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Abstract

manifestations.

longitudinal measures.

Background: There is increasing recognition that asthma and eczema are heterogeneous diseases. We
investigated the predictive ability of a spectrum of machine learning methods to disambiguate clinical sub-groups
of asthma, wheeze and eczema, using a large heterogeneous set of attributes in an unselected population. The
aim was to identify to what extent such heterogeneous information can be combined to reveal specific clinical

Methods: The study population comprised a cross-sectional sample of adults, and included representatives of the
general population enriched by subjects with asthma. Linear and non-linear machine learning methods, from
logistic regression to random forests, were fit on a large attribute set including demographic, clinical and
laboratory features, genetic profiles and environmental exposures. Outcome of interest were asthma, wheeze and
eczema encoded by different operational definitions. Model validation was performed via bootstrapping.

Results: The study population included 554 adults, 42% male, 38% previous or current smokers. Proportion of
asthma, wheeze, and eczema diagnoses was 16.7%, 12.3%, and 21.7%, respectively. Models were fit on 223 non-
genetic variables plus 215 single nucleotide polymorphisms. In general, non-linear models achieved higher
sensitivity and specificity than other methods, especially for asthma and wheeze, less for eczema, with areas under
receiver operating characteristic curve of 84%, 76% and 64%, respectively. Our findings confirm that allergen
sensitisation and lung function characterise asthma better in combination than separately. The predictive ability of
genetic markers alone is limited. For eczema, new predictors such as bio-impedance were discovered.

Conclusions: More usefully-complex modelling is the key to a better understanding of disease mechanisms and
personalised healthcare: further advances are likely with the incorporation of more factors/attributes and

Background

Asthma is the most common chronic disease in devel-
oped countries, however, the drug armamentarium avail-
able to manage the condition is modest[1]. There is
increasing recognition that asthma is a heterogeneous
disease with multiple endotypes, which may have similar
clinical manifestations, or phenotypes, but different
underlying pathophysiological causes[2,3]. Appropriate
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identification of such endotypes is critical for the under-
standing of the disease mechanism and the development
of personalised approaches to its management[4]. Sensi-
tisation to allergens from several sources (such as pets,
dust mites, cockroaches, and pollens) has been indepen-
dently associated with asthma and asthma-related symp-
toms[5-8], and among asthmatic patients with the
severity of the disease[9-12]. Also, sensitisation to inha-
lant allergens has been found to be associated with
diminished lung function and increased airway respon-
siveness[13].

It remains unclear to what extent allergen sensitisation
and lung function markers (e.g., airway reactivity, airway
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inflammation), in conjunction with a broader set of other
potentially relevant information (e.g. environmental
exposures or genetic characteristics), contribute towards
specific clinical manifestations of different atopic diseases
(e.g. asthma vs. eczema). In the past decades, several
approaches to predict such current or subsequent clinical
manifestations, both in children and adults, have been
introduced[14-22]. The performance of prediction mod-
els varies in relation to different population strata, and
obviously in relation to the clinical outcome or end-point
definitions. For instance, one of the earliest works, by
Castro-Rodriguez et al.[14], devised a rule-based asthma
predictive index to predict subsequent asthma amongst
young children with a history of wheezing, attaining sen-
sitivity ~0.4 at ~0.8 specificity on various time points.
The recent work by Chatzimichail et al.[23] reported
~0.95 of both sensitivity and specificity in predicting cur-
rent asthma in symptomatic preschool children, using a
machine learning approach based on previous symptoms,
medications, allergen sensitisation and lung function.

In this work, using a rich data set from an unselected
cross-sectional population study, different operational
definitions of current asthma, wheeze and eczema are
carefully derived, and we analyse their prognostic factors
from a large set of markers, which includes demographic,
clinical, laboratory features, genetic profiles and environ-
mental exposures. Of note, previous diagnoses (along with
anti-asthma medication usage) are removed on purpose
from the input set, as many clinical outcome definitions
are recursively based on them. The aim is to identify to
which extent such heterogeneous information contributes
and combines towards the prediction of a specific clinical
presentation - comparing linear and non-linear machine
learning models fitted with different feature combinations
- and eventually prepare the grounds for the deployment
of a personalized diagnostic tool.

Methods
The study population comprised a cross-sectional sample
of adult individuals, age >18 years, including representatives
of the general population enriched by subjects with asthma
[13,24]. For the sample from the general population, we
approached parents of children who have been under active
follow-up in the Manchester Asthma and Allergy Study
(population-based birth cohort study)[25]. The population
of subjects with asthma included well-phenotyped adults
who were identified from a clinical trials database, and had
both a history of physician-diagnosed asthma and asthma
symptoms within the previous 12 months[26,27]. The study
was approved by the Local Research Ethics Committee
(05/Q1406/70) and is registered as N0226171141. Written
informed consent was obtained from all subjects.

