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Abstract

Background: Breast cancer comprises multiple tumor entities associated with different biological features and
clinical behaviors, making individualized medicine a powerful tool to bring the right drug to the right patient. Next
generation sequencing of RNA (RNA-Seq) is a suitable method to detect targets for individualized treatment.
Challenges that arise are i) preprocessing and analyzing RNA-Seq data in the n-of-1 setting, ii) extracting clinically
relevant and actionable targets from complex data, iii) integrating drug databases, and iv) reporting results to
clinicians in a timely and understandable manner.

Results: To address these challenges, we present OncoRep, an RNA-Seq based n-of-1 reporting tool for breast cancer
patients. It reports molecular classification, altered genes and pathways, gene fusions, clinically actionable mutations
and drug recommendations. It visualizes the data in an approachable html-based interactive report and a PDF clinical
report, providing the clinician and tumor board with a tool to guide the treatment decision making process.

Conclusions: OncoRep is free and open-source (https://bitbucket.org/sulab/oncorep/), thereby offering a platform
for future development and innovation by the community.
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Background
Breast cancer is the leading cause of cancer among females
making up 23 % of total cancer deaths [1]. It is a het-
erogenous disease comprising multiple tumor entities
associated with distinctive histological patterns, different
biological features and clinical behaviors [2, 3]. This is
driven by the fact that different breast cancer subtypes are
characterized by distinct molecular, genetic, epigenetic,
and transcriptional patterns (e.g. gene amplifications, in-
frame fusion genes or mutations, homozygous deletions,
disrupting fusions and deleterious mutations) [4]. Five
year survival rates from the time of diagnosis range
from 98 % (localized cancer) to 24 % (metastatic cancer).
Twenty percent of patients who completed either adjuvant
or neoadjuvant systemic therapy had a recurrance of the
disease within 10 years after treatment [5, 6]
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Molecularly profiling breast cancer tumors takes advan-
tage of the genomic characteristics of the tumor to
improve the chances of patient response to targeted
agents. This enables stratification of patients based on
their molecular alterations. Therapies targeting specific
genomic alterations have been shown to be effective
in treating specific subgroups of breast cancer patients.
Examples of targeted therapies include the efficacy
of Trastuzumab in HER2-amplified breast cancers, the
mTOR inhibitor Everolimus in hormone receptor positive,
HER2-negative patients, and the PARP inhibitor Olaparib
in patients whose tumors harbor BRCA1/2mutations [7–
10]. However, the transition to an individualized medicine
approach, in which one selects the optimal treatment for
a patient based on genomic information remains chal-
lenging. One of the main challenges is the translation of
tumor genome-based information into clinically action-
able findings. This relies not only on the identification of
biologically relevant alterations that can be used as thera-
peutic targets or predictive biomarkers [4], but also on the
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availability of appropriate reporting tools. These report-
ing tools need to integrate the wealth of genomic data
and make it usable in a routine clinical setting. This will
provide additional treatment options based on the genetic
nature of the patient’s tumor, enabling true individualized
cancer medicine.
Gene expression profiling using RNA-sequencing

(RNA-Seq) is an ideal tool to assess the molecular het-
erogeneity of breast cancer to inform individualized
medicine. It enables the estimation of transcript abun-
dance, the detection of altered genes and molecular
pathways, the detection of fusion genes and the reliable
identification of genomic variants [11–15]. RNA-Seq can
be performed for nearly all breast cancer and metastatic
breast cancer patients that require therapy using tissue
collected during routine biopsy. The main difficulties
remaining for prospective use of RNA-Seq in individu-
alized breast cancer treatment are analyzing RNA-Seq
data in the n-of-1 setting and the lack of an open source
reporting tool providing clinically actionable information.
To address these challenges, we developed OncoRep,

an open-source RNA-Seq based reporting framework for
breast cancer individualized medicine. It can be used
as part of the reproducible, automated next generation
sequencing pipeline Omics Pipe [16], as a standalone
reporting tool or it can be adapted to existing sequenc-
ing pipelines. OncoRep includes molecular classification,
detection of altered genes, detection of altered pathways,
identification of gene fusion events, identification of clin-
ically actionable mutations (in coding regions) and iden-
tification of target genes. Furthermore, OncoRep reports
drugs based on identified actionable targets, which can be
incorporated into the treatment decision making process.
To demonstrate the feasibility of OncoRep, we produced
reports based on the mRNA profiles of 17 breast tumor
samples of three different subtypes (TNBC, non-TNBC
and HER2-positive) which have been previously analysed
and described [17–19].

