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Abstract

Background: Sequencing of both healthy and disease singletons yields many novel and low frequency variants of
uncertain significance (VUS). Complete gene and genome sequencing by next generation sequencing (NGS)
significantly increases the number of VUS detected. While prior studies have emphasized protein coding variants,
non-coding sequence variants have also been proven to significantly contribute to high penetrance disorders, such
as hereditary breast and ovarian cancer (HBOC). We present a strategy for analyzing different functional classes of
non-coding variants based on information theory (IT) and prioritizing patients with large intragenic deletions.

Methods: We captured and enriched for coding and non-coding variants in genes known to harbor mutations that
increase HBOC risk. Custom oligonucleotide baits spanning the complete coding, non-coding, and intergenic
regions 10 kb up- and downstream of ATM, BRCAI, BRCA2, CDH1, CHEK2, PALB2, and TP53 were synthesized for
solution hybridization enrichment. Unique and divergent repetitive sequences were sequenced in 102 high-risk,
anonymized patients without identified mutations in BRCA1/2. Aside from protein coding and copy number
changes, IT-based sequence analysis was used to identify and prioritize pathogenic non-coding variants that
occurred within sequence elements predicted to be recognized by proteins or protein complexes involved in
mRNA splicing, transcription, and untranslated region (UTR) binding and structure. This approach was
supplemented by in silico and laboratory analysis of UTR structure.

Results: 15,311 unique variants were identified, of which 245 occurred in coding regions. With the unified IT-
framework, 132 variants were identified and 87 functionally significant VUS were further prioritized. An intragenic
32.1 kb interval in BRCA2 that was likely hemizygous was detected in one patient. We also identified 4 stop-gain
variants and 3 reading-frame altering exonic insertions/deletions (indels).

Conclusions: We have presented a strategy for complete gene sequence analysis followed by a unified framework
for interpreting non-coding variants that may affect gene expression. This approach distills large numbers of
variants detected by NGS to a limited set of variants prioritized as potential deleterious changes.
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Background

Advances in NGS have enabled panels of genes, whole
exomes, and even whole genomes to be sequenced for
multiple individuals in parallel. These platforms have be-
come so cost-effective and accurate that they are begin-
ning to be adopted in clinical settings, as evidenced by
recent FDA approvals [1, 2]. However, the overwhelming
number of gene variants revealed in each individual has
challenged interpretation of clinically significant genetic
variation [3-5].

After common variants, which are rarely pathogenic,
are eliminated, the number of VUS in the residual set re-
mains substantial. Assessment of pathogenicity is not
trivial, considering that nearly half of the unique variants
are novel, and cannot be resolved using published litera-
ture and variant databases [6]. Furthermore, loss-of-
function variants (those resulting in protein truncation
are most likely to be deleterious) represent a very small
proportion of identified variants. The remaining variants
are missense and synonymous variants in the exon, sin-
gle nucleotide changes, or in frame insertions or dele-
tions in intervening and intergenic regions. Functional
analysis of large numbers of these variants often cannot
be performed, due to lack of relevant tissues, and the
cost, time, and labor required for each variant. Another
problem is that in silico protein coding prediction tools
exhibit inconsistent accuracy and are thus problematic
for clinical risk evaluation [7-9]. Consequently, many
HBOC patients undergoing genetic susceptibility testing
will receive either an inconclusive (no BRCA variant
identified) or an uncertain (BRCA VUS) result. The
former has been reported in up to 80 % of cases and
depends on the number of genes tested [10]. The occur-
rence of uncertain BRCA mutations varies greatly (as
high as 46 % in African American populations and as
low as 2.1 %) among tested individuals depending on the
laboratory and the patient’s ethnicity [11-13]. The in-
consistency in diagnostic yield is significant, considering
that HBOC accounts for 5-10 % of all breast/ovarian
cancer [14, 15].