A total of 1,102 attributes of the study participants
were collected across a large heterogeneous information
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spectrum, including interviewer-administered question-
naires, laboratory measurements, doctors’ diagnoses and
environmental exposures. The collected data included:

+ demographic information (e.g. gender, ethnicity,
age, place of residence);

+ questionnaire data related to symptom presence
and severity (e.g. wheeze, shortness of breath, chronic
cough), previous/current diagnoses of asthma, hay
fever, eczema, food allergies or other illnesses;

+ use of anti-asthma medications (e.g. short-acting
beta agonists [SABA], long-acting beta agonists
[LABA], inhaled corticosteroids [ICS]);

+ questionnaire data on smoking and alcohol drinking
habits, current pet ownership, indoor environmental
conditions (e.g. rugs, beds, type of house heating, latex
usage), occupation and occupation-related accidents;

+ objective measures on environmental exposure to
house dust mite (Der p 1), cat (Fel d 1) and dog (Can
f 1) allergen determined in dust samples collected
from homes using enzyme-linked immunosorbent
assays (ELISAs);

+ objective measures on environmental exposure to
endotoxin (marker of exposure to gram-negative bac-
teria) and beta glucan (marker of exposure to moulds)
determined in dust samples collected from homes;

« body measurements (e.g. height, weight, body mass
index [BMI], fat percentage, whole body impedance);
+ lung function measurements (e.g. forced expiratory
volume in 1 second [FEV}], forced vital capacity [FVC],
peak expiratory flow [PEF], functional reserve capacity
[FRC] and residual volume [RV], total lung capacity
[TLC], forced expiratory flow 25-75% [FEF,5.,5] and
specific airway resistance [sRaw]);

» measurement of airway inflammation (exhaled
nitric oxide [eNO])

» measurement of airway hyper-responsiveness using
methacholine challenge, expressed as a provocative
concentration of methacholine needed to produce a
20% fall in FEV; (PC20), and methacholine dose-
response slope (MDRS);

« assessment of atopic status using (i) skin prick tests
(SPT), (ii) measurement of serum allergen-specific
Immunoglobulin E values (IgE), and (iii) component
resolved diagnostics using an immuno-dot blot as
previously described[28].

In addition, as part of a candidate gene association
study, subjects were genotyped for 215 single nucleotide
polymorphisms (SNPs) in genes found to be associated
with asthma in previous studies (including polymorphisms
in chromosomal regions 20p13-p12 and 17q12-21)[24].

We used the following (partly overlapping) definitions
of asthma, wheeze and eczema.
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Asthma was encoded with three “operational defini-
tions” determined by questionnaire, specifically:

i. current asthma (CA), based on De Marco et al.[29],
defined as asthma ever confirmed by a doctor and at
least one symptom of wheeze, nocturnal chest tight-
ness, asthma attack within the past 12 months,
attacks of breathlessness following activity, at rest or
at night-time, having taken anti-asthma medication;
ii. level-2 ECRHS II[30] definition (A2), as two positive
answers to the questions “have you been woken by an
attack of shortness of breath at any time in the last 12
months”, “have you had an attack of asthma in the last
12 months”, “are you currently taking any medicines
including inhalers, aerosol or tablets for asthma";

iii. level-3 ECRHS II definition (A3), as three positive
answers out of the set described at the previous point.

Current wheeze (CW) was defined, according to Pekka-
nen et al.[31], as the presence of wheeze/breathlessness in
the previous 12 months outside colds.

Eczema was defined as self-diagnosed (SDE) or doctor-
confirmed (DDE) eczema.

Out of the 1,102 original non-genetic attributes, 223
were selected by clinical researchers, excluding factors
considered as irrelevant or completely redundant, and
those that were defining features of diagnoses. Attri-
butes were grouped into: demographic/environmental
variables (n = 74, including age, gender, BMI, whole
body impedance, housing conditions, pet ownership,
plus n = 56 variables measuring environmental expo-
sures to endotoxin, beta glucan and indoor allergens);
lung function, airway inflammation and airway hyper-
responsiveness markers (n = 12, including eNO, % pre-
dicted FEV,, FVC, FEV,/EVC, FEE,s -5, sRaw, PEF, TLC,
RV, methacholine challenge MDRS and PC20); allergen
sensitization assessed either by skin prick testing, speci-
fic serum IgE measurement or component resolved
diagnostics (n = 8, n = 7, n = 66, respectively), recording
mean wheal diameters (MWD) and IgE levels, which
were either log-transformed or discretized into ordered
quartile categories (where a negative or below limit of
detection result was the zero-order category). All 215
SNPs were retained and merged to the data set. Before
data merge, raw SNP data were processed through link-
age-disequilibrium filtering/imputation using Haploview
[32] and the method of Gabriel et al.[33] (as described
in the previous work by Marinho et al.[24]). Other miss-
ing values were replaced by column-wise median and
modes depending on the data types.

For descriptive statistics and comparison with other
prediction methods, information about previous diag-
noses and medication usage (ICS, SABA, LABA) was
retained but not used as input for the main models.
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Main-effects logistic regression (LR) models were fitted
selecting features by means of the LogitBoost algorithm
[34]. For comparison purposes, a LR model made by the
best single predictor according to the Akaike information
criterion (named one rule, OR) was considered[35]. A deci-
sion tree model (DT)[36] and a decision tree ensemble, the
random forest (RF, 250 trees)[37] were also evaluated,
along with the AdaBoost (AB) classifier[38]. Goodness-of-
fit functions examined were: accuracy, i.e. percentage of
correctly classified cases; area under the receiver operating
characteristic curve (AUROC), which is equal to the prob-
ability that a classifier ranks a randomly chosen positive
instance (e.g. condition present/diagnosed) higher than a
randomly chosen negative one (e.g. condition absent); sen-
sitivity, i.e. the probability that the classification is positive
when the condition is present (true positive rate); specifi-
city, i.e. the probability that the classification is negative
when the condition is not present (true negative rate).
Model performance was estimated and compared as extra-
sample via bootstrapping (100 replicates), considering out-
of-bag distributions, and assessing significance via t-tests
adjusted for sample overlap and multiple comparisons
[39-41]. Attribute importance was assessed by means of
RF, calculating the average re-scaled (i.e. divided by its
standard error) decrease in accuracy by variable randomi-
zation (repeated for 1000 times), and comparing it against
a null distribution obtained by shuffling outcome labels,
calculating p-values according to the method of Altmann
et al.[42] and previous works[43,44]. All analyses were
carried out using R software (http://www.r-project.org/).