Implementation
OncoRep is developed within the open-source software
environments R (v3.0.2) [20] and Bioconductor (v2.13)
[21] using the knitr & knitr bootstrap packages for cre-
ating the patient report in HTML format and Sweave
package for creating the PDF-based report. OncoRep is
distibuted via Omics Pipe [16] which handles the process-
ing of the raw RNA-Seq data using distributed computing
either on a local high performance cluster or on Ama-
zon EC2. Installation and setup are documented online at
http://pythonhosted.org/omics_pipe/.

Reference cohort
The reference cohort incorporated into OncoRep (n =
1,057) consists of 947 breast cancer samples and 106

matched tumor normal tissue samples from The Cancer
Genome Atlas (TCGA), one normal breast tissue sam-
ple from the Illumina body map project (ArrayExpress
accession number E-MTAB-513) and 3 normal breast tis-
sue samples from the Gene Expression Omnibus dataset
GSE52194. Level 3 gene expression data (raw read counts)
were downloaded as provided for the TCGA samples.
The normal samples within E-MTAB-513 & GSE52194
have been downloaded as raw sequence data (.fastq files)
and processed using STAR aligner [22] and htseq-count
[23] (see alignment and gene expression quantification
section). Finally, to create the reference cohort, count data
from all samples were merged and normalized using the
Bioconductor package DESeq2 [24]. Additionally, for use
in predictor generation, the data were transformed into
log2 scale after adding a constant +1.

n-of-1 add-on preprocessing
OncoRep proceses a single patient sample by apply-
ing a “documentation by value” strategy [25]. This uses
preprocessing information gathered from the reference
cohort generated from 1,057 breast cancer samples from
TCGA. Generated thresholds can be applied to a subse-
quent RNA-Seq patient sample, which is a prerequisite for
prospective use of transcriptomics data. Add-on prepro-
cessing of a new patient sample was done utilizing the size
factor method implemented in the DESeq2 Bioconductor
package [24]. Raw read counts of a new patient sample
were scaled using previously stored quantitative prepro-
cessing information from the reference cohort, thus being
the geometric mean of the counts from each gene across
all samples in the reference cohort. To calculate the size
factor (sequencing depth) of a new patient sample relative
to the reference, the quotient of the counts in the sam-
ple divided by the counts of the reference was calculated.
The median of the quotients was the scaling factor for the
new patient sample. Additionally, scaled read counts were
transformed to log2 scale after adding a constant +1.

Quality control
Quality control (QC) of raw RNA-Seq reads was imple-
mented using FastQC. Basic QC statistics are listed tab-
ularly and linked to the full report generated by FastQC.
Post alignment QC included computation of insert size
distribution and collecting basic RNA-Seq metrics using
functionalities provided by Picard tools.

Alignment
RNA-Seq reads were aligned to the human genome
(hg19) using STAR aligner [22]. Alignment statistics were
reported in a table within the report.
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Gene expression quantification and differential expression
Gene expression quantification was done using the htseq-
count function within the Python HTSeq [23] analysis
package, which counts all reads overlapping known exons
using hg19 annotation from UCSC (v57). To reduce the
number of genes that serve as input for differential expres-
sion calling and pathway analysis we introduced the mea-
sure of gene expression reliability. Instead of using a non
specific filtering step, a gene was determined to be reliably
expressed when its expression value succeeded an expres-
sion cutoff. The expression cutoff was calculated based
on the background distribution of all genes that were
not expressed (raw read count equals 0) in the reference
cohort (n = 156 genes). This method has been described
by Warren et al. [26] and adopted for our use case. Differ-
ential expression was calculated based on a model using
the negative binomial distribution as implemented in the
DESeq2 package [24].