One strategy to improve variant interpretation in patients
is to reduce the full set of variants to a manageable list of
potentially pathogenic variants. Evidence for pathogenicity
of VUS in genetic disease is often limited to amino acid
coding changes [16, 17], and mutations affecting splicing,
transcriptional activation, and mRNA stability tend to be
underreported [18-24]. Splicing errors are estimated to
represent 15 % of disease-causing mutations [25], but may
be much higher [26, 27]. The impact of a single nucleotide
change in a recognition sequence can range from insignifi-
cant to complete abolition of a protein binding site. Aber-
rant splicing events causing frameshifts often disrupt
protein function; in-frame changes are dependent on gene
context. The complexity of interpretation of non-coding
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sequence variants benefits from computational approaches
[28] and direct functional analyses [29-33] that may each
support evidence of pathogenicity.

Ex vivo transfection assays developed to determine the
pathogenicity of VUS predicted to lead to splicing aberra-
tions (using in silico tools) have been successful in identify-
ing pathogenic sequence variants [34, 35]. IT-based analysis
of splicing variants has proven to be robust and accurate
(as determined by functional assays for mRNA expression
or binding assays) at analyzing splice site (SS) variants, in-
cluding splicing regulatory factor binding sites (SREBSs),
and in distinguishing them from polymorphisms in both
rare and common diseases [36—39]. However, IT can be ap-
plied to any sequence recognized and bound by another
factor [40], such as with transcription factor binding sites
(TFBSs) and RNA-binding protein binding sites (RBBSs).
IT is used as a measure of sequence conservation and is
more accurate than consensus sequences [41]. The individ-
ual information (R;) of a base is related to thermodynamic
entropy, and therefore free energy of binding, and is mea-
sured on a logarithmic scale (in bits). By comparing the
change in information (AR;) for a nucleotide variation of a
bound sequence, the resulting change in binding affinity
is > 2% such that a 1 bit change in information will result
in at least a 2-fold change in binding affinity [42].

IT measures nucleotide sequence conservation and
does not provide information on effects of variants on
mRNA secondary (2°) structure, nor can it accurately
predict effects of amino acid sequence changes. Associa-
tions of structural changes in untranslated regions
(UTR) of mRNA with disease justifies including pre-
dicted effects of these changes on 2° structure in the
comprehensive analysis of sequence variants [43]. Other
in silico methods have attempted to address these defi-
ciencies. For example, Halvorsen et al. (2010) introduced
an algorithm called SNPfold, which computes the potential
effect of a single nucleotide variant (SNV) on mRNA 2°
structure [20]. Predictions made by SNPfold can be tested
by the SHAPE assay (Selective 2’-Hydroxyl Acylation ana-
lyzed by Primer Extension) [44], which provides evidence
for sequence variants that lead to structural changes in
mRNA by detection of covalent adducts in mRNA.

The implications of improved VUS interpretation are
particularly relevant for HBOC due to its incidence and the
adoption of panel testing for these individuals [45, 46]. It
has been suggested that patients with a high risk profile re-
ceiving uninformative results would imply that deleterious
variants lie in untested regions of BRCA1/2, untested genes,
or are unrecognized [47, 48]. This is also supported by
studies where families with linkage to BRCA1/2 had no de-
tectable pathogenic mutation (however it is noteworthy
that detection rates of BRCA mutations in families with
documented linkage to these loci appears to vary by ascer-
tainment, inclusion criteria, and technology used to identify
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the mutations) [49, 50]. The concept of non-BRCA gene
association has been demonstrated by the identification of
low-to-moderate risk HBOC genes, and variants within
coding and non-coding regions affecting splicing and regu-
latory factor binding [51, 52]. Consequently, VUS, which in-
clude rare missense changes, other coding and non-coding
changes in all of these genes, greatly outnumber the catalog
of known deleterious mutations [53].

Here, we develop and evaluate IT-based models to
predict potential non-coding sequence mutations in
SSs, TFBSs, and RBBSs in 7 genes sequenced in their
entirety. These models were used to analyze 102 an-
onymous HBOC patients who did not exhibit known
BRCA1/2 coding mutations at the time of initial test-
ing, despite meeting the criteria for BRCA genetic
testing. The genes are: ATM, BRCA1, BRCA2, CDHI,
CHEK?2, PALB2, and TP53, and have been reported to
harbor mutations that increase HBOC risk [54-76].
We apply these IT-based methods to analyze variants
in the complete sequences of coding, non-coding, and
up- and downstream regions of the 7 genes. In this
study, we established and applied a unified IT-based
framework, first filtering out common variants, then
to “flag” potentially deleterious ones. Then, using
context-specific criteria and information from the
published literature, we prioritized likely candidates.