Results

Characteristics of the study population

The study population included 554 subjects, with a
mean (standard deviation) age of 43 (5) years at the
time of the assessment, 42% male, 38% previous or cur-
rent smokers. The proportion of CA, CW and DDE
were 16.7%, 12.3%, and 21.7%, respectively. Subjects’
characteristics are described in detail in Table 1, as well
as cross-tabulation of outcomes. There was a high level
of agreement between SDE and DDE (95.5%), as well as
between CA, A2, A3 and CW (from 95.3% of CA vs. A2
to 87.7% of CA vs. A3), as expected by their intersecting
definitions. The lowest agreement was found between
SDE and CW (73.4%). For ease of reading, we have
omitted information about genetic data, which has been
described in detail previously[24] (available upon
request). Of note, 73.2% attributes had no missing data,
and the amount of missingness in the rest was a median
(interquartile range, IQR) of 0.7% (0.2%-2.2%).

Model inference
Given the levels of agreement between outcomes, infer-
ence results will be presented here for CA, CW and DDE
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Table 1 Study data
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variable median (IQR)  #missing (%)
age (years) 426 (39.7-45.7) 0 (0%)
year of birth 1964 (1961-1967) 0 (0%)
body mass index (BMI) 26 (23.6-29.1) 2 (0.4%)
whole body impedance 613.5 (550-685) 34 (6.1%)
fat % 29.5 (23.7-36) 34 (6.1%)
exhaled nitric oxide (eNO), ppb (loge scale) 2.8 (24-33) 94 (17.0%)
specific airway resistance (sRaw), kPa/s (loge scale) -0.1 (-0.3-0.1) 11 (2.0%)
peak expiratory flow (PEF) % predicted 113.1 (102.1- 9 (1.6%)
124.6)
forced vital capacity (FVC) % predicted 114.5 (105.6- 11 (2.0%)
123.1)
forced expiratory volume in 1 second (FEVA % predicted 106 (98.6-115.5) 10 (1.8%)
forced expiratory flow (FEF,5.75) % predicted 80 (66-96.3) 11 (2.0%)
total lung capacity (TLC) 108.5 (101-116.9) 11 (2.0%)
residual volume (RV) 113 (98.6-127.8) 11 (2.0%)
FEVj/FVC ratio 0.8 (0.8-0.8) 11 (2.0%)
provocative concentration of methacholine needed to produce a 20% fall in FEVj (PC20), of those completing the 5.3 (1.2-9.0) 43 (7.8%)
test
methacholine dose-response slope (MDRS), transformed as 100/(MdRS+10) 57 (4.2-7.5) 43 (7.8%)
variable N (%) #missing (%)
Gender male 234 (42.2%) 0 (0%)
smoking status never 341 (61.6%) 0 (0%)
ex-smoker 144 (26%) 0 (0%)
current 69 (12.5%) 0 (0%)
cat/dog ownership 186 (33.6%) 1 (0.2%)
allergen sensitisation by skin prick test (SPT) dust mite (mean wheal diameter >3 mm) 162 (29.3%) 1 (0.2%)
cat (mean wheal diameter >3 mm) 106 (19.2%) 1 (0.2%)
dog (mean wheal diameter >3 mm) 48 (8.6%) 1 (0.2%)
tree (mean wheal diameter >3 mm) 76 (13.8%) 1 (0.2%)
grass (mean wheal diameter >3 mm) 129 (23.4%) 1 (0.2%)
mould (mean wheal diameter >3 mm) 16 (2.9%) 1 (0.2%)
peanut (mean wheal diameter >3 mm) 9 (1.7%) 1 (0.2%)
bird ownership 13 (2.4%) 1 (0.2%)
medications in the past three months short-acting beta agonists (SABA) 34 (6.1%) 1 (0.2%)
inhaled corticosteroids (ICS) or ICS/long-acting beta agonists 37 (6.7%) 1 (0.2%)
(LABA)
illness or problem caused by eating a particular food or foods, ever 97 (17.5%) 1 (0.2%)
accident at home, work or elsewhere exposing to high levels of vapours, gas or dust 22 (4%) 2 (0.4%)
carpets in the house 292 (52.8%) 1 (0.2%)
gas stove in the house 432 (78.1%) 1 (0.2%)
electric stove in the house 231 (41.8%) 1 (0.2%)
job causing wheezing problems 33 (6%) 3 (0.5%)
proportion of subjects not completing PC20 423 (82.8%) 43 (7.8%)
proportion of subjects with current asthma (CA) 93 (16.7%) 0 (0%)
proportion of subjects with level-2 asthma (A2) 70 (12.7%) 0 (0%)
proportion of subjects with level-3 asthma (A3) 24 (4.3%) 0 (0%)
proportion of subjects with current wheeze (CW) 68 (12.3%) 0 (0%)
proportion of subjects with self-diagnosed eczema (SDE) 146 (26.3%) 0 (0%)
proportion of subjects with doctor’s diagnosed eczema (DDE) 120 (21.7%) 0 (0%)
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Table 1 Study data (Continued)
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cross-tabulation of clinical outcomes (% of agreement)

SDE DDE CA A2 (@Y% A3
SDE 95.47% 74.82% 74.82%  7337% 74.09%
DDE 95.47% 77.17% 7790%  76.09% 78.26%
CA 74.82% 77.17% 95.29%  8949% 87.68%
A2 74.82% 77.90% 95.29% 92.39% 91.67%
cw 73.37% 76.09% 89.49% 92.39% 90.94%
A3 74.09% 78.26% 87.68% 9167%  90.94%

Characteristics of the study population (n = 554) and cross-tabulation of outcomes.

