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Abstract

Background: Small ncRNAs (sncRNAs) offer great hope as biomarkers of disease and response to treatment.

This has been highlighted in the context of several medical conditions such as cancer, liver disease, cardiovascular
disease, and central nervous system disorders, among many others. Here we assessed several steps involved in the
development of an ncRNA biomarker discovery pipeline, ranging from sample preparation to bioinformatic
processing of small RNA sequencing data.

Methods: A total of 45 biological samples were included in the present study. All libraries were prepared using the
[llumina TruSeq Small RNA protocol and sequenced using the HiSeq2500 or MiSeq lllumina sequencers. Small RNA
sequencing data was validated using gRT-PCR. At each stage, we evaluated the pros and cons of different techniques
that may be suitable for different experimental designs. Evaluation methods included quality of data output in relation
to hands-on laboratory time, cost, and efficiency of processing.

Results: Our results show that good quality sequencing libraries can be prepared from small amounts of total RNA and
that varying degradation levels in the samples do not have a significant effect on the overall quantification of sncRNAs
via NGS. In addition, we describe the strengths and limitations of three commercially available library preparation
methods: (1) Novex TBE PAGE gel; (2) Pippin Prep automated gel system; and (3) AMPure XP beads. We describe
our bioinformatics pipeline, provide recommendations for sequencing coverage, and describe in detail the expression
and distribution of all sncRNAs in four human tissues: whole-blood, brain, heart and liver.

Conclusions: Ultimately this study provides tools and outcome metrics that will aid researchers and clinicians in
choosing an appropriate and effective high-throughput sequencing quantification method for various study designs,
and overall generating valuable information that can contribute to our understanding of small ncRNAs as potential
biomarkers and mediators of biological functions and disease.
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Background

There is significant interest in the prediction and early
detection of disease through the analysis of biological
markers, or biomarkers, which have the potential to sig-
nificantly improve clinical outcomes [1, 2]. Biomarkers are
defined as any molecule derived from a biological sample
that can indicate current disease status, evaluate progres-
sion of the disease, or assess potential responsiveness to a
particular medication [3]. Biomarkers come in many
forms including DNA mutations, proteins, and messenger
RNA (mRNA) transcripts [4]. For example, ratios of
aspartate/alanine aminotransferase are used as a reliable
biomarker for liver fibrosis [5], protein levels of S100-beta
are used as a biomarker of treatment response for malig-
nant melanoma [6], while mutations of the genes BRCA1
and BRCA2 are well known biomarkers predicting the
development of breast cancer [7]. DNA methylation is
also a well-studied biomarker [8—10]. Though not a focus
of the current report, methylated cytosine residues have
been associated with several diseases, including cancer
and neurological disorders [11].

Over the years, non-coding RNAs (ncRNAs) have be-
come the focus of biomarker research, an approach that
has been favorably used in the investigation of response to
treatment for several medical conditions. There are several
types of ncRNAs, of which microRNAs (miRNAs) are the
best known and the most frequently assessed for their
potential role as biomarkers. MiRNAs have been proposed
as molecular biomarkers in cancer [12], liver and cardio-
vascular disease [13, 14], and central nervous system dis-
orders [15—18], among many others [19-22]. MiRNAs are
small ncRNAs molecules that follow a well characterized
biogenesis pathway that includes processing through the
DGCR8/ DROSHA, Exportin-5, Dicer and RISC molecu-
lar complexes [23]. Through post-transcriptional activity,
these small, single-stranded, 19—25-base RNA transcripts
regulate the expression of numerous genes. Binding of the
miRNA to the complementary sequence of a target mRNA
relies on recognition of the seed region, the 2—8 nucleotides
located at the 3’end of the miRNA, which leads to either
mRNA degradation or translational repression [19, 21, 24].

Other ncRNA species such as PIWI-interacting RNAs
(piRNAs), small nucleolar RNAs (snoRNAs), small nuclear
RNAs (snRNAs) and long non-coding RNAs are also gain-
ing support as key components of cellular regulation [19,
25], and thus might be potentially assessed as biomarkers
of disease. PIRNAs are small ncRNAs of 24-31 nt length.
In contrast to miRNAs, these are Dicer-independent and
interact with the PIWI subfamily of Argonaute proteins
involved in the regulation of genome stability [26, 27].
PIWI proteins are involved in gene regulation through
RNA degradation and have been linked to DNA methyla-
tion [28]. In addition, piRNAs have been reported as po-
tential biomarkers for bladder [29], breast [30], and gastric
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[31] cancers. SnoRNAs are key components of the small
ribonucleoproteins (snoRNPs) which are responsible for
sequence-specific 2'-O-Methylation of ribosomal RNA
(rRNA) [32]. SnoRNAs have been shown to participate in
post-transcriptional regulation of rRNA by targeting
snoRNPs in the nucleus [33]. In addition, snoRNAs have
been proposed as potential biomarkers for several forms of
human cancers [34-36]. Long non-coding RNAs are an-
other class of ncRNAs that have gained a lot of attention
recently as potential biomarkers [37—40]. They comprise a
heterogeneous group of ncRNAs larger than 200 nt, which
includes long non-coding RNAs (IncRNAs), large inter-
genic non-coding RNAs (lincRNAs) and transcribed ultra-
conserved regions (T-UCRs), among others [25]. LncRNAs
are known to regulate DNA methylation by recruiting
chromatin remodeling complexes [41]. LincRNAs have
been associated with active transcription in regions of tran-
scriptional elongation [42]. Finally, while the function of
T-UCRs is still unknown, they have been demonstrated to
interact with microRNAs and might have a role in the
development of disease [43]. T-UCRs have been recently
postulated as potential diagnostic and prognostic bio-
markers in colorectal cancer patients [44].

While any ncRNA is a putative biomarker, miRNAs
have received the most attention because they possess
several features that render them especially powerful : (1)
they are highly conserved, and evolutionary complexity
correlates with miRNA complexity, which suggests an
important biological function; (2) there are a relatively
small number of individual miRNAs with a large dynamic
range of expression; (3) they are secreted into circulation
and can be measured in all biological fluids; (4) they are
not easily degraded and are thus highly stable in clinical
samples; (5) they are involved in pathway regulation, as
one miRNA can target many genes, and a single gene can
be regulated by many different miRNAs; (6) miRNAs
show tissue and cell specific expression profiles; and (7)
there is a large body of literature supporting their role in
the pathophysiology of disease [45].

Most ncRNA quantification studies performed to date
rely on qRT-PCR, in situ hybridization, or microarray
techniques. These methods have several strengths, but
also contain some important limitations. These include:
the number of miRNA molecules that can be analyzed
simultaneously, the amount of RNA required for the
analysis of multiple targets, the quality and source of the
RNA, the sensitivity of detection, and the need for previ-
ous knowledge of targets [46]. Next generation sequen-
cing (NGS) provides researchers with a powerful tool for
the detection of RNA molecules in biological samples.
NGS offers methodological advantages such as increased
throughput, decreased RNA input, consistency and qual-
ity of data, higher detection depth, analysis of all RNA
populations, and discovery of novel molecules.
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Furthermore, length of protocols, sequencing time, and
prices are continuously dropping, making NGS an ideal
tool for biomarker research [47].

