Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1
http://www.biomedcentral.com/1755-8794/8/S3/51

BMC
Medical Genomics

RESEARCH Open Access

Konnector v2.0: pseudo-long reads from
paired-end sequencing data

Benjamin P Vandervalk, Chen Yang, Zhuyi Xue, Karthika Raghavan, Justin Chu, Hamid Mohamadi,
Shaun D Jackman, Readman Chiu, René L Warren, Inang Birol”

From |EEE International Conference on Bioinformatics and Biomedicine (BIBM 2014)
Belfast, UK. 2-5 November 2014

Abstract

Background: Reading the nucleotides from two ends of a DNA fragment is called paired-end tag (PET)
sequencing. When the fragment length is longer than the combined read length, there remains a gap of
unsequenced nucleotides between read pairs. If the target in such experiments is sequenced at a level to provide
redundant coverage, it may be possible to bridge these gaps using bioinformatics methods. Konnector is a local de
novo assembly tool that addresses this problem. Here we report on version 2.0 of our tool.

Results: Konnector uses a probabilistic and memory-efficient data structure called Bloom filter to represent a k-mer
spectrum - all possible sequences of length k in an input file, such as the collection of reads in a PET sequencing
experiment. It performs look-ups to this data structure to construct an implicit de Bruijn graph, which describes
(k-1) base pair overlaps between adjacent k-mers. It traverses this graph to bridge the gap between a given pair of

flanking sequences.

process over a billion bases on commodity hardware.

Conclusions: Here we report the performance of Konnector v2.0 on simulated and experimental datasets, and
compare it against other tools with similar functionality. We note that, representing k-mers with 1.5 bytes of
memory on average, Konnector can scale to very large genomes. With our parallel implementation, it can also

Background

If genomes were composed of random sequences, a
sequence of length L would be specific enough to
describe a locus on a genome of length G when 4">>G.
For instance, a typical HiSeq 4000 sequencer (Illumina,
San Diego, CA) generates 150 base pair (bp) reads, for
which 4~ would be more than 80 orders of magnitude
larger than the human genome. But, of course, genomes
are not random sequences; they have structure, other-
wise, we would not be here to write this paper, nor
would you be there to read it.

Long read lengths are desirable to reveal structures in
genomes of interest. While sequencing technologies
from Pacific Biosciences (Menlo Park, CA) and Oxford
Nanopore Technologies (Oxford, UK) can generate

* Correspondence: ibirol@bcgsc.ca
Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer
Agency, Vancouver, BC V57 456, Canada

reads that are several kilo bases (kb) long, their low
throughput and high error make them challenging to
use in experiments that interrogate large targets.

Many experimental designs with short sequencing data
use a paired-end tag (PET) sequencing strategy, where
short sequences are determined from both ends of a
DNA fragment. These PET sequences are then associated
in downstream analysis to resolve structures as long as
fragment lengths. Typically, these fragments are less than
1 kb, and ideally have unimodal length distributions. To
resolve even longer structures, there are specialized
library preparation protocols, such as Nextera and Mole-
culo from Illumina and GemCode from 10X Genomics
(Pleasanton, CA).

In this study, we focus on the PET reads. We describe
Konnector v2.0, a tool that uses the coverage redundancy
in a high-throughput sequencing experiment to recon-
struct fragment sequences (pseudo-reads). Optionally, it

© 2015 Vandervalk et al; This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(BioMVed Central

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:ibirol@bcgsc.ca
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1
http://www.biomedcentral.com/1755-8794/8/53/51

also extends those fragment sequences in 3’ and 5’ direc-
tions, as long as the extensions are unambiguous. The
tool builds on our earlier implementation [1] that filled
in the bases of the sequence gap between read pairs by
navigating a de Bruijn graph [2]. Konnector represents a
de Bruijn graph using a Bloom filter [3], a probabilistic
and memory-efficient data structure.

The utility of long pseudo-reads has been demon-
strated before [4], and forms the backbone of some de
novo assembly tools [5]. Long pseudo-reads can be gen-
erated by merging overlapping PETs [6,7], or by localiz-
ing the sequence assembly problem around PETSs [8,9].
Our focus in this study is the latter problem.

For example, the ELOPER algorithm [8] identifies read
pairs that share an overlap in both reads simultaneously,
and uses these overlaps to generate “elongated paired-
end reads”. The GapFiller algorithm [9], on the other
hand, formulates this problem as a collection of seed-
and-extend local assembly problems. The latter concept
has also been implemented within the MaSuRCA de novo
assembly pipeline [5], a wrapper around the Celera
Assembler software [10].

We benchmark Konnector v2.0 on simulated datasets,
compare its performance against ELOPER [8], GapFiller
[9], and a similar tool within MaSuRCA [5]. We demon-
strate its utility for assembly finishing problems and var-
iant calling. With its frugal memory use and algorithm
implementation, we show that Konnector v2.0 can handle
large sequence datasets with over a billion reads from Gbp
scale genomes in a timely manner. Furthermore, we note
that it consistently provides highly accurate results for a
range of targets.