Methods

Design of tiled capture array for HBOC gene panel
Nucleic acid hybridization capture reagents designed from
genomic sequences generally avoid repetitive sequence
content to avoid cross hybridization [77]. Complete gene
sequences harbor numerous repetitive sequences, and an
excess of denatured Cot-1 DNA is usually added to
hybridization to prevent inclusion of these sequences [78].
RepeatMasker software completely masks all repetitive
and low-complexity sequences [79]. We increased se-
quence coverage in complete genes with capture probes
by enriching for both single-copy and divergent repeat
(>30 % divergence) regions, such that, under the correct
hybridization and wash conditions, all probes hybridize
only to their correct genomic locations [77]. This step was
incorporated into a modified version of Gnirke and col-
leagues’ (2009) in-solution hybridization enrichment
protocol, in which the majority of library preparation,
pull-down, and wash steps were automated using a
BioMek® FXP Automation Workstation (Beckman
Coulter, Mississauga, Canada) [80].

Genes ATM (RefSeq: NM_000051.3, NP_000042.3),
BRCAI (RefSeq: NM_007294.3, NP_009225.1), BRCA2
(RefSeq: NM_000059.3, NP_000050.2), CDHI (RefSeq:
NM_004360.3, NP_004351.1), CHEK2 (RefSeq: NM_
145862.2, NP_665861.1), PALB2 (RefSeq: NM_024675.3,
NP_078951.2), and TP53 (RefSeq: NM_000546.5, NP_
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000537.3) were selected for capture probe design by tar-
geting single copy or highly divergent repeat regions
(spanning 10 kb up- and downstream of each gene rela-
tive to the most upstream first exon and most down-
stream final exon in RefSeq) using an ab initio approach
[77]. If a region was excluded by ab initio but lacked a
conserved repeat element (i.e. divergence >30 %) [79],
the region was added back into the probe-design se-
quence file. Probe sequences were selected using PICKY
2.2 software [81]. These probes were used in solution
hybridization to capture our target sequences, followed
by NGS on an Illumina Genome Analyzer IIx (Add-
itional file 1: Methods).

Genomic sequences from both strands were captured
using overlapping oligonucleotide sequence designs cover-
ing 342,075 nt among the 7 genes (Fig. 1). In total, 11,841
oligonucleotides were synthesized from the transcribed
strand consisting of the complete, single copy coding, and
flanking regions of ATM (3513), BRCA1 (1587), BRCA2
(2386), CDHI1 (1867), CHEK2 (889), PALB2 (811), and
TP53 (788). Additionally, 11,828 antisense strand oligos
were synthesized (3497 ATM, 1591 BRCA1, 2395 BRCA2,
1860 CDH1, 883 CHEK2, 826 PALB2, and 776 TP53). Any
intronic or intergenic regions without probe coverage are
most likely due to the presence of conserved repetitive el-
ements or other paralogous sequences.

For regions lacking probe coverage (of > 10 nt, N = 141;
8 in ATM, 26 in BRCA1, 10 in BRCA2, 29 in CDH1, 36 in
CHEK?2, 15 in PALB2, and 17 in TP53), probes were se-
lected based on predicted T,,s similar to other probes,
limited alignment to other sequences in the transcriptome
(<10 times), and avoidance of stable, base-paired 2° struc-
tures (with unaFOLD) [82, 83]. The average coverage of
these sequenced regions was 14.1-24.9 % lower than other
probe sets, indicating that capture was less efficient,
though still successful.