In terms of clinical utility, blood is a reliable and non-
invasive source of biological tissue that reflects different
stages of disease. Blood samples are relatively easy to
collect and can be stored over long periods of time with-
out having a significant effect on the levels of miRNAs
and other ncRNAs in whole-blood, plasma or serum
[48]. As biomarker research using ncRNAs is still in its
infancy, there is no consensus yet on the best source of
blood cells for the study of disease. Some studies suggest
that whole-blood, peripheral blood mononuclear cells
(PBMC:s), or white blood cells (WBCs) are good sources
to explore ncRNAs which have been secreted into cir-
culation. In addition, these cells can provide important
information on inflammatory states [49]. On the other
hand, some argue that plasma or serum are optimal to
investigate ncRNAs that are being actively secreted into
circulation via exosomes, lipoproteins or protein com-
plexes [50, 51]. There are several available methods for
blood collection, storage, and RNA isolation, depending
on the source of interest and the study design, for
example: (1) PAXgene Blood RNA System, for collection
of whole-blood (PreAnalytiX, Switzerland); (2) EDTA-
Vacuette tubes, followed by centrifugation, to collect
plasma or serum; (3) ExoQuick System for isolation of
exosomes (System Biosciences, USA); or (4) Leuko-
LOCK Total RNA Isolation System, for isolation of
RNA from WBCs (Life Technologies, USA). In this
study, we used PAXgene tubes, which are intended for
easy collection and transport, but more importantly,
are optimized for the stabilization of RNA and long-
term storage of blood samples. However, using PAX-
gene tubes makes it impossible to separate any of the
blood fractions, thus allowing only the analysis of
whole-blood. Although we did not test blood collection
procedures or RNA extraction methods, the source of
RNA and extraction method can have a significant im-
pact on the measured levels of ncRNAs. Prichard et al.
provides a comprehensive review on sample collection
and processing for miRNA quantification [47].

The objective of this study is to provide researchers
with general guidelines for quantification, data process-
ing and analysis of miRNA, and other small non-coding
RNAs (sncRNAs), from human clinical samples using
NGS. Here, we test critical, alternative library prepar-
ation steps based on the ubiquitously used Illumina
TruSeq small RNA sequencing methodology, as well as
the effects of total RNA input and quality. Additionally,
we describe methods for data processing, data analysis,
and downstream validation techniques. Finally, we pro-
vide expression patterns and distribution of miRNAs
and other sncRNAs from human whole-blood, brain,
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heart, and liver samples. This study provides tools and
outcome metrics that will aid researchers and clinicians in
choosing an appropriate quantification method, process-
ing large amounts of data efficiently, and overall generat-
ing valuable information that can contribute to our
understanding of small non-coding RNAs as potential bio-
markers and mediators of biological functions and disease.

Methods

Human samples

A total of 45 biological samples were included in the
present study, and include 1) peripheral blood samples
(N =32) obtained at a community outpatient clinic at
the Douglas Mental Health University Institute from
healthy anonymous volunteers; 2) postmortem, pre-
frontal cortex brain tissue (N =4), which was obtained
in collaboration with the Quebec Coroner’s Office and
the Douglas-Bell Canada Brain Bank (Douglas Mental
Health University Institute, Montreal, Canada); 3) com-
mercially available, human brain (N=1), human heart
(N=4), and human liver (N=4) (Ambion). Ethics ap-
proval for this study was obtained from the Institutional
Review Board of the Douglas Mental Health University
Institute, and written informed consent was obtained from
volunteers or family members, as appropriate.

Sample processing and RNA extractions

Peripheral blood samples were collected in PAXgene
blood RNA tubes (PreAnalytix, Switzerland). PAXgene
tubes were frozen using a sequential freezing process.
This involves storing tubes at room temperature for 3 h,
transferring to 4 °C overnight, followed by 6-8 h at 20 °C
and then final storage at —80 °C. Total RNA (including the
miRNA fraction) was isolated from whole-blood using the
PAXgene Blood miRNA Kit (Qiagen, Canada), according
to manufacturer’s instructions. Furthermore, total RNA
was isolated from frozen brain, heart and liver tissues
using the miRNeasy Mini Kit protocol (Qiagen, Canada)
with no modifications. RNA and miRNA yield and quality
were determined using the Nanodrop 1000 (Thermo
Scientific, USA) and Agilent 2100 Bioanalizer (Agilent
Technologies, USA).

Small RNA library preparation

All libraries were prepared using the Illumina TruSeq
Small RNA protocol following the manufacturer’s instruc-
tions with 12 cycles of PCR amplification after ligation of
the 3" and 5" adapters. This protocol is ideal for the inves-
tigation of small RNA species, as it takes advantage of the
structure of most small RNA molecules by ligating specific
adapters to the 5'-phosphate and 3'-hydroxyl group,
which are molecular signatures of their biogenesis path-
way. Individual libraries were prepared using a unique
index primer in order to allow for pooling of multiple
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Fig. 1 lllustration of study design and samples. Human biological samples (N =45) were included in the present study. a Peripheral blood from a
single individual was split into 11 aliquots (technical replicates) to test three different small RNA library purification methods: Novex TBE PAGE gel
(N=3), Pippin Prep automated gel system (PPS) (N =4), and AMPure XP beads ((N = 3). Sample C1 (control-human brain) (N = 1), sample AC (control-
no purification method) (N =1). b Peripheral blood from a single individual was split into 5 aliquots (technical replicates) to test optimal amounts of
RNA input: (1 pg), (0.5 pg), (0.25 pg), (0.1 pg), and (0.05 ug). All libraries were purified using the PPS system. ¢ Peripheral blood samples from 15 healthy
volunteers (biological replicates) to test the effects of RNA integrity. Samples were split into 5 groups (N = 3) with average RIN values of 9, 7,
54, 2.2 and 0. All libraries were purified using AMPure XP beads. d Peripheral blood samples from 12 healthy volunteers (biological replicates)
to test effects of sequencing coverage. Samples sequenced on both a HiSeq2500 (N =12) and MiSeq (N = 12) lllumina sequencers. All libraries
were purified using AMPure XP beads. @ Human whole-blood (N =4), brain (N =4), heart (N=4) and liver (N =4) tissues to test expression and
tissue specificity of small ncRNAs. All libraries were purified using AMPure XP beads
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samples prior to sequencing. Experimental conditions
were as follows:

1) Comparison of small RNA library preparation
methods (Fig. 1a)