Implementation

Konnector creates long pseudo-reads from paired-end
sequencing reads (Figure 1) by searching for connecting
paths between read pairs using a Bloom filter representation
of a de Bruijn graph. In addition to connecting read pairs,

““.‘.f’""‘\""k'\..(\.'§~

Bloom filter
false positive

Sequencing error

Paired-end read | Connected path

Figure 1 A connecting path between two non-overlapping
paired-end sequencing reads within a de Bruijn graph. Konnector
joins the sequence provided by the input paired-end reads (green) by
means a graph search for a connecting path (blue). Sequencing errors
in the input sequencing data produce bubbles and branches in the de
Bruijn graph of up to k nodes in length (red). Bloom filter false
positives produce additional branches (yellow) with lengths that are
typically much shorter than the error branches.

Page 2 of 10

Konnector v2.0 can also extend connected or unconnected
sequences by following paths from the ends of sequences
up to the next branching point or dead end in the de Bruijn
graph. When the sequence extension feature of Konnector
v2.0 is enabled, an additional Bloom filter is employed to
avoid the production of an intractable quantity of duplicate
sequences. Figure 2 provides a flowchart overview of the
Konnector 2.0 algorithm.

Bloom filter de Bruijn graph

As the throughput of the Illumina platforms increased
rapidly to generate up to 1Tb in a six-day run with the
HiSeq SBS V4 Kits, one important concern for pseudo-
read generating tools is their computational efficiency.
In related problems, bioinformatics tools have used stra-
tegies such as parallel computing [11,12], FM indexing
[13,14], and compressed data structures [15] for hand-
ling big data.

To fit large assembly problems in small memory, one
recent approach has been the use of Bloom filters [16,3]
to represent de Bruijn graphs, as demonstrated by
the Minia assembler [17]. Konnector adopts a similar
approach. Briefly, a Bloom filter is a bit array that acts as
a compact representation of a set, where the presence or
absence of an element in the set is indicated by the state
of one or more bits in the array. The particular position
of the bits that correspond to each element is determined
by a fixed set of hash functions. While Bloom filters are
very memory-efficient, the principal challenge of develop-
ing Bloom filter algorithms is in dealing with the possibi-
lity of false positives. A false positive occurs when the bit
positions of an element that is not in the set collide with
the bit positions of an element that is in the set. In the
context of Bloom filter de Bruijn graphs, false positives
manifest themselves as false branches, as depicted by the
yellow nodes in Figure 1.

In the first step of the algorithm (Figure 2, step (1)), the
Bloom filter de Bruijn graph is constructed by shredding
the input reads into k-mers, and loading the k-mers into
a Bloom filter. To diminish the effect of sequencing
errors at later stages of the algorithm, k-mers are initially
propagated between two Bloom filters, where the first
Bloom filter contains k-mers that have been seen at least
once, and the second Bloom filter contains k-mers that
have been seen at least twice. At the end of k-mer load-
ing, the first Bloom filter is discarded, and the second
Bloom filter is kept for use in the rest of the algorithm.
We note here that only the k-mers of the input reads,
corresponding to the nodes in the de Bruijn graph, are
stored in the Bloom filter whereas there is no explicit sto-
rage of edges. Instead, the neighbours of a k-mer are
determined during graph traversal by querying for the
presence of all four possible neighbours (i.e. single base
extensions) at each step.

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1

http://www.biomedcentral.com/1755-8794/8/S3/51

Page 3 of 10

START

Build Bloom filter
de Bruijn graph

v

Load single

S read pair

(3)

(5)
YES

AN

¥

Search for
(2) connecting
paths

Found

YES paths?

(4)

Build consensus
sequence for
path(s)

Consensus
sequence
presentin
duplicate
filter?

connecting

NO

Correct unmerged
reads 1 and 2

Was read 1
or read 2
corrected?

Add uncorrected

sequence(s) to
reads_1.fq/
reads_2.fq

L

Corrected
read(s)
present in
duplicate
filter?

YES

(7)

Extend Extend
Cconsensus sequence (8) corrected read(s)
outwards inwards and outwards

Add extended sequence

to duplicate filter

Add extended read(s)
to duplicate filter

I

Add extended
sequence(s) to
output pseudoreads

]

NO

Last input
read pair?

YES

Figure 2 The Konnector2 algorithm. (1): The algorithm builds a Bloom filter representation of the de Bruijn graph by loading all k-mers from
the input paired-end sequencing data. (2): For each read pair, a graph search for connecting paths within the de Bruijn graph is performed. (3):
If one or more connecting paths are found, a consensus sequence for the paths is built. (4): If no connecting paths are found, error-correction is
attempted on reads 1 and 2. (5) and (6): the algorithm queries for the existence of either the consensus connecting sequence or the error-
corrected reads in the “duplicate filter”. The duplicate filter is an additional Bloom filter, separate from the Bloom filter de Bruijn graph, which
tracks the parts of the genome that have already been assembled. (7) and (8): If one or more of the k-mers in the query sequence are not found
in the duplicate filter, the sequence is extended outwards in the de Bruijn graph, until either a dead end or a branching point is encountered in
the graph. Finally, the extended sequences are written to the output pseudo-reads file.

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1
http://www.biomedcentral.com/1755-8794/8/S3/51

Searching for connecting paths

In a second pass over the input sequencing data,
Konnector searches for connecting paths within the de
Bruijn graph between each read pair (Figure 2, step (2)).
The graph search is initiated by choosing a start k-mer
in the first read and a goal k-mer in the second read,
and is carried out by means of a depth-limited, bidirec-
tional, breadth-first search between these two k-mers.