(results were similar for the other outcomes and are
available upon request). Different learning methods (LR,
RF, AB, DT, OR) were applied to the full attribute set
with the intent to identify both the best performing
model (in terms of AUROC, sensitivity and specificity,
given the high class imbalance of all outcomes) and to
evaluate if non-linear models were able to improve the
goodness-of-fit as compared to main-effects LR. RF con-
sistently yielded the most predictive models (average
AUROC:s for CA, CW and DDE were 84%, 76%, and
64%, respectively), but the difference in mean AUROC
with respect to LR and AB across 100 bootstrap runs
could not be considered significantly shifted from zero at
the 0.05 level. Instead, OR and DT were consistently
superseded by RF. Figure 1 plots averaged ROC curves
for the three different outcomes of CA, DDE and CW,
whilst Table 2 shows averaged AUROC, and specificity at
different sensitivity levels, both estimated from out-of-
bag distributions across 100 bootstrap runs.

Based on these results, the RF method was retained
and tested using different subsets of the original variable
space - specifically the groups of allergen sensitisation,
lung functions/airway hyper-responsiveness, demo-
graphic/environmental variables, and genetic variants (as

defined in the methods) - in order to identify to which
extent each group was contributing to increasing AUROC,
sensitivity or specificity with respect to each outcome pre-
diction. Table 3 shows averaged AUROC, and specificity at
different sensitivity levels, both estimated from out-of-bag
distributions across 100 bootstrap runs. For all outcomes,
RF models using the allergen sensitisation yielded the best
performance, followed in order by lung functions, demo-
graphic/environment, and genetic SNPs variable subsets.
Usage of the whole variable set increased AUROC over
each of the subsets for all outcomes (below the 0.05 signifi-
cance level for demographic/environment and genetic fea-
ture subsets when predicting CA and CW). Figure 2 shows
receiver operating characteristic curves for the three out-
comes considering each different feature subset, averaged
across 100 bootstrap runs.

When looking at feature importance, the most relevant
attributes reflected the overall performance of RF trained
using feature subsets: variables from allergen sensitisation
and lung function groups were the highest ranked, espe-
cially for CA and CW, as shown in Figure 3. Of note,
when considering DDE, whole body impedance was the
second most important variable reported by RF, and this
was confirmed by LR, showing to a higher risk of DDE
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Figure 1 Comparison of machine learning methods. Performance comparison of different machine learning techniques in terms of area
under the receiver operating characteristic curve in predicting current asthma (left panel), current wheeze (middle panel), and doctor’s
diagnosed eczema (right panel) using the whole feature set (demographic, environmental, genetic, lung function markers, and allergen
sensitization). Results are out-of-bag predictions averaged over 100 bootstrap runs.
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Table 2 Comparison of machine learning methods.
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outcome Model AUROC sensitivity (at 90% specificity)  sensitivity (at 80% specificity)  accuracy

Doctor's Diagnosed Eczema  Decision Tree* 0.57 (0.04) 0.5 (0.07) 0.29 (0.07) 0.78 (0.02)
Random Forest 064 (003) 0.2 (0.06) 0.34 (0.07) 0.79 (0.02)

Logistic Regression 059 (0.04)  0.18 (0.06) 031 (0.08) 0.78 (0.02)

One Rule* 0.58 (0.06) 0.2 (0.11) 0.3 (0.15) 0.79 (0.02)

AdaBoost 0.58 (0.04) 0.17 (0.06) 0.3 (0.07) 0.78 (0.02)

Current Asthma Decision Tree* 0.72 (0.06) 039 (0.12) 054 (0.11) 0.85 (0.02)
Random Forest 0.84 (0.03)  0.55 (0.09) 0.72 (0.08) 0.87 (0.02)

Logistic Regression  0.79 (0.04) 045 (0.08) 0.63 (0.08) 0.86 (0.02)

One Rule* 0.76 (0.06) 044 (0.09) 061 (0.11) 0.86 (0.02)

AdaBoost 1(0.04) 048 (0.09) 0.66 (0.07) 0.86 (0.02)

Current Wheeze Decision Tree* 062 (006) 027 (0.1) 036 (0.11) 0.88 (0.02)
Random Forest 0.76 (0.04) 047 (0.09) 0.6 (0.09) 0.89 (0.02)

Logistic Regression  0.72 (0.04)  0.34 (0.08) 051 (0.08) 0.88 (0.02)

One Rule* 0.69 (0.06) 033 (0.09) 049 (0.12) 0.88 (0.02)

AdaBoost 073 (0.04) 032 (0.09) 0.5 (0.09) 0.88 (0.02)

Performance of machine learning models on different outcomes using the full set of demographic, environmental, genetic (single nucleotide polymorphisms),
allergen sensitisation, and lung functions variables. Results are mean (standard deviation) values estimated from out-of-bag distributions across 100 bootstrap runs.

“difference in AUROC significantly shifted from zero at the 0.05 level as compared to that of a random forest. AUROC: area under the receiver operating

characteristic curve.

(OR 1.19 per square root increase, 95% CI 1.13-1.27,
p-value = 0.0016), and found to be correlated to BMI
(Pearson’s p=-0.54, p-value<0.0001). No SNPs were scored
within the 25" percentile of RF importance, but crude
associations with asthma symptoms were confirmed.
When considering CW, rs4986790 was the SNP with high-
est level of association using a chi-square test on allele
categories (unadjusted p = 0.005), whilst rs6037651 using
the additive model (unadjusted p = 0.003). When consid-
ering DDE, rs2569190 (unadjusted p = 0.003 from chi-
square) and rs574174 (unadjusted p = 0.004 from additive
model). However their significance was not below the 0.05
level when correcting for multiple testing (using Benja-
mini-Hochberg correction). For CA, rs7212938 and
rs8079416 were the top-scoring SNPs under the categori-
cal and additive model, respectively (unadjusted p =
0.0002 and p = 0.0006), and the significance remained
below the 0.1 level after adjusting for multiple testing (p =
0.09 and p = 0.03).