2) Testing RNA input amounts for small RNA library
preparation (Fig. 1b)

3) Exploring the effects of RNA quality on small RNA
library preparation (Fig. 1c)

4) Testing sequencing coverage for small RNA
sequencing (Fig. 1d)

5) Characterization of ncRNA expression patterns in
four human tissues (Fig. 1e)

Library preparation methods

In order to compare three different small RNA library
purification methods, we prepared 11 libraries starting
with 1 pg of good quality total RNA (RIN >8). All librar-
ies were prepared using total RNA extracted from per-
ipheral blood of a single individual (Fig. 1a). The RNA
was split into 11 aliquots and each was used as a tech-
nical replicate. In addition, we used total RNA from
commercially available human brain as a library prepar-
ation control. Libraries were purified as follows:

1) Purification by Novex TBE PAGE gel: 50 pl of
amplified cDNA from samples A1-A3 and C1 were
loaded into a 6 % Novex gel and run for 80 min at
130-135 V. After cleaning the gel with RNase free
water, a band was manually cut to contain all
fragments sized 145—160 nt, corresponding to
mature miRNAs and other regulatory small RNA
molecules (Additional file 1: Figure S1).

2) Purification by Pippin Prep automated gel system
(Sage 3 %): The Pippin Prep system (PPS) allows
automatic selection of specified cDNA products.

25 pl of amplified cDNA from samples A4-A7 were
loaded into a Pippin Prep machine. Furthermore, in
order to test variability between machines, samples
A4 and A5 were loaded into PPS1, while samples A6
and A7 were loaded into PPS2. Size selection was
automated for products between 125 and 180 nt
(Additional file 1: Figure S2).

3) Purification by AMPure XP beads: Biotinylated
magnetic AMPure beads allow for selection of
specified cDNA products bound to streptavidin. 50 pl
of amplified cDNA from samples A8-A10 were mixed
and purified two times with AMPure XP beads at a
1.8:1 ratio (beads:sample). This ratio allows for
optimal selection of all products higher than 100 nt.

Libraries were validated and quantified using an Agi-
lent 2100 Bioanalyzer High Sensitivity DNA chip and
qRT-PCR with the KAPA library quantification kit (Kapa
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Biosystems, USA). Sample C1 (control-human brain)
was not sequenced. All additional samples (A1-A10), as
well as sample AC (control-no purification method),
were sequenced.

Total RNA input amounts

Next, we tested the optimal amount of total RNA input
required to prepare small RNA libraries from peripheral
blood samples. As previously done, we split total RNA
from the same individual into 5 aliquots and each was
used as a technical replicate. We prepared 5 additional
libraries, starting with different amounts of RNA: All
(1 pg), A12 (0.5 pg), A13 (0.25 pg), Al4 (0.1 pg), and
A15 (0.05 pg) (Fig. 1b). All 5 libraries were purified
using PPS and validated using an Agilent 2100 Bioanaly-
zer High Sensitivity DNA chip and qRT-PCR with the
KAPA library quantification kit.

Effects of RNA integrity

We also explored the effects of RNA integrity on library
preparation for small RNA sequencing. To address this
issue, we selected peripheral blood samples from 15
healthy volunteers. These samples were collected and
processed following the same protocols as previously
described, but were selected based on varying RNA
integrity number (RIN) values. These values represent
the level of RNA degradation in the sample, where 10
and 0 are the highest and lowest quality scores, respect-
ively. The 15 samples were split into 5 groups with
average RIN values of 9, 7, 54, 2.2 and 0 (Fig. 1lc).
Small RNA libraries were prepared as previously de-
scribed, validated and quantified using an Agilent 2100
Bioanalyzer High Sensitivity DNA chip and qRT-PCR
with the KAPA library quantification kit.

Small RNA sequencing coverage

Next we tested how sequencing depth affects the amount
of information obtained from whole-blood samples. We
prepared small RNA libraries using total RNA from an
additional 12 healthy volunteers, as previously described.
All 12 libraries were pooled and sequenced on both a
HiSeq2500 and MiSeq Illumina sequencers (Fig. 1d).

Small ncRNA expression in human whole-blood and brain
To characterize the expression and explore tissue speci-
ficity of small ncRNAs in human biological samples, we
prepared 16 additional libraries from human whole-
blood, brain, heart and liver tissues (Fig. le). Brain,
heart and liver libraries were prepared with 1 pg of
total RNA, purified using AMPure beads, validated and
quantified using an Agilent 2100 Bioanalyzer High
Sensitivity DNA chip and qRT-PCR with the KAPA
library quantification kit.
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Sequencing data processing and analysis-Small RNA-Seq
Pipeline

Samples were sequenced at the McGill University and
Genome Quebec Innovation Centre (Montreal, Canada)
and the European Molecular Biology Laboratory (EMBL),
Genomics Core Facility (Heidelberg, Germany), using the
HiSeq2500 or MiSeq Illumina sequencers with 50 nt
single-end reads. All sequencing data were processed
using CASAVA 1.8+ [52] and extracted from FASTQ files.
Fastx_toolkit [53] was used to trim the Illumina adapter
sequences. Additional filtering based on defined cutoffs
was applied in order to obtain high quality data. These
filters included: 1) Phred quality (Q) mean scores higher
than 30, 2) reads between 15-40 nt in length, 3) adapter
detection based on perfect-10 nt match, and 4) removal of
reads without detected adapter. Any specific cutoffs used
in our small RNA sequencing pipeline can be adjusted
according to any experimental design. For instance, one
can choose to lower the Q score filtering criteria, loosen
the adapter detection perfect-match, or decrease the size
selection range. Nevertheless, there is a risk of introducing
sequencing error probabilities or background noise to the
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data. Additionally, we used Bowtie [54] to align reads to
the human genome (GRCh37) [55] and ncPRO-seq [56] in
combination with miRBase (V20) to match them to
known miRNA sequences [57, 58]. We used the Rfam [59]
and NCBIs piRNA [60] databases to map other small
RNA sequences. Furthermore, all sequencing data was
normalized with the Bioconductor-DESeq2 package [61],
using a detection threshold of 1 count per miRNA
(present at least once in each of the libraries tested).
All RNA sequencing data used in this study is available
on the NCBI-Gene Expression Omnibus database with
accession code GSE69825.

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
Small RNA sequencing data was validated using qRT-
PCR. Total RNA samples were reverse transcribed
using TagMan RT-PCR microRNA assays (Applied Bio-
systems) according to the manufacturer’s instructions.
Real-time PCR reactions were run in quadruplicate
using the ABI 7900HT Fast Real-Time PCR System and
data was collected using the Sequence Detection System
2.4 (SDS) software (Applied Biosystems). Expression of

Table 1 Bioinformatic output measures for small RNA sequencing quality control

QC metric

Description

Raw Reads

Size

Quiality

Adapter-Adapter

RNAs > 40 nt

Surviving Reads

Unmapped

Unique & Multi-Mapped

miRNA

Other ncRNAs

(Repeat, Coding gene,
Unknown)

miRNA Count

According to lllumina guidelines for small RNA sequencing, 1-2 M reads is an accepted range for expression profiling
experiments, while 2-5 M reads is the accepted range for discovery applications.