The start and goal k-mers are selected to reduce the
probability of dead-end searches due to sequencing
errors or Bloom filter false positives. First, the putative
non-error k-mers of each read are identified by querying
for their existence in the Bloom filter de Bruijn graph.
(Recall that after the loading stage, this Bloom filter only
contains k-mers that occur twice or more.) Next, the
algorithm attempts to find a consecutive run of three
non-error k-mers within the read, and chooses the k-mer
on the distal end (i.e. 5’ end) of the run as the start/goal
k-mer. This method ensures that if the chosen start/goal
k-mer is a Bloom filter false positive, the path search will
still proceed through at least two more k-mers instead of
stopping at a dead end. In the likely case that there are
multiple runs of “good” k-mers within a read, the run
that is closest to the 3’ (gap-facing) end of the read is
chosen, in order reduce the depth of subsequent path
search. In the case that there are no runs of three good
k-mers, the algorithm falls back to using the longest run
found (i.e. two k-mers or a single k-mer).

Once the start and goal k-mers have been selected,
Konnector performs the search for connecting paths. In
order to maximize the accuracy of the sequence connect-
ing the reads, it is important for the algorithm to consider
all possible paths between the reads, up to the depth limit
dictated by the DNA fragment length. For this reason, a
breadth-first search is employed rather than a shortest
path algorithm such as Dijkstra or A*. Konnector imple-
ments a bidirectional version of breadth-first search,
which improves performance by conducting two half-
depth searches, and thus reducing the overall expansion of
the search frontier. The bidirectional search is implemen-
ted by alternating between two standard breadth-first
searches that can “see” each other’s visited node lists. If
one search encounters a node that has already been visited
by the other search, the edge leading to that node is
recorded as a “common edge”, and the search proceeds no
further through that particular node. As the two searches
proceed, all visited nodes and edges are added to a tem-
porary, in-memory “search graph”. This facilitates the final
step, where the full set of connecting paths are constructed
by performing an exhaustive search both backwards and
forwards from each common edge towards the start and
goal k-mers, respectively.

If the search algorithm finds a unique path between
the start and goal k-mers, then the path is converted to

Page 4 of 10

a DNA sequence, and is used to join the read sequences
into a single pseudo-read. In the case of multiple paths,
a multiple sequence alignment is performed, and the
resulting consensus sequence is used to join the reads
instead (Figure 2, step (3)). In order to fine-tune the
quality of the results, the user may specify limits with
respect to the maximum number of paths that can be
collapsed to a consensus and/or the maximum number
of mismatches that should be tolerated between alter-
nate paths.

Extending connected and unconnected sequences
Konnector v2.0 introduces a new capability to extend
both connected and unconnected sequences by traversing
from the ends of sequences to the next branching point
or dead-end in the de Bruijn graph (Figure 2, steps (7)
and (8)). If a read pair is successfully connected, the algo-
rithm will extend the pseudo-read outwards in both
directions; if the read pair is not successfully connected,
each of the two reads will be extended independently,
both inwards and outwards. The extensions are seeded in
the same manner described above for the connecting
path searches; a putative non-error k-mer is selected near
the end of the sequence, and following two consecutive
non-error k-mers if possible.

The extension of connected reads or unconnected
reads that are contained within the same linear path of
the de Bruijn graph results in identical sequences. For
this reason, the algorithm uses an additional Bloom filter
to track the k-mers of sequences that have already been
assembled. (Hereafter this Bloom filter will be referred to
as the “duplicate filter” in order to reduce confusion with
the Bloom filter de Bruijn graph.)

The logic for tracking duplicate sequences differs for
the cases of connected and unconnected read pairs. In
the case of connected reads, only the k-mers of the con-
necting sequence are used to query the duplicate filter
(Figure 2, step (5)). By virtue of being present in the
Bloom filter de Bruijn graph, the connecting k-mers are
putative non-error k-mers that have occurred at least
twice in the input sequencing data, and thus a 100%
match is expected in the case that the genomic region in
question has already been covered. If one or more
k-mers from the connecting sequence are not found in
the duplicate filter, the pseudo-read is kept and is
extended outwards to its full length (Figure 2, step (7)).
The k-mers of the extended sequence are then added to
the duplicate filter, and the sequence is written to the
output pseudo-reads file.

In the case of unconnected reads, the reads must first be
corrected prior to querying the duplicate filter (Figure 2,
step (4)). This is done by first extracting the longest con-
tiguous sequence of non-error k-mers within the read,
where k-mers that are present in the Bloom filter de

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1
http://www.biomedcentral.com/1755-8794/8/S3/51

Bruijn graph are considered to be putative non-error
k-mers. An additional step is then performed to correct
for recurrent read-errors that may have made it past the
two-level Bloom filter. Starting from the rightmost k-mer
of the selected subsequence, the algorithm steps left by
k nodes, aborting the correction step if it encounters a
branching point or dead-end before walking the full dis-
tance. As the longest branch that can be created by a sin-
gle sequencing error is k nodes, this navigates out of any
possible branch or bubble created by an error (red nodes
of Figure 1). Finally, the algorithm steps right up to (k+1)
nodes to generate a high confidence sequence for querying
the duplicate filter. The second rightward step stops early
upon encountering a branching point or dead-end, but
any sequence generated up to that point is kept, and is
still used to query the duplicate filter. Following error cor-
rection, the subsequent steps for handling unconnected
reads are similar to the case for connected reads. If the
high confidence sequence contains k-mers that are not
found in the duplicate filter, the sequence is extended to
its full length, added to the duplicate filter, and written to
the output pseudo-reads file.