To compare more thoroughly RF with LR, we analysed
the variable sets selected by the LogitBoost algorithm.
Specifically, for CW, five predictors were selected: IgE of
house dust mite (OR = 1.207 per log, higher, p = 0.005);
IgE of dog (OR = 1.465 per log, higher, p < 0.0001); num-
ber of cigarettes smoked (OR = 1.032 per packages/year,
p = 0.003); moving house (OR = 3.078 for moving twice
or more as compared to not moving, p = 0.001); MDRS
(OR = 0.794 per transformed unit p = 0.0004). For CA,
nine predictors were selected: IgE of house dust mite
(OR = 1.308 per log, higher, p < 0.0001); IgE of dog (OR

= 1.519 per log, higher, p < 0.0001); job causing wheezing
problems (OR = 13.923 for presence of condition; p <
0.0001); rs8079416 (OR = 0.502 as additive model;
p = 0.002); rs11540720 (OR = 0.182 as additive model;
p = 0.008); rs5743704 (OR = 0.265 as additive model; p =
0.011); rs11536889 (OR = 0.265 as additive model; p =
0.011); sRaw (OR = 6.509 per log, higher; p = 0.0009);
MDRS (OR = 0.839 per transformed unit p = 0.013). For
DDE, one predictor was selected, the IgE of cat (OR =
1.378 per log, higher, p < 0.0001). All features selected by
LogitBoost were listed as top-ranked variables by the RF,
except for SNPs in the CA outcome. Note that these LR
models were obtained from one data set using a single
LogitBoost selection, and - given also the degree of corre-
lation among variables - alternative models with equal
performance may be selected by varying selection
heuristics.

Discussion

We investigated the ability of linear and non-linear
machine learning models to predict asthma, wheezing,
and eczema outcomes, according to different operational
definitions, with a heterogeneous set of attributes in an
adult population. Models were compared in terms of per-
formance, complexity and interpretability. Different fea-
ture groups were evaluated and combined in order to
understand determinants (and combinations thereof) of
asthma symptoms or the presence of eczema. The use of
random forests in model building yielded better AUROC,
sensitivity and specificity than other methods. This might



Prosperi et al. BMC Medical Genomics 2014, 7(Suppl 1):S7 Page 7 of 10
http://www.biomedcentral.com/1755-8794/7/51/S7

Table 3 Comparison of random forest performance using selected input domains.

outcome feature set AUROC  p-value* sensitivity (at 90% sensitivity (at 80% accuracy
specificity) specificity)
Doctor’s Diagnosed allergens 0.62 034 0.22 (0.06) 0.37 (0.06) 0.79
Eczema (0.03) (0.02)
lung functions 0.56 0.08 0.13 (0.05) 0.24 (0.06) 0.78
(0.04) (0.02)
genetic 0.56 011 0.14 (0.05) 0.25 (0.06) 0.78
(0.04) (0.02)
demographic/ 0.56 0.05 0.12 (0.05) 0.24 (0.07) 0.78
environ. (0.04) (0.02)
all 065 reference 0.2 (0.07) 0.35 (0.08) 0.79
(0.04) (0.02)
Current Asthma allergens 0.79 0.11 043 (0.08) 0.64 (0.07) 0.86
(0.04) (0.02)
lung functions 0.76 004 044 (0.08) 0.6 (0.09) 0.86
(0.04) (0.02)
genetic 0.54 <0.0001 0.12 (0.05) 0.23 (0.07) 0.83
(0.04) (0.02)
demographic/ 0.62 <0.0001 0.2 (0.08) 0.38 (0.07) 0.83
environ. (0.04) (0.02)
all 084 reference  0.56 (0.09) 0.73 (0.08) 0.87
(0.03) (0.02)
Current Wheeze allergens 0.75 0.35 0.34 (0.09) 0.54 (0.1) 0.88
(0.04) (0.02)
lung functions 0.72 0.19 0.42 (0.09) 0.55 (0.08) 0.89
(0.05) (0.02)
genetic 05 (0.05  0.0002 0.11 (0.06) 0.21 (0.08) 0.88
(0.02)
demographic/ 0.6 (0.05) 0.006  0.17 (0.07) 0.32 (0.09) 0.88
environ. 0.02)
all 0.77 reference 0.5 (0.09) 0.62 (0.07) 0.89
(0.04) (0.02)

Performance of random forest on different outcomes using specific variable subsets and the full set of demographic, environmental, genetic (single nucleotide
polymorphisms), allergen sensitisation, and lung functions variables. Results are mean (standard deviation) estimated from out-of-bag distributions across 100
bootstrap runs.

“testing the hypothesis of difference in AUROC significantly shifted from zero as compared to that of a random forest model using all variables with a corrected
paired t-test.