To avoid background noise due to small fragments of degraded RNA, we removed all reads <15 nt. Size filtering can be
easily modified to target a specific small RNA species. For example, 15-28 nt (miRNAs), 24-31 nt (piRNAs), or 15-40 nt if
interested in all small NncRNAs.

Quality (Q) is based on a Phred score, which estimates sequencing error probabilities per base. A Q=10 means a 1/10
probability of incorrect base calling or 90 % accuracy; Q=20 (1/100; 99 %); Q=30 (1/1000; 99.9 %); and Q =40 (1/10000;
99.99 %). We removed reads with a quality score <30.

Adapter detection can be adjusted to allow for one or more mismatches in the first 10 nt to identify and trim the
adapters. In order to enhance high quality reads, we set our adapter detection threshold to a perfect-10 nt match.
Ligation of the 3" and 5' adapters to each other happens by chance at a very low rate. However, this can become an
important issue for libraries prepared from very small amounts of RNA. We removed all adapter-adapter reads.

This feature refers to RNA reads larger than 40 nt in length. In most cases these reads map to midsize and larger non-coding
RNA populations. The percentage of reads >40 nt can vary (1 %-50 %) depending on library preparation method used.

This metric shows the number of reads that pass all the quality and trimming filters previously described. A good quality
library should have surviving rates between 50 % and 100 %, depending on method used.

Due to sequencing errors, stringent QC filters, or RNA from other species (usually added as control, i.e. PhiX), a very small
percentage of reads do not map to any human genomic location.

In contrast to other types of sequencing (DNA and larger RNA), the percentage of reads that map to multiple genomic
locations in small RNA sequencing is expected to be high (>50 %). Several small RNAs are encoded at more than one
genomic location. This is thought to be a compensatory mechanism or response to ncRNA knockouts by random mutations.

We used miRBase to align our reads to known miRNA species. A high percentage of reads aligned to miRNAs is expected.
However, this percentage can vary depending on the source and quality of RNA.

Rfam and NCBI's piRNA databases were used to map our reads to other small RNA species. The number of these reads is
very small compared to miRNAs. However, just like with miRNAs, the number of reads mapping back to other sncRNAs
is associated with the source and quality of RNA.

This refers to an additional portion of reads that map to repetitive sequences, coding genes, and unknown sequences in
the human genome. The number of these reads is expected to be low.

We set a detection threshold at one count per miRNA (present at least once in each of the libraries tested) in order to
get a better picture of lowly expressed miRNAs. However, for quantification and discovery studies, we recommend
higher detection thresholds, usually >10 or >20 counts per miRNA, to avoid background noise and false positives.

Important quality control (QC) measures for bioinformatic analysis of our high-throughput biomarker discovery pipeline
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miRNAs was quantified using miRNA TaqMan probes
(Applied Biosystems) and calculated using the Absolute
Quantitation (AQ) standard curve method. RNU6B was
used as an endogenous control as it showed expression
levels that remained relatively constant with low variance
and high abundance across the samples tested.

Data analysis

All numerical data are expressed as the mean + s.e.m.
Statistical differences among groups were analyzed by
Student’s t—test, One—Way ANOVA with post—hoc cor-
rection, and Pearson’s correlation coefficients. Statistical
significance was calculated using GraphPad Prism5 and
SPSS 20. P <0.05 was considered statistically significant.

Results and Discussion

This study assessed several steps involved in the devel-
opment of an ncRNA biomarker discovery pipeline,
ranging from sample preparation to bioinformatic pro-
cessing. At each stage, we evaluated the pros and cons
of different techniques that may be suitable in some
circumstances but not others, depending on experi-
mental design. Evaluation methods included quality of
data output in relation to hands-on laboratory time,
cost, and efficiency of processing.

Bioinformatic output measures for small RNA sequencing
quality control

There are several important parameters to test in order
to establish a high-throughput biomarker discovery pipe-
line including quality of the sample, library preparation
methods, input quantity, and sequencing coverage. How-
ever, prior to testing these parameters, we established a
set of output measures to allow us to compare across
methodologies and experimental conditions. These qual-
ity control measures are described in detail on Table 1.
In addition, we tested and compared our bioinformatics
pipeline both internally (collaborators) and externally
(online published available data) before analyzing any of
the libraries in this study. Our findings were consistent
with published results [51, 50, 62, 63].

Library purification methods of small RNA sequencing

First, we tested three commercially available library
preparation methods for small RNA sequencing: (1)
Novex TBE PAGE gel; (2) Pippin Prep automated gel
system; and (3) AMPure XP beads (Fig. 1a). It is im-
portant to point out that the main goal of this experi-
ment was not to single out the “best” purification
method, but rather to test and highlight the strengths
and limitations of the top available options and provide
guidelines as to what would best fit a particular study
design. We were able to obtain good quality sequencing
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libraries for all samples, but nonetheless, we found
significant differences across purification methods.

Before purification, adapter-ligated libraries for all
samples showed a peak corresponding to miRNAs
around 147 nt in length (Additional file 1: Figure S3).
After purification, all libraries showed a sharp, single
peak, corresponding to miRNAs and other small non-
coding RNA molecules (Additional file 1: Figure S4).
Samples purified using a Novex TBE PAGE gel showed a
sharp, single peak at 147 nt, corresponding to miRNAs
and other small non-coding RNA molecules (Additional
file 1: Figure S4a-c). The four libraries purified using
PPS also showed single peaks corresponding to miR-
NAs, but these libraries contained more than 50 times
more product after purification, as compared to the
Novex gel method (Additional file 1: Figure S4E-H).
Finally, samples purified with AMPure XP beads,
showed similar results as PPS, but these libraries showed
the additional presence of other small RNA molecules
ranging from 160-225 nt in length (Additional file 1:
Figure S4i-k). All libraries, plus a control sample (no puri-
fication), were pooled and sequenced in a single lane of
the HiSeq2500.