Finally, some additional look-ahead logic is employed
in the extension algorithm to handle the common cases
of false positive branches and simple bubbles created by
heterozygous SNPs. All branches shorter than or equal
to three nodes in length are assumed to be false positive
branches and are ignored during extension. Upon reach-
ing a fork with two (non-false-positive) branches, a
look-ahead of (k+1) nodes is performed to see if the
branches re-converge. If so, the bubble is collapsed and
the extension continues.

Results and discussion
Read-elongation tools comparison
To evaluate Konnector v2.0, we performed a comparison
with several other read-elongation tools: ELOPER [8],
GapFiller [9], the MaSuRCA super-reads module [5],
and the previously published version of Konnector [1].

ELOPER v1.2 (ELOngation of Paired-End Reads) [8]
operates by calculating gapped overlaps between read
pairs, where a gapped overlap requires simultaneous over-
lap of both reads across two read pairs. The main idea of
the algorithm is that overlaps across read pairs yield
higher-confidence sequence extensions than overlaps
between individual reads alone. The program produces
extended paired-end reads as output and single-end
pseudo-reads in cases where paired reads can be extended
far enough to overlap with their mates. The all-by-all com-
putation of gapped overlaps between read pairs is realized
using a hash table-based approach.

GaptFiller v2.1.1 [9] fills the sequencing gap between
paired-end reads using a seed-and-extend approach,
where each input read is considered in turn as a seed.

Page 5 of 10

Reads are iteratively extended towards their mates by
identifying overlapping reads, building a consensus
sequence for the extension, and then repeating the pro-
cess with extended sequence. GapFiller uses the eventual
overlap of an extended read with its mate as a correct-
ness check, and chooses not to continue the extension
beyond the fragment length in favour of higher confi-
dence results. The algorithm for detecting overlaps is
implemented by computing some fingerprint values for
the prefixes and suffixes of each read, and storing the
mapping between fingerprints and reads in a hash-table.
In order to calculate the consensus sequences during
extension, the full set of input read sequences is stored
in memory using a compressed 2-bit representation.

MaSuRCA v2.2.1 [5] is an extension of the CABOG
overlap-layout-consensus assembler [18] that preprocesses
the input short sequencing reads to generate a highly-
reduced set of “super-reads” for input to the Celera assem-
bler [10]. Much like the extension feature of Konnector
v2.0, the super-reads are generated by extending the reads
outward to the next branching point or dead-end within a
de Bruijn graph. These “k-unitig” sequences are then
joined by spanning read pairs or bridging single-end reads,
in cases where such links are unambiguous.

The previously published version of Konnector [1] uses
the same concept for connecting read pairs as Konnector
v2.0, but does not include the sequence extension or
duplicate filtering logic. Its output format is most similar
to GapFiller, in the sense that it generates one fragment-
length sequence for each successfully connected read
pair.

We compared the performance and results of the
tools across four paired-end sequencing data sets from
organisms with a wide range of genome sizes: E. coli,
S. cerevisiae, C. elegans, and H. sapiens (Table 1). The
E. coli data set consists of 100 bp synthetic reads gener-
ated with the pIRS read simulator [19] using a 0.1%
error rate, 50x coverage, and an insert size of 400 + 50 bp,
while the other three data sets are experimental paired-
end Illumina sequencing data with coverage levels ranging
from 26x to 76x.

For each combination of data set and tool, we mea-
sured running time, peak memory usage, N50 length of
the output pseudo-reads, sum length of the misassembled
pseudo-reads, and percent coverage of the reference gen-
ome (Table 2). The N50 length was calculated using the
QUAST [20] assembly assessment tool, except for the
human data set where the ‘abyss-fac’ utility (ABySS v1.5.2
[11]) was used instead. The “Misassembled Reads
Length” column of Table 2 was also calculated by
QUAST, and reports the sum length of all pseudo-reads
that had split alignments to the reference with distance
greater 1 kb, overlap greater 1 kb, or mappings to differ-
ent strands/chromosomes. We found that QUAST was

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1
http://www.biomedcentral.com/1755-8794/8/53/51

Table 1. Datasets analyzed

Page 6 of 10

Organism Genome Size NGS data source Read length (bp) Read pairs (M) Fragment size (bp) Fold coverage
E.coli 5 Mbp Simulated PE100 12 400 50X
K-12
S. cerevisiae 12 Mbp Experimental PE100 16 300 26X
SRA:ERR156523
C.elegans 97 Mbp Experimental PE100 44.7 450 89X
SRA:ERR294494
H.sapiens 3 Gbhp Experimental PE250 457.0 550 76X
NA19238 SRA:ERR309932