Prediction of receptor status andmolecular subtype
Using prediction analysis for microarrays [27], predic-
tors for breast cancer receptor status (ER, PR, HER2) and
molecular subtype (Luminal A, Luminal B, Her2, Basal)
were implemented using samples and clinical data (was
not available for every sample) provided by TCGA. TCGA
samples were randomly split up into a training cohort, on
which the predictors were trained, and a validation cohort,
on which to validate the predictors:

ER+ Training n = 600; validation n = 305; number of
genes: 26; overall error rate training: 0.065; overall error
rate validation: 0.036
PR+ Training n = 600; validation n = 302; number of
genes: 28; overall error rate training: 0.133; overall error
rate validation: 0.099
HER2+ Training n = 136; number of genes: 12; overall
error rate training: 0.139
Subtype Training n= 346; validation n= 100; number of
genes: 254; overall error rate training: 0.248; overall error
rate validation: 0.218

Pathway analysis
Pathway analysis was implemented using Signaling Path-
way Impact Analysis (SPIA) on the list of differentially
expressed genes and their log fold changes identified in
the patient sample to identify significantly dysregulated
pathways using the Bioconductor packages SPIA [13]
and Graphite [28]. Graphite was used to create graph
objects from pathway topologies derived from the Bio-
carta, KEGG, NCI and Reactome databases, which were
then used with SPIA to run a topological pathway analysis.

Fusion gene identification
Fusion gene identification was implemented using Fusion-
Catcher [14]. FusionCatcher searches for novel/known
fusion genes, translocations, and chimeras in RNA-seq
data from diseased samples. The oncogenic potential of
the detected fusion genes was predicted using OncoFuse
[29].

Variant calling, filtering and annotation
Variant calling was implemented using SNPiR, a highly
accurate approach to identify SNPs in RNA-seq data [15].
Basic genetic information was annotated using SnpEff
[30] and information provided by dbNSFP [31]. Variants
were further filtered based on being described as either
common/no known medical impact in the NCBI variants
database or having a MAF >0.1 in the 1000 genomes data.
Identified variants were further annotated using informa-
tion obtained from the following databases: the Sanger
Institute’s COSMIC (Catalogue of Somatic Mutations in
Cancer) version 68 [32]; NCBI’s ClinVar [33]; CADD
(Combined Annotation Dependent Depletion) version 1.0
[34]; DrugBank version 4.0 [35]; and PharmGkb’s Vari-
ant and Clinical Annotations Data [36]. Entries from
these databases that exactly matched the mutated allele
of a single nucleotide variant, which was called by the
pipeline, were included as annotations. In addition, func-
tional effect predictions (driver or passenger status and
its likely implication in the cancer phenotype) were calcu-
lated by the IntOGen [37] pipeline and included for each
variant.

Integrative drugmatching
A list of all FDA approved compounds was extracted and
integrated with information from DrugBank and KEGG
Drug databases, which including meta information about
gene targets, pathway involvements and type of drug (e.g.
inhibitor, antibody, antagonist, agonist). Altered genes
were matched against these data using the meta infor-
mation to select appropriate drug-gene partners. Further-
more, variants were matched against SNP-drug relation-
ships available from DrugBank and PharmGkb.

Results
OncoRep was integrated as an RNA-seq Cancer Report
pipeline in Omics Pipe [16] which handles the process-
ing of the raw RNA-seq data in an automated and parallel
manner on a compute cluster. After the data were pro-
cessed, the results files from each step and the patient spe-
cific meta data were automatically processed by OncoRep
to produce a summary report for each patient. OncoRep
performs the following analyses (Fig. 1): i) variant anno-
tation; ii) gene expression estimation; iii) differential gene
expression analysis; iv) pathway analysis; v) prediction of
receptor status and molecular subtype; and vi) selection



Meißner et al. BMCMedical Genomics  (2015) 8:24 Page 4 of 8

Fig. 1 Flowchart illustrating tools used and their interactions within OncoRep. The four main branches (left to right) are variant calling, fusion gene
detection, quality control and gene expression quantification and analysis (for a detailed description of each step see materials and methods).
Results from each branch are analyzed, annotated and integrated and an HTML report is created at the final stage of the pipeline

of drugs targeting dysregulated genes, variants and path-
ways. OncoRep displays these results along with the
results from the quality control of the raw data and align-
ment, variant calling, fusion gene detection and estima-
tion of oncogenic potential. The R package knitr is used
to produce an interactive HTML report. A PDF file con-
taining a final summary report is generated using the R
package Sweave (Fig. 2). Analyzing a single patient sample
(20-30 mio reads, 100bp, paired end) takes about one day
in a cluster environment using four nodes.

Interactive report
The HTML report produces interactive tables that are
sortable and searchable. They can be exported as CSV files
to be viewed in spreadsheet software. Gene descriptors
and drugs are linked to the respective databases for easy
access to further information. Pathways are visualized and
they are annotated with differentially expressed genes.

The interactive HTML reports for the 17 analyzed breast
tumor samples can be viewed and browsed at http://sulab.
org/tools/oncorep-oncogenomics-report/.