We obtained a total number of 109,956,847 raw
reads, with a quality value of 37 in all libraries (Table 2
and Fig. 2a). The distribution of reads based on length

Table 2 Purification method

Method Novex PPS AMPure Control
Sample A1-A3 A4-A7 A8-A10 AC
Amount Tug Tug Tug Tug

RIN 82 82 8.2 8.2
Average Quality 37 37 37 37

Raw Reads 8.840869 11.871091 9.152952 8491022
Size (<15 nt) 040 % 0.15 % 212 % 212 %
Low Quality (Q <30) 1.56 % 1.50 % 1.20 % 121 %
Adapter-Adapter 0.05 % 0.03 % 0.15 % 0.53 %
RNAs >40 nt 112 % 2.09 % 2173 % 1866 %
Surviving Reads 96.87 % 96.24 % 74.78 % 7747 %
Unmapped 131 % 1.50 % 2.00 % 1.89 %
Unique-Mapped 721 % 6.44 % 6.52 % 642 %
Multi-Mapped 9147 % 92.06 % 9147 % 91.69 %
miRNA 96.92 % 96.45 % 96.03 % 96.24 %
Other ncRNAs 042 % 046 % 049 % 0.48 %
Repeat 0.77 % 1.04 % 0.88 % 0.82 %
Coding Gene 0.05 % 0.04 % 0.04 % 0.04 %
Unknown 0.52 % 048 % 041 % 042 %
miRNA Count (21) 415 425 370 372

Small RNA data analysis shows the percentage, composition and quality of
reads from eleven libraries produced by our bioinformatics pipeline in order to
test and compare three different small RNA library preparation methods
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showed a consistent pattern with a large peak between
19-25 nt and a small peak between 30-35 nt, correspond-
ing to miRNAs and other sncRNAs (Fig. 2b). We found a
significant difference in the total number of reads
obtained depending on library purification method.
Libraries prepared using PPS gave the highest number
of total reads with an average of 11.8 M reads per sam-
ple, while with the others we obtained only an average
of 8.8 M (Novex), 9.1 M (AMPure) and 8.5 M (no puri-
fication) (Table 2 and Fig. 2c). Purification method also
had an effect on the total number of reads that survived
our data processing and QC analyses. Only 3.13 % and
3.76 % of reads were removed using the Novex gel and
PPS, respectively, while 25.22 % were removed when
using AMPure XP beads. The no-purification control
library showed similar results to those seen with
AMPure beads. We then took a closer look at the reads
that were removed and found small but significant dif-
ferences across methods. For example, more reads were
removed because they were smaller than 15 nt using
AMPure beads (2.12 %). AMPure showed the highest
quality of reads with an average of 1.2 % of reads re-
moved as compared to Novex (1.6 %) and PPS (1.5 %).
A very small number of reads were removed due to
adapter-adapter ligation, but nonetheless, PPS showed
the lowest percentage (0.03 %), while Novex, AMPure and
control showed 0.05 %, 0.15 % and 0.53 %, respectively.

The biggest difference across methods was explained
by reads from RNAs >40 nt. Only a small number of
reads were removed using Novex (1.1 %) and PPS
(2.05 %), while an average of 21.71 % were removed
when purifying libraries using AMPure XP beads
(Table 2). Next, we looked at the portion of surviving
reads. As expected, we found that more than 90 % of
all reads mapped back to multiple locations in the gen-
ome, which is a defining characteristic of miRNAs [23, 45]
(Fig. 2c). We did not find any significant differences in
the number of reads that mapped back to known
miRNA sequences across methods, with averages of
96.92 % (Novex), 96.45 % (PPS), 96.3 % (AMPure) and
96.24 % (control) (Table 2 and Fig. 2d). AMPure had
the highest number of reads mapping back to add-
itional small RNA molecules, while PPS contained the
most reads mapping back to known repeat sequences
in the genome. Finally, we found a significant differ-
ence in the average number of miRNAs identified:
Novex (N=415), PPS (N =424), AMPure (N =370)
and control (N = 372).

The Novex TBE PAGE gel proved to be the most spe-
cific for isolating the miRNA population in the samples.
This is because we were able to manually and carefully
cut the band between 145-160 nt corresponding to
miRNAs from the gel and avoided any other smaller or
larger RNA populations in the samples. However, we
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Table 3 Library preparation: purification methods

Page 9 of 18

Method Specificity Throughput Cost (3) Study size
Novex TBE PAGE gel High Low $388$ Small

(manually cutting band; very specific) (few libraries/day) (2-10 samples)
Pippin Prep Automated gel system Medium Low $8S Medium

(automated band; less specific) (4 libraries/run [2 hrs]) (10-50 samples)
AMPure XP beads Low High S Large

(all products >100 nt) (24 libraries/2 hrs) (50 and up)

Recommendations for small RNA sequencing library purification. Recommendations include: (1) Specificity: based on specificity to a particular small RNA population. (2)
Throughput: based on the number of libraries that can be prepared per day and efficiency of processing. This number is relative to the number of people working and
instruments available in the lab. (3) Cost: based on price of reagents, hands-on laboratory time, service fees by genome centers. (4) Study Size: based on number of

biological or technical replicates

lost a significant amount of library product after purifi-
cation from the gel, and in the end generated less reads
after sequencing. In addition, this method requires a
significant amount of hands-on time in the lab, which
ultimately translates to very low throughput and signifi-
cantly higher cost. We found purification by Novex gel
to be a very good and specific method, particularly fit
for small sample size projects where miRNAs are the
main focus.

PPS generated the highest number both of total reads
and distinct miRNAs identified, as well as very high
specificity to miRNAs. This can be attributed to several
factors, for example: (1) the libraries purified with PPS
contained more than 50 times more product after puri-
fication, as compared to the Novex gel methods. This is
due to the fact that the PPS is an automated system
that does not require extraction of the library products
directly from the gel, which can lead to less library
product; (2) the range of the automatically isolated
bands can be optimized to a desired product size (we
used 125-180 nt), due to size selection and specificity,
PPS contained the least number of reads removed due
to a size either smaller than 15 nt or larger than 40 nt;
(3) PPS showed the lowest number of adapter-adapter
ligated reads. However, because each PPS instrument
limits a run to only 4 samples, we tested variations
across instruments. We found a significant difference
in the final number of miRNAs identified per machine
with 50 more miRNAs identified with PPS2. The PPS
showed limitations in terms of consistency, and while
the protocol requires less hands-on time in the labora-
tory, it does not increase throughput (only 4 samples
per run) or cost significantly. We believe this is a very
good method for medium size projects.