Table 2. Comparative analysis of read elongation tools

Running time Peak memory N50 Misassembled Reads Length Percent genome coverage
(hms) (MB) (bp) (bp)
E. coli (synthetic)
ELOPER 10m46s 19013 501 16146 100.00
GapFiller 32m39s 476 396 14103 100.00
MaSuRCA super-reads 2m56s 4669 54103 0 100.00
Konnector (k = 50) 6mMm15s 81 406 3133 100.00
Konnector 2 (k = 70) 5m0s 100 32012 276 99.99
S. cerevisiae
ELOPER 97h55m23s 37119 144 71426 99.32
GapFiller 3h13m18s 666 332 96869 97.04
MaSuRCA super-reads 4m2s 5294 1684 129828 98.67
Konnector (k = 50) 8m34s 231 315 75435 97.94
Konnector 2 (k = 40) 7m1s 232 4690 67505 98.99
C. elegans
ELOPER exceeds available memory (120GB)
GapFiller exceeds available memory (120GB)
MaSuRCA super-reads 2h2m17s 80742 2554 1925740 99.98
Konnector (k = 55) 5h5m21s 1954 475 NA 99.80
Konnector 2 (k = 80) 3h30m23s 2193 6232 837480 99.88
H. sapiens (NA19238)
ELOPER not attempted
GapFiller not attempted
MaSuRCA super-reads exceeds available memory (120 GB)
Konnector (k = 150) 4d9n15m48s 410381 556 NA 94.15
Konnector 2 (k = 180) 20h47m24s 471905 3051 NA 94.01

not able to scale to an analysis of the human Konnector
and Konnector v2.0 pseudo-reads, and so those results
were omitted from Table 2. Finally, the genome coverage
results were calculated by aligning the pseudo-reads to
the reference with bwa mem v0.7.12 [21], with the multi-
mapping option (-a) turned on, and then using the result-
ing BAM file as input to the bedtools v2.17.0 [22]
‘genomecov’ command.

The Konnector and Konnector v2.0 jobs for the com-
parison were run across a range of k-mer lengths to
achieve the best possible results. For the previous ver-
sion of Konnector, the run with the highest percentage

of connected read pairs was selected, whereas for
Konnector v2.0, a k-mer size was selected that provided
a favourable combination of both N50 and misas-
sembled reads length (Figure 3).

From the results of Table 2, we observe that MaSuRCA
was generally the fastest tool. While Konnector and
Konnector v2.0 showed competitive run times, ELOPER
and GapFiller were notably slower, and did not scale well
to larger data sets. In the category of memory usage, both
versions of Konnector outperformed the competitors by
more than an order of magnitude due to their use of
Bloom filters rather than hash tables.

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1
http://www.biomedcentral.com/1755-8794/8/53/51

Page 7 of 10

E. coli (synthetic)
© MaSuRCA

3000 -

N50 length (bp)

GapFiller
0- @ konnector (k=50) @
i 1 |] i]]
0 5000 10000 15000 0000)

N50 vs. Misassembled Reads Length

S. cerevisiae

konnector (k=50) =
e o GapF

) 50000
misassembled reads length (bp)

Figure 3 Comparison of pseudo-read tools by N50 and misassembled reads length. Results are shown for Konnector v2.0 and three other
pseudo-read-generating tools across E. coli (synthetic), S. cerevisiae, and C. elegans sequencing data sets. The “misassembled reads length” on the
x-axis of each plot denotes the sum length of all pseudo-reads reported as misassembled by QUAST. MaSuRCA performs best on the synthetic
E. coli data set, producing the highest N50 and creating no misassemblies. However, on the experimental S. cerevisiae and C. elegans data sets,
Konnector v2.0 outperforms the other tools in terms of both N50 and misassembled sequence, for a range of k-mer lengths.

C. elegans

eMaSuRCA

eMaSuRCA

[1 1 1 1 1
100000 150000 De+00 1e+06 2e+06 3e+06

The N50 and Misassembled Reads Length results from
Table 2 are plotted in Figure 3, with additional data
points shown for alternate runs of Konnector v2.0 with
different k-mer sizes. The plots show that Konnector 2
generated the longest pseudo-reads and the least misas-
sembled sequence for the experimental S. cerevisiae and
C. elegans data sets, while MaSuRCA generated the long-
est and most accurate pseudo-reads for the synthetic
E. coli data set.

Working with a maximum of 120 GB available memory
on any single machine, Konnector and Konnector v2.0
were the only tools that could be run on the largest of the
four data sets in Table 2 (H. sapiens). One of the main
advantages of Konnector for this data set was the ability to
split work across machines. This was accomplished by first
building a reusable Bloom filter file with the companion
‘abyss-bloom’ utility (ABySS v1.5.2), and then sharing this
file across 20 parallel Konnector jobs, each processing a dis-
joint subset of the paired-end reads. The two-level Bloom
filter size was 40 GB, and each of the jobs was run on a
machine with 12 cores and 48 GB RAM. The wall clock
time for the job was less than 24 hours, and the aggregate
memory requirement for job was just under 0.5TB. We
note that the larger memory usage of Konnector v2.0 is due
to the use of an additional Bloom filter for tracking dupli-
cate sequences. The large improvement in running time
between Konnector and Konnector v2.0 on the H. sapiens
data set is due primarily to the introduction of multi-
threaded Bloom filter construction in Konnector v2.0.

Sealer: a Konnector-based gap-closing application

A natural application to Konnector includes automated
finishing of genomes, by systematically targeting all
regions of unresolved bases, or gaps, in draft genomes of
wide-ranging sizes. This is accomplished by first identify-
ing these scaffold gaps, deriving flanking sequences on
the 5’ and 3’ ends of each gap, running Konnector with
comprehensive short read data set, and patching the gaps
by placing successfully merged sequences in those
regions. We have developed a stand-alone utility called
Sealer for this specific application [23].