PDF Report
The PDF based report is generated in LATEX,making it fully
customizable (Fig. 2). The report, as displayed here, holds
basic patient information, sample processing information
and gives a list of FDA approved drugs recommended
based on the altered variants, genes and pathways in a
patient’s tumor. An appendix holds all results from the
various analysis steps in tabular form.

Quality control
OncoRep provides quality control of raw RNA-Seq reads
using the FastQC tool. Basic QC results are displayed
within the HTML report and linked to the detailed
FastQC report for further inspection if needed (for details

http://sulab.org/tools/oncorep-oncogenomics-report/
http://sulab.org/tools/oncorep-oncogenomics-report/
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Fig. 2 PDF clinical report generated by OncoRep for dissemination to treating physicians

see Implementation). Post alignment QC includes com-
putation of insert size distribution and collecting basic
RNA-Seq metrics using functionalities provided by Picard
tools. The QC results and figures are presented within
OncoRep.

Variant calling
Variants identified using the SNPiR pipeline [15] are pro-
vided in a tabular format in the HTML report. If available,
the user is displayed with clinically relevant information
on the variants (e.g. a matching drug or the NCBI Clin-
Var rating). The variants are annotated using information
from SnpEff [30], dbNSFP [31], COSMIC [32], NCBI Clin-
Var [33], CADD [34], DrugBank [35], PharmGkb [36]
and IntOGen [37] (for details see Implementation). Fur-
thermore, variants are matched against SNP-drug rela-
tionships available from DrugBank and PharmGkb and
possible hits are displayed in the table.

Fusion gene detection
Identified fusion gene candidates are provided in tabu-
lar manner in the HTML report. The information pro-
vided includes 5’ and 3’ fusion partners, fusion description
(if available), and the the oncogenic potential prediction
depicted as a p-value and expression gain/loss (for details
see Implementation).

Differential gene expression
OncoRep filters out all genes estimated to have ’unreli-
able expression’ based on the expression of a background
gene set of 156 genes that are not expressed in any sample
of the reference cohort (see Implementation). All remain-
ing genes are further analyzed. Differentially expressed
genes are detected by comparing the reliably expressed
genes in the patient tumor to normal breast tissue sam-
ples. The results are presented in tabular format in the
HTML report.

Pathway analysis
Pathway analysis is conducted based on the differen-
tial expressed genes. Altered pathways are presented in
tabular form in the HTML report. Visualizations of the
pathways are provided with the differentially expressed
genes colored based on their log2FoldChange expression
compared to normal tissue.

Receptor status
OncoRep includes predictors for the three receptors ER,
PR and HER2 (see Implementation for details). A new
patient sample is classified as being positive or negative for
the expression of each receptor and the prediction prob-
ability is given. Results are presented in tabular format in
the HTML report.
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Molecular subtype
OncoRep includes a predictor for the molecular subtype
of the sample (Basal, HER2, Luminal A and Luminal B). A
new patient sample is classified into one of the groups and
the prediction probability is given. Results are presented
in tabular manner in the HTML report.

Drugmatching
OncoRep reports FDA approved compounds that target
the discovered differentially expressed genes, variants and
pathways in the patient sample. Results are presented in
tabular manner in the HTML report. Results are linked
to their DrugBank and KEGG Drug entries for further
investigation.

Discussion
In this article, we introduce OncoRep, a reporting tool
that performs automated processing and interpreta-
tion of RNA-Seq raw data from breast cancer patients.
Gene expression profiling using RNA-Seq generates vast
amounts of data. This requires precise analyses and expert
knowledge to generate clinically actionable information.
Without expert knowledge, it remains challenging and
time-consuming to do even simple data preprocessing
and analysis. In a clinical setting, mosly clinically relevant
data like actianable targets are needed from the RNA-
Seq data. We address this problem by chaining software
tools together to integrate them into a single analysis
workflow that is able to deliver clinically digestable infor-
mation within a short time span. OncoRep enables the
prospective use of transcriptomic profiles within a clin-
ical setting by performing molecular profiling, assessing
altered genes and pathways, identifying mutations and
fusion gene transcripts and by providing drug recommen-
dations based on actionable targets to guide the treatment
decision making process. This represents a critical first
step towards individualized cancer treatment since it pro-
vides a reproducible approach in reporting actionable tar-
gets and allows for a quick turnaround time for real-time
treatment of patients.
OncoRep detects altered genes, variants, fusions and