In contrast, purification by gel-free magnetic AMPure
XP beads offers a high-throughput and consistent proto-
col. These libraries contained similar amounts of library
product as compared to PPS (50X more than Novex).
This method produced the highest quality of sequencing
reads and the highest number of reads mapping back to
other small RNA molecules. Nonetheless, because this

method retained all products larger than 100 nt, AMPure
beads produced the lowest specificity (to a single small
RNA population), number of surviving reads and overall
number of miRNAs (50 less than PPS). However,
AMPure beads offer a very consistent, time efficient,
high-throughput protocol with a significant reduction
in labor time and cost. We found that purification by
AMPure beads is a very good method, particularly fit
for large projects where not only miRNAs but all small

Table 4 Total RNA input

Sample ATl A12 A13 Al4 A15
Amount Tug 0.5ug 0.25ug 0.1ug 0.05ug
RIN 8.2 8.2 8.2 8.2 82
Average 38 38 38 38 38
Quality

Raw Reads 13.862726 7.995412 11.234898 11.921206 13.026487
Size (<15 nt) 0.12 % 011% 054 % 0.18 % 0.29 %
Low Quality 0.99 % 102% 111 % 1.04 % 122 %
(Q <30

Adapter- 0.02 % 003% 0.13% 0.13 % 0.17 %
Adapter

RNAs >40 nt ~ 0.75 % 340%  1.05% 1.33 % 091 %
Surviving 98.12% 9544 % 9717 %  9732% 9741 %
Reads

Unmapped 1.64 % 217% 193 % 1.99 % 211 %
Unique- 7.08 % 770%  9.03 % 8.75 % 9.39 %
Mapped

Multi-Mapped 9127 %  90.14% 8903 % 8927 % 8851 %
miRNA 9640 %  9399% 9435%  9395% 9348 %
Other ncRNAs 047 % 078%  0.84 % 0.88 % 0.95 %
Repeat 0.86 % 220% 177 % 2.04 % 2.16 %
Coding Gene  0.05 % 007 % 009 % 0.09 % 0.11 %
Unknown 0.57 % 079%  1.02 % 1.05 % 1.20 %
miRNA Count 499 424 536 558 560

1)

Small RNA data analysis shows the percentage, composition and quality of
reads from five libraries produced by our bioinformatics pipeline to test RNA
input amounts for small RNA library preparation
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ncRNAs are the main focus. The results from this sec-
tion are summarized in Table 3.

Finally, control sample AC was not purified or size
selected before sequencing in order to compare the re-
sults to the three methods tested. However, all libraries
in the study (including control sample AC) were pre-
pared using the Illumina TruSeq Small RNA protocol.
This protocol is ideal for the investigation of small RNA
species, as it takes advantage of the structure of most
small RNA molecules by ligating specific adapters to the
5'-phosphate and 3'-hydroxyl group, which are molecu-
lar signatures of their biogenesis pathway. This means
that if the adapter ligation works well, in theory, the li-
braries don’t require any further purification. However,
the success of purification methods also depends on sup-
pression of adaptor dimer products in order to keep
their representation at acceptable levels, ideally <2.5 %.
The AC control results were similar to AMPure XP
beads because, as previously explained, AMPure XP
beads do not contain a very specific size selection (all
products >100 nt) as opposed to Novex (145-160 nt) or
PPS (125 and 180 nt).

Table 5 RNA degradation: whole-blood
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Total RNA input amounts for small RNA sequencing from
whole-blood samples

Available amounts of starting RNA material are often a
deciding factor when planning a study, as biological
samples are often limited or hard to obtain. While plan-
ning an NGS project, there should be sufficient material
set aside for an exploratory (profiling) experiment, as
well as for technical validation and downstream experi-
ments. We tested the feasibility of constructing good
quality small RNA libraries from smaller amounts of
RNA than the 1 pg suggested by Illumina (Fig. 1b). All
libraries were processed as previously described and se-
quenced using the Illumina HiSeq2500. We obtained an
average number of 11.6 M reads with an average quality
score of 38 per library. Interestingly, we did not find any
major differences or any significant correlation between
amounts of starting RNA and any of the QC steps per-
formed. Moreover, we found no significant differences in
the number of surviving reads, reads mapping back to
miRNAs, other RNA molecules, genomic repeats, un-
known sequences or coding genes. In addition, the start-
ing amount of total RNA had no significant correlation
with the final number of miRNAs identified (Table 4).
Our results suggest that good quality libraries for small

Sample Q-3 e C7Co  Cl0-C12  CI3CIS

Tissue Blood Blood Blood Blood Blood Table 6 Sequencing coverage

RIN 9 7 6 2 0 Sample D1-D12 D1-D12 Pearson (r)
Average 36 36 36 36 35 RIN 74 74 B
Quality Sequencer HiSeq2500 MiSeq _
Raw Reads 14221591 15528347 12679709 14225867 11689436 perage Quality 37 56 -
Size (<15n0)  378%  492%  399%  354%  623% Raw Reads 11556456 889645 o
I(_Cc;vi ?%;amy 282%  296%  300%  263%  342% Size (<15 ni) 639 % 679 % 099039
Adapter- 111%  047%  038%  085%  335% Low Quality (Q <30) 168 % 133 % 095246
Adapter Adapter-Adapter 0.27 % 032 % 0.99639
RNAs >40 nt 2556 %  2141%  2898%  2304% 1547 % RNAs >40 nt 37.63 % 3313 % 098538
Surviving 6673% 7024%  6367%  6995% 7153 % Surviving Reads 54,03 % 5842 % 098834
Reads Unmapped 601 % 561 % 099573
Unmapped  326%  430%  353%  281% 340 % Unig-Mapped 1973 0% 1314.9% 099653
Unig-Mapped 7.78%  883%  682%  798%  7.74 % Mult-Mapped 8127 % 8124 % 099672
mgggm 8896 % 8687 %  8965%  8921%  88.86 % HiRNA 611 % 8577 % 099374
mIRNA 9157% 8764%  9201%  9366%  89.99 % Other ncRNAs 1.81% 183 % 099512
Other 120%  374%  093%  084%  140% Repeat 383% 437% 099679
NcRNAs Coding Gene 0.14 % 0.15 % 0.98360
Repeat 252%  257%  2290%  164%  325% Unknown 211 % 226 % 099109
Coding Gene 0.11%  023%  009%  008%  017% mIRNA Count (1) 563 231 099997
Unknown 135%  153%  1.15%  097%  179% mIRNA Count (210) 264 11 099997
mIRNA Count 469 463 399 476 488 mIRNA Count (220) 217 92 099998

1)

Small RNA data analysis shows the percentage, composition and quality of
reads from 15 libraries produced by our bioinformatics pipeline to test the
effects of RNA quality on small RNA library preparation

Small RNA data analysis shows the percentage, composition and quality of
reads from 12 libraries produced by our bioinformatics pipeline in order to
test sequencing coverage for small RNA sequencing. Libraries were sequenced
on both on HiSeq2500 and MiSeq lllumina sequencers
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RNA sequencing can be prepared with as little as 50 ng
of total RNA from human whole-blood. This will reduce
significantly the starting amounts of total RNA needed
and will help preserve precious material for downstream
experiments.