AUROC: area under the receiver operating characteristic curve.
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Figure 2 Comparison of random forest performance using selected input domains. Performance comparison of random forests in terms of
area under the receiver operating characteristic curve in predicting current asthma (left panel), current wheeze (middle panel), and doctor's
diagnosed eczema (right panel) using the whole feature set (demographic, environmental, genetic, lung function markers, and allergen
sensitization) and selected feature subsets. Results are out-of-bag predictions averaged over 100 bootstrap runs.
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Figure 3 Feature importance evaluation by means of random forests. Importance is calculated and shown as the rescaled mean (standard
deviation) decrease in accuracy over 1000 independent runs (green colour). Boxplots represent a null feature importance distribution obtained
by permuting the outcome randomly for 1000 times. Variables significant at the 0.1 level (p-values in red) are shown for current asthma (upper
panel), current wheeze (middle panel), and doctor’s diagnosed eczema (lower panel) using the whole feature set as input.
A\

be due to the ability of random forests to model non-linear
functions and account for variable interactions, although
the corrected t-test on AUROC did not show a statistically
significant difference. Furthermore, the difference between
random forests and logistic regression was minimal in pre-
dicting asthma phenotypes. In terms of statistical power,

however, a larger sample of subjects may reveal unde-
tected differences in the AUROC comparisons of the
linear and non-linear methods.

There was a higher prevalence of eczema compared to
asthma and wheeze in the population; AUROCs were
higher when considering current asthma and current
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wheeze outcomes (0.84 and 0.76), lower for doctor’s diag-
nosed eczema (0.64). Results show clearly that there is
a benefit of merging information from different sources,
e.g. lung functions, allergen sensitization tests, genetic mar-
kers, demographics and environment. However, in general
all models were characterized by a relatively low sensitivity
with any feature set combination. A lower sensitivity was
obtained compared to that of Chatzimichail et al.[23], who
used a similar outcome definition: this is because we expli-
citly excluded any previous personal and familiar diagnosis
of asthma, wheeze and eczema from the input set, given
the fact that outcomes are often defined recursively on pre-
vious episodes. In fact, when utilising previous diagnoses
(plus anti-asthma medication usage), sensitivity increased
to 20.8 (0.9 when including anti-asthma medication usage
variables) at a minimum specificity of 0.9. However, direct
comparison with other methods is only qualitative given
the different study designs and populations.

Regarding the importance of features, our findings con-
firm the important contribution of allergen sensitization
(dust mite, dog, cat), along with lung function markers, in
predicting asthma diagnoses or symptom patterns. The
predictive ability of genetic markers alone is limited,
although for the current asthma outcome the LogitBoost
algorithm selected a few over the whole set of variables.
Our AUROC:s for SNPs are in line with the previous esti-
mates of Spycher et al.[20], who analysed the genome-wide
prediction of childhood asthma and related phenotypes in
a longitudinal birth cohort (reporting AUROC of 0.59 for
wheeze and of 0.54 for asthma). However, our analysis was
not focused on genetic markers: a limited population sam-
ple, in terms of the set candidate SNPs as well as of envir-
onmental markers, can decrease the power to look for
SNP-environment interactions effectively; therefore a more
accurate study design is warranted for this objective.

We observed interesting novel and biologically plausible
association between bio-impedance and eczema. Previous
studies have found that whole body impedance is asso-
ciated with steroid treatments[45] and several types of cuta-
neous reactions[46], including an indirect association to
Filaggrin-related eczema (via stratum corneum hydration)
[47]. Further investigation of this association is warranted.

Limitation of our study include the use of an in-house,
rather than externally validated assay for component
resolved diagnostics (however, this metric was coupled
with validated skin prick testing and blood Immunoglobu-
lin E testing), and the facts that genetic analysis was
restricted to candidate genes. Another potential limitation
was the naive policy for missing value imputation; however
the extent of missing information was negligible.

Conclusions
Being a cross-sectional study, with no longitudinal
separation of predictors and outcomes, this study is not

Page 9 of 10

intended to assess different approaches to causal infer-
ence. However, our data demonstrate that even with
cross-sectional data, there is considerable scope to build
more usefully complex models to better understand
asthma and other complex diseases (such as eczema).
Future studies might incorporate more factors/attributes
and harness longitudinal data in the prediction of later
clinical outcomes.

Competing interests
The authors have no competing interests to declare in relation to this
manuscript.

Authors’ contributions

MCFP manuscript writing, machine learning analysis; SM genetic data pre-
processing, data collection; AS study design, data collection; AC study
design, data management; |EB statistical review. All authors reviewed and
contributed to specific sections of the manuscript.

Declarations

Publication for this article has been funded by grants from J P Moulton
Charitable Foundation (sponsoring the MAAS cohort), Medical Research
Council (MRC) grants G0601361, MR/K002449/1, University of Manchester’s
Library via the Research Councils UK (for open-access publications), and by
the MRC Health eResearch Centre (HeRC) grant MR/KO06665/1.

This article has been published as part of BMC Medical Genomics Volume 7
Supplement 1, 2014: Selected articles from the 3rd Translational
Bioinformatics Conference (TBC/ISCB-Asia 2013). The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcmedgenomics/supplements/7/S1.

Authors’ details

'Centre for Health Informatics, Institute of Population Health, Faculty of
Medical and Human Sciences, University of Manchester, Manchester, UK.
“Centre for Respiratory Medicine and Allergy, Institute of Inflammation and
Repair, University of Manchester, Manchester, UK.

Published: 8 May 2014

References

1. Papierniak ES, Lowenthal DT, Harman E: Novel therapies in asthma:
leukotriene antagonists, biologic agents, and beyond. Am J Ther 2013,
20(1):79-103.

2. Bacharier LB, Guilbert TW: Diagnosis and management of early asthma in
preschool-aged children. J Allergy Clin Immunol 2012, 130(2):287-296, quiz
297-288.

3. Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A,
Lemanske RF, Wardlaw AJ, Wenzel SE, Greenberger PA: Asthma endotypes:
a new approach to classification of disease entities within the asthma
syndrome. J Allergy Clin Immunol 2011, 127(2):355-360.

4. Sittka A, Vera J, Lai X, Schmeck B: Asthma phenotyping, therapy, and
prevention: what can we learn from systems biology? Pediatr Res 2013.

