advantage of M-value transformation as it
is shown in Figure 3; (ii) to the best of our knowledge,
there has been no studies as to delineate the origin of such
heteroscedasticity and no rationale as to claim it is a bio-
logically valid feature or a technical artefact, (iii) the bio-
logical meaning of β value is more intuitive.
The whole DM process led us into the identification of
146 differentially methylated loci, including several cor-
responding to RNF39 (the most significant one shown
in Figure 4), a transcription factor in the MHC (Major
Histocompatibility Complex) class I region, crucial in
immune responses. This, along with the number of
instances discovered, let us speculate that RNF39’s com-
promised methylation state may be related to poor im-
mune responses.
To test whether altered methylation states could also be

mirrored and supported in altered genes’ expression, we
appended to the DM analysis a careful selection of gene



Figure 6 Transcriptional and post-transcriptional regulation of SULF2. The upper panel shows gene expression change of SULF2
(cg 21130926) in the HBV infection model (green: before infection, red: after infection). The lower panel depicts 2 possible mechanisms for the
control of SULF2: transcriptional (lower left) and post-transcriptional (lower right).
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expression data at both the transcriptional and post-
transcriptional levels from GEO (see Methods). Due to the
lack of available blood samples data we turned to hepatic
cell lines, implying the assumption that the systemic ef-
fects visible in blood mirror events occurring in the disease
target organ (liver), a fact that has been observed and con-
firmed in numerous diseases [30-32]. Differential mRNA
and miRNA analyses allowed us to identify 478 DE mRNAs
(Additional file 3) and 55 DE miRNAs (Additional file 4).
The comparison between the DM and DE lists let

emerge the covariation of methylomics, transcriptomics,
and post-transcriptomics (Figure 5). In particular, SULF2
presents a unique situation, being the only molecule
affected by variations at all 3 biochemical levels: hyperme-
thylation and downregulation (Figure 6), along with the
up-regulation of one of its controlling miRNAs (hsa-miR-
373). Together, these results indicate that SULF2’s presence
is likely to be extremely modest in non-responders. The
gene SULF2 is known to be upregulated in 60% of primary
HCCs [33], and therefore proposed as a therapeutic target
[34]. Translating this information into clinical terms, it is
unlikely that HCC patients who were non-responders to
HBV vaccine, fall into the 60% patients that see this gene
up-regulated, and hence may benefit from anti-SULF2
treatments. Therefore, based on SULF2’s screening and
HBV vaccination history they could be efficiently redir-
ected to other types of treatments.
Conclusions
Epigenomic alterations have recently been discovered as
molecular modifications with the potential to stably in-
fluence biological systems. Yet, the challenges involved in
processing this type of information are numerous, inclu-
ding not only the biological mechanisms triggering and
maintaining these modifications, but also the mathematical
modelling behind these data, and from there the definition
of appropriate methods of analysis. We propose here a
combination of approaches to efficiently explore these
data and effectively rank a selected number of epigenomic
potential causes. In particular, we have been able to high-
light the hypomethylation of the transcription factor
RNF39 and the controlled expression of SULF2 as two in-
teresting molecular variations related to the HBV vaccine
responsiveness.

Additional files

Additional file 1: Sample labels. Summary of clinical parameters.

Additional file 2: Table of the DM.

Additional file 3: Differential results for mRNA data.

Additional file 4: DE settings and differential results of miRNA data.
List of miRNA targets by experiments. List of miRNA targets by prediction.
List of miRNA targets by both.

Additional file 5: Parameters used in predicting miRNA targets.

Additional file 6: Bean plot showing β distribution.
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Additional file 7: SAM plot (and its code), which exemplifies
application to normally distributed data.
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