Effects of RNA quality on small RNA sequencing

Clinical samples can be prone to RNA degradation due
to methodological issues with sample collection and long
periods of storage. In addition, RNA degradation has a
significant impact on the profiling of messenger RNA
(mRNA), which translates as background noise in the
data. In most cases, these samples are not used or
thrown away. However, several studies have shown that
miRNAs display robust stability and are less susceptible
to degradation [47, 64—69]. Here we designed an experi-
ment to test the effects of RNA degradation on library
construction and small RNA sequencing (Fig. 1c). From
these libraries, we obtained an average of 12.9 M reads
with an average quality score of 36. Surprisingly, we did
not find any significant correlations between RIN and
any of the QC metrics, nor with the number of miRNAs
identified. Samples with the lowest RIN values had the
highest percentage of reads removed due to size (<15 nt)
and adapter-adapter ligation. However, the percentage of
reads removed due to these effects was quite small and
did not reach statistical significance (Table 5). Our re-
sults show that degradation (measured by RIN values)
had negligible effects on our data. Moreover, these re-
sults confirm the robust stability of miRNAs in clinical
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Table 7 Number of total miRNAs expected per million reads in
whole-blood

# of Reads (million) 12M 6M 3M 15M M
miRNA Count (>1) 563 446 353 289 263
miRNA Count (>10) 264 216 177 138 124
miRNA Count (>20) 217 177 138 1M1 101

Number of total miRNAs expected per million reads at three different
thresholds of detection

samples, which makes accurate miRNA quantification
with NGS feasible, even from clinical samples with low
RIN values.

Sequencing coverage for small RNA sequencing

RNA sequencing coverage refers to the total number of
reads to be sampled in a particular experiment and it is
an important factor while planning NGS experiments.
Coverage can have a significant effect on the quality of
data, sensitivity of detection and overall cost of the
project. Sequencing time and cost is considerably
smaller when using a faster, lower-scale NGS platform.
However, to our knowledge, there are no published re-
ports that directly compare the levels and number of
distinct miRNAs that can be measured from human
blood using different scale sequencers, such as HiSeq
and MiSeq. The purpose of this experiment was to de-
termine thresholds for detectability of small ncRNAs
and whether or not a fast-turnaround time sequencer
like MiSeq can be used in biomarker discovery. Here, we

A  Whole-Blood

m miR-486-5p m miR-486-3p
B miR-92a-3p B miR-451a
C Heart

B miR-1
= miR-126-3p

E miR-143-3p
m miR-27b-3p

Fig. 3 Expression of miRNAs in four human samples. Pie graph showing: a Whole-blood. b Brain. ¢ Heart. d Liver

m miR-9-5p m miR-128-3p
®m miR-26a-3p ®  miR-100-5p
D Liver

m miR-122-5p
® miR-148a-3p

m miR-3591-3p
m miR-21-5p
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sequenced 12 blood samples on both HiSeq2500 and
MiSeq Illumina sequencers (Fig. 1d). We generated
138.7 M reads with an average of 11.6 M reads per
library from the samples sequenced using the HiSeq2500
platform. As expected, using the same samples, we
produced about 10 % the number of reads using the
MiSeq platform, with a total of 10.7 M reads and average
of 890 thousand reads per sample. Moreover, we found a
very strong correlation in QC metrics and output across
sequencing platforms, and did not find any significant
differences. The average quality scores were 37 and 36
for HiSeq2500 and MiSeq, respectively. The main
difference was found in the actual number of miRNAs
identified. We found 563 distinct miRNAs using the
HiSeq2500, while only 231 miRNAs with the MiSeq. This
ratio was maintained when using different detection
thresholds (i.e. >10 or >20 counts per miRNA in all librar-
ies) (Table 6). We performed additional analyses to deter-
mine how many samples can optimally be pooled to help
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reduce the cost of sequencing, while still generating a de-
cent amount of good quality data. We reduced each of the
libraries, previously sequenced with HiSeq2500, by a factor
of 2 in order to simulate doubling the number of sam-
ples pooled per lane. Based on our prior results, we
predicted the number of distinct miRNAs that can be
expected at different sequencing coverage (per million
reads) in an average human blood sample. We found a
20 % decrease in the number of total miRNAs detected
by doubling the number of samples per lane (from 12
to 24). That is, only under the assumption that increas-
ing the number of samples by a factor of 2 decreases
sequencing depth by an equal factor. However, we be-
lieve that the total number of reads is a better indicator
of the total number of miRNAs that can be expected in
a sample. Our results, summarized in Table 7, show the
number of total miRNAs expected per million reads.
These results provide important insight into sequen-
cing strategies, time, and cost, and are particularly

miRNAs
Brain
A
Liver
B )
Brain
383
Total 282 616
Blood
74
Total 282 475 Total 262 437
Fig. 4 Tissue-specific patterns of expression of mi RNAs in human samples. Venn diagram showing: a Whole-blood vs. Brain vs. Heart vs. Liver. b
Co-expression levels of miRNAs between whole-blood and other tissues
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important when there is interest in lowly-expressed
miRNAs.

Expression of miRNAs and other small ncRNAs in human
biological samples

MicroRNA expression patterns can be tissue and cell spe-
cific. For example, miR-1 has been shown to be enriched
in cardiomyocytes [70] while miR-122 is the highest
expressed miRNA in the liver [71]. Others have shown
that some miRNAs are uniquely present in specific body
fluids, such plasma, tears, breast milk, and seminal fluid
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[72]. To explore this, here we sequenced 16 samples
(E1-E16) using a MiSeq sequencer to compare the expres-
sion of small ncRNAs in four human tissues: whole-blood,
brain, heart, and liver (Fig. 1e). We used miRBase, Rfam
and NCBI’s piRNA databases to map miRNAs and other
small RNAs.

We found tissue specific patterns of expression of
miRNAs from these tissues. In whole-blood, the most
abundant miRNAs were miR-486-5p, miR-486-3p which
accounted for more than 90 % of all detectable miRNAs
(Fig. 3a) (Additional file 2: Table S1). In human brain

Human Blood - small RNA-Seq

Human Blood - qRT PCR
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miR-9-5p, miR-128-3p, miR-26a-5p, miR-100-5p, and
miR-99a-5p, made up 40 % of all detectable miRNAs
(Fig. 3b and Additional file 2: Table S2). In human
heart tissue, miR-1 accounted for more than 25 % of
miRNAs, while miR-122 represented 23 % of all miR-
NAs expressed in human liver (Fig. 3c-d and Additional
file 2: Tables S3-S4). Furthermore, human brain had
the highest number of detected miRNAs, specifically
616, while heart, liver, and whole-blood had 475, 437,
and 282, respectively. In addition, we found 48 miRNAs
exclusively expressed in whole-blood, 133 only found in
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brain, 30 only in heart, and 20 only in liver tissue
(Fig. 4a). We also explored the co-expression levels of
miRNAs between whole-blood and the other tissues.
Interestingly, we found 233 miRNAs co-expressed
between whole-blood and brain (82.6 % of all miRNAs
detected in whole-blood), 209 between whole-blood
and heart (74.1 % of heart), and 208 between whole-
blood and liver (73.8 % of liver) (Fig. 4b and Additional
file 2: Table S5). To validate our miRNA sequencing
results, we measured the expression of 8 miRNAs
(miR-486-3p/92a-3p/181a-5p/26a-5p/93-5p/130a-3p/125b-