5. Taylor PE, Jacobson KW, House JM, Glovsky MM: Links between pollen,
atopy and the asthma epidemic. International archives of allergy and
immunology 2007, 144(2):162-170.

6. Gent JF, Belanger K, Triche EW, Bracken MB, Beckett WS, Leaderer BP:
Association of pediatric asthma severity with exposure to common
household dust allergens. Environmental research 2009, 109(6):768-774.

7. Wang J, Calatroni A, Visness CM, Sampson HA: Correlation of specific IgE
to shrimp with cockroach and dust mite exposure and sensitization in
an inner-city population. J Allergy Clin Immunol 2011, 128(4):834-837.

8. Sordillo JE, Webb T, Kwan D, Kamel J, Hoffman E, Milton DK, Gold DR:
Allergen exposure modifies the relation of sensitization to fraction of
exhaled nitric oxide levels in children at risk for allergy and asthma.

J Allergy Clin Immunol 2011, 127(5):1165-1172 e1165.

9. Burrows B, Martinez FD, Halonen M, Barbee RA, Cline MG: Association of
asthma with serum IgE levels and skin-test reactivity to allergens. N
Engl J Med 1989, 320(5):271-277.


http://www.biomedcentral.com/bmcmedgenomics/supplements/7/S1
http://www.biomedcentral.com/bmcmedgenomics/supplements/7/S1
http://www.ncbi.nlm.nih.gov/pubmed/23299231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23299231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22664162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22664162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21281866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21281866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21281866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23314293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23314293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17536216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17536216?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19473655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19473655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21872304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21872304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21872304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21463890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21463890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2911321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2911321?dopt=Abstract

Prosperi et al. BMC Medical Genomics 2014, 7(Suppl 1):S7
http://www.biomedcentral.com/1755-8794/7/51/S7

20.

21,

22.

23.

24.

25.

26.

27.

28.

Beeh KM, Ksoll M, Buhl R: Elevation of total serum immunoglobulin E is
associated with asthma in nonallergic individuals. The European
respiratory journal : official journal of the European Society for Clinical
Respiratory Physiology 2000, 16(4):609-614.

Simpson BM, Custovic A, Simpson A, Hallam CL, Walsh D, Marolia H,
Campbell J, Woodcock A: NAC Manchester Asthma and Allergy Study
(NACMAAS): risk factors for asthma and allergic disorders in adults.
Clinical and experimental allergy : journal of the British Society for Allergy and
Clinical Immunology 2001, 31(3):391-399.

Marinho S, Simpson A, Soderstrom L, Woodcock A, Ahlstedt S, Custovic A:
Quantification of atopy and the probability of rhinitis in preschool
children: a population-based birth cohort study. Allergy 2007,
62(12):1379-1386.

Marinho S, Simpson A, Marsden P, Smith JA, Custovic A: Quantification of
atopy, lung function and airway hypersensitivity in adults. Clinical and
translational allergy 2011, 1(1):16.

Castro-Rodriguez JA, Holberg CJ, Wright AL, Martinez FD: A clinical index
to define risk of asthma in young children with recurrent wheezing.
Am J Respir Crit Care Med 2000, 162(4 Pt 1):1403-1406.

Singer F, Luchsinger |, Inci D, Knauer N, Latzin P, Wildhaber JH, Moeller A:
Exhaled nitric oxide in symptomatic children at preschool age predicts
later asthma. Allergy 2013, 68(4):531-538.

Greenberg S: Asthma exacerbations: predisposing factors and prediction
rules. Current opinion in allergy and clinical immunology 2013.

Wadsworth SJ, Sandford AJ: Personalised medicine and asthma
diagnostics/management. Current allergy and asthma reports 2013,
13(1):118-129.

Pralong JA, Seed MJ, Yasri R, Agius RM, Cartier A, Labrecque M: A
computer based asthma hazard prediction model and new molecular
weight agents in occupational asthma. Occupational and environmental
medicine 2013, 70(1):70.

Soyiri IN, Reidpath DD: Semistructured black-box prediction: proposed
approach for asthma admissions in London. International journal of
general medicine 2012, 5:693-705.

Spycher BD, Henderson J, Granell R, Evans DM, Smith GD, Timpson NJ,
Sterne JA: Genome-wide prediction of childhood asthma and related
phenotypes in a longitudinal birth cohort. J Allergy Clin Immunol 2012,
130(2):503-509 e507.

Savenije OE, Kerkhof M, Koppelman GH, Postma DS: Predicting who will
have asthma at school age among preschool children. J Allergy Clin
Immunol 2012, 130(2):325-331.

Vial Dupuy A, Amat F, Pereira B, Labbe A, Just J: A simple tool to identify
infants at high risk of mild to severe childhood asthma: the persistent
asthma predictive score. The Journal of asthma : official journal of the
Association for the Care of Asthma 2011, 48(10):1015-1021.

Chatzimichail E, Paraskakis E, Sitzimi M, Rigas A: An intelligent system
approach for asthma prediction in symptomatic preschool children.
Computational and mathematical methods in medicine 2013, 2013:240182.
Marinho S, Custovic A, Marsden P, Smith JA, Simpson A: 17q12-21 variants
are associated with asthma and interact with active smoking in an adult
population from the United Kingdom. Annals of allergy, asthma &
immunology : official publication of the American College of Allergy, Asthma,
& Immunology 2012, 108(6):402-411 e409.

Custovic A, Simpson BM, Murray CS, Lowe L, Woodcock A, Asthma NACM,
Allergy Study G: The National Asthma Campaign Manchester Asthma and
Allergy Study. Pediatric allergy and immunology : official publication of the
European Society of Pediatric Allergy and Immunology 2002, 13(Suppl
15):32-37.