To test the utility of Konnector for filing scaffold gaps,
we ran Sealer on an ABySS E. coli genome assembly
(5 Mbp) and, to assess the scalability of the approach, on
an ABySS H. sapiens (3.3 Gbp) draft assembly of next-
generation Illumina sequences (SRA:ERR309932) derived
from the 1000 Genomes Project (individual NA19238)
(Table 3). For E. coli, we were able to successfully close
all but one gap using a single k-mer size of 90 bp. On the
human assembly, gaps were closed with Sealer using 31
k-mers (250 - 130 bp, decrementing by 10, and 125 - 40 bp,
decrementing by 5; parameters for Konnector were -B 1000
-F 700 -P10), and compared the result to two similar tools
GapFiller (v1.10) [24] and SOAPdenovo2 GapCloser (v1.12)
[25]. Default settings were used for both tools in our tests,
maximizing the number of compute threads, when needed
(-t 16 for GapCloser on the human data set). On the
H. sapiens draft assembly GapFiller was manually stopped
after running for over 350 hours (approximately 14 days)

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1
http://www.biomedcentral.com/1755-8794/8/53/51

Page 8 of 10

Table 3. Performance evaluation of Sealer and other gap-filling applications for finishing draft genomes

Draft genome species Total gaps Software Gaps completely closed % Success Wall clock time (hh:mm) Memory (GB)
E. coli 18 Sealer K2 17 94.4 00:01 0.5
Sealer K1 17 94.4 00:20 05
GapCloser 2 11. 00:05 25.7
GapFiller 15 833 00:43 04
H. sapiens 237,406 Sealer K2 127,242 53.6 12:09 22.2
Sealer K1 120,676 50.8 29:19 22.2
GapCloser 116,297 489 83:15 178.1
GapFiller Incomplete. Terminated after 353 hours.

without completion or output. All Sealer processes were
executed on a 12-core computer running CentOS 5.4 with
two Intel Xeon X5650 CPUs @ 2.67 GHz and 48 GB RAM.
GapFiller and GapCloser were benchmarked on a machine
using CentOS 5.10 with 16 cores @ 2.13 GHz, 125 GB
RAM. The GapCloser run on the H. sapiens data ran on a
CentOS 5.9 with 16 cores @ 2.13 GHz and 236 GB RAM to
allow for its high memory requirement. We also compared
the results of Sealer with two versions of Konnector on the
E. coli and H. sapiens dataset, and noticed a marked
improvement in speed of execution: ~12 h compared
to ~29 h runs on human data with Konnector v2.0 and
Konnector v1.0, respectively. We also noted improved sensi-
tivity in Sealer results, when used in conjunction with
Konnector v2.0 (6,566 or 2.8% more gaps closed). To test
the limits of scalability of Konnector, we applied Sealer on a
draft white spruce genome assembly of length 20 Gbp [26]
(data not shown).

KVarScan: a Konnector-based method for indel detection

Konnector long pseudo-reads can potentially improve the
sensitivity of existing variant detection pipelines. To
explore this idea, we conducted an experiment where we
detected insertions and deletions (indels) using VarScan
[27] ‘pileup2indel’ (version 2.3.7 with default parameters),
and compared the results when using either regular reads
or Konnector pseudo-reads as input. We refer to the two
protocols as VarScan and KVarScan, respectively. For
KVarScan, Konnector reads were generated by running
Konnector on regular reads for a range of k-mer sizes
from 90 bp to 30 bp, with a step size of 10 bp. Starting
with the largest k-mer size of 90 bp, left over read pairs
that were not connected were used for the next run of
Konnector with the next smaller k-mer size. After run-
ning Konnector with a k-mer size of 30 bp, any remain-
ing unconnected reads were used concurrently with the
connected reads as input to the VarScan run. All con-
nected reads output from the -p/-all-paths and -o/—out-
put-prefix parameters of Konnector were used. The other
parameters used for Konnector included: max path set to
4 (-P), max mismatches set to nolimit (-M), path identity

set to 98 (-X), max branches set to 100 (-B), max frag-
ment set to 525 (-F). Prior to the Konnector runs, a
Bloom filter for each k-mer size was built using the
abyss-bloom utility with the trim quality (-q) set to 15
and levels (-1) set to 2.

We performed a comparison of the VarScan and
KVarScan methods on synthetic human data from chro-
mosome 10 by simulating indels in the size range of
10 - 200 bp on hgl9 using RSVsim v1.2.1 [28]. A final
number of 224 insertions (10 - 192 bp) and 216 dele-
tions (10-144 bp) were generated. We used pIRs v1.1.1
[19] to generate a diploid human chromosome 10
sequence, and combined it with the rearranged sequence
to simulate a 30x coverage library of 100 bp Illumina
PET reads. The average insert size was set at 400 bp;
default parameters were used otherwise.

Both VarScan and KVarScan were able to detect small
indels as short as 10 bp, the shortest available in the
simulated data. However, the maximum size of indels
detected by VarScan was 30 bp, while it was 99 bp for
the KVarScan protocol. As illustrated by the distribu-
tions of the sizes of indels detected in Figure 4, we note
that the use of long pseudo-reads generated by Konnec-
tor expands the range detection for VarScan. Hence,
long pseudo-reads may find an application for profiling
cancer genomes and other genomes that harbour struc-
tural variations that would otherwise be missed by
shorter sequence reads.

Conclusions

Long reads are highly desirable for both de novo
assembly applications and reference-based applications
such as variant calling. While long read sequencing
technologies such Pacific Biosciences (Menlo Park, CA)
and Oxford Nanopore Technologies (Oxford, UK) have
yet to hit the mainstream, bioinformatics algorithms
continue to be developed to better exploit the sequence
and distance information captured by Illumina paired-
end sequencing reads, currently ranging in length from
150 - 300 bp and spanning DNA fragments with sizes
of 300 - 1000 bp.