A Whole-blood
H Other HpiRNA  ErRNA msnoRNA m snRNA
m tRNA W VItRNA  m YRNA vaRNA  mIncRNA
HmiRNAs  m Others
B Brain
B Other M piRNA mErRNA B snoRNA B snRNA
W tRNA mVItRNA  ®YRNA vaRNA  m IncRNA
B miRNAs & Others
C Heart

B Other M piRNA

urRNA

HsnoRNA m snRNA

mtRNA  ®mVItRNA = YRNA vaRNA  m IncRNA
B miRNAs = Others
Liver
. H Other HpiRNA  ErRNA B snoRNA B snRNA
" miRNAs = Others WtRNA  ®VItRNA = YRNA vaRNA  mIncRNA

Fig. 6 Expression and distribution of other small non-coding RNAs in four human samples. Pie graph showing: a Whole-blood. b Brain. ¢ Heart. d Liver
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Total 148 334

Other small ncRNAs
A Brain

Liver
Blood
B Blood
1
Total 148 369
Blood
1
Total 148 369

Fig. 7 Tissue-specific patterns of expression of other small non-coding RNAs in human samples. Venn diagram showing: a Whole-blood vs. Brain
vs. Heart vs. Liver. b Co-expression levels of miRNAs between whole-blood and other tissues

5p/9-5p) with various levels of expression in peripheral
blood using qRT-PCR. Our qRT-PCR results were con-
sistent with our sequencing results (P <0.0001, Pear-
son’s r = 0.98, r* = 0.95) (Fig. 5).

We also explored the expression of other small
ncRNAs. In peripheral blood, we found an average of
11 % reads that mapped back to other species besides
miRNAs. In other tissues we found more variation in
the distribution of small RNAs. An average of 44.9 % of
reads in brain tissue mapped back to other RNA
species. Heart and liver showed 42.4 % and 65.4 % of
reads mapping back to other small RNAs, respectively
(Fig. 6). Brain and liver displayed the highest number of
different small RNA molecules, both with 369, while
blood and heart showed 148 and 334 respectively. In
addition, 147 (out of 148) small RNAs expressed in
whole-blood were co-expressed in all other tissues
(Fig. 7a-b). The most abundant species of other small
ncRNAs were snoRNAs and piRNAs, which made up

more than 85 % across all tissues (Fig. 6). Among the
other ncRNA molecules, we found small nuclear (snRNA),
transfer (tRNA), ribosomal (rRNA), vault (vaRNA), viral
(VRNA), Ro RNP associated Y RNA  (Y-RNA), and short
fractions of long non-coding RNAs (IncRNAs). The levels
of expression and distribution of these molecules can be
found in Additional file 2: Tables S6—S9. These results
provide important insight into tissue specific expression
and distribution of small ncRNAs, as well as co-
expression levels between whole-blood and three other
tissues (brain, heart, and liver).

Conclusions

The goal of this study was to highlight some fundamental
details of small ncRNA profiling, and provide the reader
with general guidelines for quantification, data processing
and analysis of sncRNAs from clinical samples using NGS.
Our results show that good quality sequencing libraries
can be prepared from small amounts of total RNA and
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that varying degradation levels in the samples do not have
a significant effect on the overall quantification of
sncRNAs via NGS. In addition, we discuss the strengths
and limitations of three commercially available library
preparation methods, describe our bioinformatics pipeline,
provide recommendations for sequencing depth and
coverage, and describe in detail the expression and distri-
bution of all sncRNAs in four human tissues: whole-
blood, brain, heart and liver. Ultimately, this study pro-
vides valuable information that will help researchers plan
and execute future small RNA profiling studies that will
contribute to the understanding of sncRNAs as potential
biomarkers and mediators of biological functions and
disease.

Additional files

Additional file 1: Figure S1. Novex Gel analysis of small RNA libraries.
Samples A1-A3 and CT1. lllumina custom RNA ladder consists of three double
stranded DNA fragments 145 bp, 160 bp, and 500 bp. The 147 nt band
primarily contains mature microRNA generated from approximately 22 nt
small RNA fragments. A second, 157 nt band containing piwi-interacting
RNAs, as well as other regulatory small RNA molecules, is generated from
approximately 30 nt RNA fragments. Figure S2. Purification by Pippin Prep
automated gel system (Sage 3 %). The Pippin Prep system (PPS) allows
automatic selection of specified cDNA products. 25 pl of amplified cDNA
from samples A4-A7 were loaded into a Pippin Prep machine. In order to
test variability between machines, samples A4 and A5 were loaded into
PPS1, while samples A6 and A7 were loaded into PPS2. Size selection was
automated for products between 125 and 180 nt. Figure S3. RNA sample
trace of amplicons on High-Sensitivity DNA Chip. Before library purification,
adapter-ligated libraries for all samples (A1-A10, C1 and AC) showed a peak
corresponding to miRNAs around 147 nt in length. Figure S4. DNA 1000
Chip trace of the final libraries. After purification, all libraries (A1-A10, and C1)
showed a sharp, single peak, corresponding to miRNAs and other small
non-coding RNA molecules. Samples purified with AMPure XP beads
(A8-A10), showed the additional presence of other small RNA molecules
ranging from 160-225 nt in length. Figure S5. Heatmap plot of co-expressed
miRNAs. MicroRNAs co-expressed between whole-blood and brain, heart,
and liver.

Additional file 2: Table S1. MicroRNA expression in human whole-blood.
Small RNA sequencing raw reads showing expression, distribution and
percentage of microRNAs identified in four human blood samples. Table S2.
MicroRNA expression in human brain. Small RNA sequencing raw reads
showing expression, distribution and percentage of microRNAs identified in
four human brain samples. Table S3. MicroRNA expression in human heart.
Small RNA sequencing raw reads showing expression, distribution and
percentage of microRNAs identified in four human heart samples.
Table S4. MicroRNA expression in human liver. Small RNA sequencing
raw reads showing expression, distribution and percentage of microRNAs
identified in four human liver samples. Table S5. Co-expressed miRNAs.
MicroRNAs co-expressed between whole-blood and brain, heart, and liver.
Table S6. Expression of other non-coding RNAs in human whole-blood.
Small RNA sequencing raw reads showing expression, distribution and
percentage of other small non-coding RNAs in four human blood samples.
Table S7. Expression of other non-coding RNAs in human brain. Small RNA
sequencing raw reads showing expression, distribution and percentage of
other small non-coding RNAs in four human brain samples. Table S8.
Expression of other non-coding RNAs in human heart. Small RNA
sequencing raw reads showing expression, distribution and percentage
of other small non-coding RNAs in four human heart samples. Table
S9. Expression of other non-coding RNAs in human liver. Small RNA
sequencing raw reads showing expression, distribution and percentage
of other small non-coding RNAs in four human liver samples.
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