Langley SJ, Goldthorpe S, Craven M, Morris J, Woodcock A, Custovic A:
Exposure and sensitization to indoor allergens: association with lung
function, bronchial reactivity, and exhaled nitric oxide measures in
asthma. J Allergy Clin Immunol 2003, 112(2):362-368.

Langley SJ, Goldthorpe S, Custovic A, Woodcock A: Relationship among
pulmonary function, bronchial reactivity, and exhaled nitric oxide in a
large group of asthmatic patients. Annals of allergy, asthma & immunology
: official publication of the American College of Allergy, Asthma, &
Immunology 2003, 91(4):398-404.

Kidon MI, Chiang WC, Liew WK, Ong TC, Tiong YS, Wong KN, Angus AC,
Ong ST, Gao YF, Reginald K et a: Mite component-specific IgE repertoire
and phenotypes of allergic disease in childhood: the tropical

29.

30.

31

32.

33

34.

35.
36.

37.
38.

39.

40.

42.

43.

45.

46.

Page 10 of 10

perspective. Pediatric allergy and immunology : official publication of the
European Society of Pediatric Allergy and Immunology 2011, 22(2):202-210.
de Marco R, Marcon A, Jarvis D, Accordini S, Almar E, Bugiani M, Carolei A,
Cazzoletti L, Corsico A, Gislason D, et al: Prognostic factors of asthma
severity: a 9-year international prospective cohort study. J Allergy Clin
Immunol 2006, 117(6):1249-1256.

Siroux V, Boudier A, Anto JM, Cazzoletti L, Accordini S, Alonso J, Cerveri |,
Corsico A, Gulsvik A, Jarvis D, et al: Quality-of-life and asthma-severity in
general population asthmatics: results of the ECRHS Il study. Allergy 2008,
63(5):547-554.

Pekkanen J, Sunyer J, Anto JM, Burney P, European Community Respiratory
Health S: Operational definitions of asthma in studies on its aetiology.
The European respiratory journal : official journal of the European Society for
Clinical Respiratory Physiology 2005, 26(1):28-35.

Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of
LD and haplotype maps. Bioinformatics 2005, 21(2):263-265.

Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B,
Higgins J, DeFelice M, Lochner A, Faggart M, et al: The structure of
haplotype blocks in the human genome. Science 2002,
296(5576):2225-2229.

Landwehr N, Hall M, Frank E: Logistic model trees. Mach Learn 2005,
59(1-2):161-205.

Venables WN, Ripley BD: Modern Applied Statistics with S Springer; 2002.
Breiman L, Friedman J, Stone C, Olshen RA: Classification and Regression
Trees. Chapman and Hall/CRC; 1984.

Breiman L: Random forests. Mach Learn 2001, 45(1):5-32.

Freund Y, Schapire RE: A decision-theoretic generalization of on-line
learning and an application to boosting. J Comput Syst Sci 1997,
55(1):119-139.

Hastie T, Tibshirani R, Friedman JH: The elements of statistical learning :
data mining, inference, and prediction. New York, NY: Springer;, 2 2009.
Nadeau C, Bengio Y: Inference for the Generalization Error. Mach Learn
2003, 52(3):239-281.

Garcia S, Herrera F: An Extension on “Statistical Comparisons of Classifiers
over Multiple Data Sets” for all Pairwise Comparisons. J Mach Learn Res
2008, 9:2677-2694.

Altmann A, Tolosi L, Sander O, Lengauer T: Permutation importance: a
corrected feature importance measure. Bioinformatics 2010,
26(10):1340-1347.

Nicodemus KK, Malley JD, Strobl C, Ziegler A: The behaviour of random
forest permutation-based variable importance measures under predictor
correlation. BMC Bioinformatics 2010, 11:110.

Strobl C, Boulesteix AL, Zeileis A, Hothorn T: Bias in random forest variable
importance measures: illustrations, sources and a solution. BMC
Bioinformatics 2007, 8:25.

Heitmann BL, Anhoj J, Bisgaard AM, Ward L, Bisgaard H: Changes in body
water distribution during treatment with inhaled steroid in pre-school
children. Annals of human biology 2004, 31(3):333-341.

Nyren M, Hagstromer L, Emtestam L: On assessment of skin reactivity
using electrical impedance. Ann Ny Acad Sci 1999, 873:214-220.
Nemoto-Hasebe |, Akiyama M, Nomura T, Sandilands A, McLean WHI,
Shimizu H: Clinical Severity Correlates with Impaired Barrier in Filaggrin-
Related Eczema. J Invest Dermatol 2009, 129(3):682-689.

doi:10.1186/1755-8794-7-51-S7
Cite this article as: Prosperi et al.: Predicting phenotypes of asthma and
eczema with machine learning. BMC Medical Genomics 2014 7(Suppl 1):S7.



http://www.ncbi.nlm.nih.gov/pubmed/11106200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11106200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11260150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11260150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17822449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17822449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22410099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22410099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11029352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11029352?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23414302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23414302?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23635528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23635528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23212666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23212666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23085559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23085559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23085559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22973117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22973117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22846752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22846752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22704537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22704537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22022892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22022892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22022892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23573166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23573166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22626592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22626592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22626592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12688622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12688622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12897743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12897743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12897743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14582820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14582820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14582820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21332797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21332797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21332797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16750983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16750983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18394129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18394129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15994386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12029063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12029063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20385727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20385727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20187966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20187966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20187966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15204348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15204348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15204348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10372170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10372170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18818676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18818676?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Results
	Characteristics of the study population

	Model inference
	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Declarations
	Authors’ details
	References