dysregulated pathways in a patient’s tumor. The chal-
lenge exists to distill this large amount of information into
clinically actionable targets. OncoRep draws from sev-
eral databases and employs several variant filtering and
annotation steps to extract variants that are the most
biologically meaningful. Integrating these databases and
presenting them in a report provides the community with
a valuable resource, as many databases are sparsely pop-
ulated and information is distributed throughout many
poorly curated databases and in the primary literature
[38]. OncoRep also reports fusion genes annotated with
their predicted oncogenic potential, as many fusion genes

have been discovered in breast cancer that may make
a substantial contribution to its development [14, 39,
40]. OncoRep uses several lines of molecular evidence to
match drugs to altered drug targets in a patient’s tumor
by drawing on information provided by DrugBank, KEGG
Drug and PharmGKB.
By distilling and reporting clinically actionable aber-

rations on an individual level, OncoRep provides
researchers and clinicians with a powerful tool for
implementing individualized medicine. For example, an
OncoRep report for a patient may detect an aberration
that is present in a small fraction of patients (e.g ROS1
expression) for which targeted therapies exist. Since
these are found in only a small fraction of patients, these
treatments would not be used as standard of care, high-
lighting the importance of this method for identifying
individualized treatments. In addition, OncoRep reports
fusion genes and evidence exists that fusion genes may
be suitable therapeutic targets. For example, Banerji et al.
identified a recurrent MAGI3-AKT3 fusion enriched in
triple-negative breast cancer that leads to constitutive
activation of AKT kinase, which can be targeted with
an ATP-competitive AKT small-molecule inhibitor [39].
OncoRep advances individualized medicine by reporting
all relevant information in a user-friendly way so that
clinicians can access all of the results, as well as by extract-
ing clinically actionable findings to aid in the treatment
decision making process.

Conclusion
OncoRep addresses one of the main difficulties in bring-
ing prospective use of transcriptome profiling into the
clinics by creating reproducible and clinically digestible
reports to guide clinical decision making. OncoRep is an
open-source project, which increases the reproducibility
and transparency of the analyses. A remaining problem in
moving towards routine use in the clinical setting is the
lack of consensus on the most accurate pipeline. OncoRep
provides downstream next generation sequencing analysis
and will work with any combination of aligners and vari-
ant callers. We invite researchers to use the code, refine
it and provide further improvements, such as incorporat-
ing new methods and additional disease areas. We believe
that offering this modular and extensible framework will
provide a useful community platform for implementing
individualized genomic medicine.

Availability and requirements
Project name: OncoRep
Project home page: http://sulab.org/tools/oncorep-
oncogenomics-report/, https://bitbucket.org/sulab/onco
rep

http://sulab.org/tools/oncorep-oncogenomics-report/
http://sulab.org/tools/oncorep-oncogenomics-report/
https://bitbucket.org/sulab/oncorep
https://bitbucket.org/sulab/oncorep
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Operating system(s): Platform independent
Programming language: R
Other requirements: Omics Pipe (recommendet)
License: MIT

URLs
OncoRep: https://bitbucket.org/sulab/oncorep
Omics Pipe: https://bitbucket.org/sulab/omics_pipe
The R suite: http://www.r-project.org/
Bioconductor: http://bioconductor.org/
knitr: http://yihui.name/knitr/
knitr bootstrap: https://github.com/jimhester/knitrBoot
strap
FastQC: http://www.bioinformatics.babraham.ac.uk/pro
jects/fastqc
Picard tools: http://picard.sourceforge.net/
HTSeq: http://www-huber.embl.de/users/anders/HTSeq/
doc/overview
FusionCatcher: https://code.google.com/p/fusioncatcher
OncoFuse: http://www.unav.es/genetica/oncofuse.html
SNPiR: http://lilab.stanford.edu/SNPiR
SnpEff: http://snpeff.sourceforge.net
Intogen: http://www.intogen.org
ClinVar: http://www.clinvar.com
DrugBank: http://www.drugbank.ca
Cosmic: http://cancer.sanger.ac.uk/cancergenome/projects/
cosmic
PharmGKB: https://www.pharmgkb.org
The Cancer Genome Atlas Data Portal: http://tcga-data.
nci.nih.gov/tcga

Abbreviations
RNA-Seq: Next generation sequencing of RNA; SPIA: Signaling pathway impact
analysis; TCGA: The Cancer Genome Atlas; QC: Quality control.
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