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1
http://www.biomedcentral.com/1755-8794/8/53/51

90

Hl KVarScan
80| I VarScan

Number of indels

40 60
indel size

Figure 4 Indels detected by VarScan using unaltered reads
("VarScan”) or Konnector long pseudo-reads ("KVarScan”) as
input. Results are shown for synthetic read data generated from
hg19 chromosome 10 and containing 440 simulated indels. The
indels detected by VarScan (green) range from 10 bp to 30 bp,
whereas the indels detected by KVarScan (blue) range from 10 bp
to 99 bp.

In this paper we have presented Konnector v2.0, a
tool for producing long “pseudo-reads” from Illumina
paired-end libraries. While many tools exist to merge
overlapping paired-end reads (e.g. [6,7]), our software
addresses the more challenging problem of filling
the sequencing gap between non-overlapping reads.
Konnector accomplishes this by building a compact,
Bloom filter based representation of a de Bruijn graph
and performing a constrained path search between
each pair of reads within the graph. Konnector v2.0
introduces a significant improvement to the algorithm
by additionally extending sequences outwards within
the de Bruijn graph, up to the point where such exten-
sions are unambiguous. It also keeps the functionality
of Konnector v1.0, as an option.

In a comparison of Konnector v2.0 against several simi-
lar tools, we have demonstrated that the software gener-
ates pseudo-reads with high accuracy, high yield, low
memory usage, and fast run times. Owing to its use of a
Bloom filter de Bruijn graph, Konnector was the only
tool able to process 76x human sequencing data on a set
of computing nodes with 48 GB of RAM, and was able to
do so in under 24 hours.

While the long pseudo-read generating tools were
all reported for their utility in de novo assembly appli-
cations in earlier studies [6-8], we demonstrated the
utility of our tool on two novel uses cases: assembly
finishing and variant detection. With its scaling prop-
erties and broad applications, we think Konnector will
be an enabling technology in many genomics studies.

Page 9 of 10

Availability and requirements
Project name: Konnector

Project home page: http://www.bcgsc.ca/platform/
bioinfo/software/konnector

Source code for version in evaluated in paper: https://
github.com/bcgsc/abyss/tree/konnector2-prerelease

Operating system(s): Unix

Programming language: C++

Other requirements: Boost graph library, Google
sparsehash library is recommended

License: Free for academic use under the British
Columbia Cancer Agency’s academic license

Any restrictions to use by non-academics: Contact
ibirol@bcgsc.ca for license

List of abbreviations used

ABYSS: Assembly By Short Sequences; CABOG: Celera Assembler with the
Best Overlap Graph; ELOPER: Elongation of Paired-end Reads; MaSuRCA:
Maryland Super-Read Celera Assembler.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

BV implemented the search and extension algorithms for Konnector v2.0,
and wrote descriptions of the algorithm and tools comparison. CY
conducted analyses for the tools comparison and for Sealer. KR ran QUAST
evaluations and other exploratory data analyses. ZX and RC did the analysis
and writing for the KVarScan application. HM and JC provided improved
Bloom filter algorithms and implementations. SDJ implemented the Bloom
filter class and the de Bruijn graph interface for Konnector, and also
implemented algorithmic improvements for the new version of Sealer. RLW
did analysis and writing for the Sealer section, ran jobs for the tools
comparison, and oversaw the planning and organization the paper. 1B
designed the algorithms for Konnector v2.0 and oversaw the development,
evaluation, and manuscript preparation.

Declarations

The authors thank the funding organizations, Genome Canada, British
Columbia Cancer Foundation, and Genome British Columbia for their partial
support of the publication. Research reported in this publication was also
partly supported by the National Human Genome Research Institute of the
National Institutes of Health under Award Number ROTHG007182. The
content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health or other
funding organizations.

This article has been published as part of BMC Medical Genomics Volume 8
Supplement 3, 2015: Selected articles from the IEE International Conference
on Bioinformatics and Biomedicine (BIBM 2014): Medical Genomics. The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcmedgenomics/supplements/8/S3.

Published: 23 September 2015

References

1. Vandervalk BP, Jackman SD, Raymond A, Mohamadi H, Yang C, Attali DA,
Konnector : Connecting paired-end reads using a bloom filter de Bruijn
graph. Bioinformatics and Biomedicine (BIBM) 2014 IEEE International
Conference 2014.

2. Pevzner PA, Tang H, Waterman MS: An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences of the
United States of America 2001, 17:9748-53.

3. Bloom BH: Space/Time Tradeoffs in Hash Coding With Allowable Errors.
Communications of the Acm 1970, 13(7):422, doi:10.1145/362686.362692.

http://www.bcgsc.ca/platform/bioinfo/software/konnector
http://www.bcgsc.ca/platform/bioinfo/software/konnector
https://github.com/bcgsc/abyss/tree/konnector2-prerelease
https://github.com/bcgsc/abyss/tree/konnector2-prerelease
http://www.biomedcentral.com/bmcmedgenomics/supplements/8/S3
http://www.biomedcentral.com/bmcmedgenomics/supplements/8/S3

Vandervalk et al. BMC Medical Genomics 2015, 8(Suppl 3):S1
http://www.biomedcentral.com/1755-8794/8/S3/51

20.

21.

22.

23.

24.

25.

26.

27.

28.

Chaisson MJ, Pevzner PA: Short read fragment assembly of bacterial
genomes. Genome Research 2008, 18:324-30.

Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA: The
MaSuRCA genome assembler. Bioinformatics 2013, 29(21):2669-77,
doi:10.1093/bioinformatics/btt476.

Magoc T, Salzberg SL: FLASH: fast length adjustment of short reads to
improve genome assemblies. Bioinformatics 2011, 27(21):2957-63,
doi:10.1093/bioinformatics/btr507.

Liu B, Yuan J, Yiu SM, Li Z, Xie Y, Chen Y, et al- COPE: an accurate k-mer-
based pair-end reads connection tool to facilitate genome assembly.
Bioinformatics 2012, 28(22):2870-4, doi:10.1093/bioinformatics/bts563.

Silver DH, Ben-Elazar S, Bogoslavsky A, Yanai I: ELOPER: elongation of
paired-end reads as a pre-processing tool for improved de novo
genome assembly. Bioinformatics 2013, 29(11):1455-7, doi:10.1093/
bioinformatics/btt169.

Nadalin F, Vezzi F, Policriti A: GapFiller: a de novo assembly approach to
fill the gap within paired reads. Bmc Bioinformatics 2012, 13, doi:10.1186/
1471-2105-13-514-58.

Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, et al: A
whole-genome assembly of Drosophila. Science 2000, 287:2196-204.
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a
parallel assembler for short read sequence data. Genome Res 2009,
19(6):1117-23, doi:10.1101/gr.089532.108.

Boisvert S, Laviolette F, Corbeil J: Ray: simultaneous assembly of reads
from a mix of high-throughput sequencing technologies. J Comput Biol
2010, 17(11):1519-33, doi:10.1089/cmb.2009.0238.

Li H, Durbin R: Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009, 25(14):1754-60, doi:10.1093/
bioinformatics/btp324.

Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome biology 2009, 10(3):R25, doi:10.1186/gb-2009-10-3-r25.

Simpson JT, Durbin R: Efficient de novo assembly of large genomes using
compressed data structures. Genome Research 2012, 22(3):549-56,
doi:10.1101/gr.126953.111.

Stranneheim H, Kaller M, Allander T, Andersson B, Arvestad L, Lundeberg J:
Classification of DNA sequences using Bloom filters. Bioinformatics 2010,
26(13):1595-600, doi:10.1093/bioinformatics/btq230.

Chikhi R, Rizk G: Space-efficient and exact de Bruijn graph representation
based on a Bloom filter. Algorithms for Molecular Biology 2013, 8,
doi:10.1186/1748-7188-8-22.

Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, et al.
Aggressive assembly of pyrosequencing reads with mates. Bioinformatics
2008, 24:2818-24.

Hu X, Yuan J, Shi'Y, Lu J, Liu B, Li Z, et al: pIRS: Profile-based lllumina pair-
end reads simulator. Bioinformatics 2012, 28(11):1533-5, doi:10.1093/
bioinformatics/bts187.

Gurevich A, Saveliev V, Viyahhi N, Tesler G: QUAST: quality assessment tool
for genome assemblies. Bioinformatics 2013, 29(8):1072-5, doi: 10.1093/
bioinformatics/btt086.

Li H: Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. arXiv preprint 2013.

Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 2010, 26(6):841-2.

Paulino D, Warren RL, Vandervalk BP, Raymond A, Jackman SD, Birol I:
Sealer: a scalable gap-closing application for finishing draft genomes.
BMC Bioinformatics 2015, 16(230).

Boetzer M, Pirovano W: Toward almost closed genomes with GapFiller.
Genome biology 2012, 13(6):R56.

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al: SOAPdenovo2: an
empirically improved memory-efficient short-read de novo assembler.
Gigascience 2012, 1(1):18, doi:10.1186/2047-217X-1-18.

Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, et al:
Assembling the 20 Gb white spruce (Picea glauca) genome from whole-
genome shotgun sequencing data. Bioinformatics 2013, doi:10.1093/
bioinformatics/btt178.

Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, et al:
VarScan: variant detection in massively parallel sequencing of individual
and pooled samples. Bioinformatics 2009, , 25: 2283-5.

Bartenhagen C, Dugas M: RSVSim: an R/Bioconductor package for the
simulation of structural variations. Bioinformatics 2013, btt198.

Page 10 of 10

doi:10.1186/1755-8794-8-S3-S1

Cite this article as: Vandervalk et al: Konnector v2.0: pseudo-long reads
from paired-end sequencing data. BMC Medical Genomics 2015

8(Suppl 3):S1.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BioMed Central

http://www.ncbi.nlm.nih.gov/pubmed/18083777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18083777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23990416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23990416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21903629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21903629?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23044551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23044551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23603334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23603334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23603334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10731133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10731133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20958248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20958248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22156294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22156294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20472541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18952627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22508794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22508794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23422339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23422339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20110278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20110278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22731987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23587118?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23587118?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Bloom filter de Bruijn graph
	Searching for connecting paths
	Extending connected and unconnected sequences

	Results and discussion
	Read-elongation tools comparison
	Sealer: a Konnector-based gap-closing application
	KVarScan: a Konnector-based method for indel detection

	Conclusions
	Availability and requirements
	List of abbreviations used
	Competing interests
	Authors’ contributions
	Declarations
	References