HBOC samples for oligo capture and high-throughput
sequencing

Genomic DNA from 102 patients previously tested for
inherited breast/ovarian cancer without evidence of a pre-
disposing genetic mutation, was obtained from the Molecu-
lar Genetics Laboratory (MGL) at the London Health
Sciences Centre in London, Ontario, Canada. Patients
qualified for genetic susceptibility testing as determined by
the Ontario Ministry of Health and Long-Term Care
BRCA1I and BRCA2 genetic testing criteria [84] (see Add-
itional file 2). The University of Western Ontario research
ethics board (REB) approved this anonymized study of
these individuals to evaluate the analytical methods pre-
sented here. BRCAI and BRCA2 were previously analyzed
by Protein Truncation Test (PTT) and Multiplex Ligation-
dependent Probe Amplification (MLPA). The exons of sev-
eral patients (N = 14) had also been Sanger sequenced. No
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Fig. 1 Capture Probe Coverage over Sequenced Genes. The genomic structure of the 7 genes chosen are displayed with the UCSC Genome
Browser. Top row for each gene is a custom track with the “dense” visualization modality selected with black regions indicating the intervals

covered by the oligonucleotide capture reagent. Regions without probe coverage contain conserved repetitive sequences or correspond to
paralogous sequences that are unsuitable for probe design

pathogenic sequence change was found in any of these in-  the specific chromosomes of our sequenced genes (hgl9)
dividuals. In addition, one patient with a known pathogenic  using both CASAVA (Consensus Assessment of Sequen-
BRCA variant was re-sequenced by NGS as a positive  cing and Variation; v1.8.2) [85] and CRAC (Complex Reads

control. Analysis and Classification; v1.3.0) [86] software. Align-
ments were prepared for variant calling using Picard [87]
Sequence alignment and variant calling and variant calling was performed on both versions of the

Variant analysis involved the steps of detection, filtering, aligned sequences using the UnifiedGenotyper tool in the
IT-based and coding sequence analysis, and prioritization =~ Genome Analysis Toolkit (GATK) [88]. We used the rec-
(Fig. 2). Sequencing data were demultiplexed and aligned to  ommended minimum phred base quality score of 30, and
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Fig. 2 Framework for the Identification of Potentially Pathogenic Variants. Integrated laboratory processing and bioinformatic analysis procedures
for comprehensive complete gene variant determination and analysis. Intermediate datasets resulting from filtering are represented in yellow and
final datasets in green. Non-bioinformatic steps, such as sample preparation are represented in blue and prediction programs in purple. Sequencing
analysis yields base calls for all samples. CASAVA [85] and CRAC [86] were used to align these sequencing results to hg19. GATK [88] was used to call
variants from this data against GRCh37 release of the reference human genome. Variants with a quality score < 50 and/or call confidence score < 30
were eliminated along with variants falling outside of our target regions. SNPnexus [112-114] was used to identify the genomic location of the variants.
Nonsense and indels were noted and prediction tools were used to assess the potential pathogenicity of missense variants. The Shannon Pipeline [91]
evaluated the effect of a variant on natural and cryptic SSs, as well as SRFBSs. ASSEDA [38] was used to predict the potential isoforms as a result of
these variants. PWMs for 83 TFs were built using an information weight matrix generator based on Bipad [106]. Mutation Analyzer evaluated the effect
of variants found 10 kb upstream up to the first intron on protein binding. Bit thresholds (R; values) for filtering variants on software program outputs
are indicated. Variants falling within the UTR sequences were assessed using SNPfold [20], and the most probable variants that alter mRNA
structure (p < 0.1) were then processed using mFold to predict the effect on stability [83]. All UTR variants were scanned with a modified
version of the Shannon Pipeline, which uses PWMs computed from nucleotide frequencies for 28 RBPs in RBPDB [109] and 76 RBPs in
CISBP-RNA [110]. All variants meeting these filtering criteria were verified with IGV [89, 90]. *Sanger sequencing was only performed for

> 50 bits; |AR] > 4.0
bits

Flagged
variants

Verify in Databases & Peer-
Reviewed Publications.

ASSEDA

results were exported in variant call format (VCF; v4.1). A
software program was developed to exclude variants called
outside of targeted capture regions and those with quality
scores < 50. Variants flagged by bioinformatic analysis (de-
scribed below) were also assessed by manually inspecting
the reads in the region using the Integrative Genomics
Viewer (IGV; version 2.3) [89, 90] to note and eliminate ob-
vious false positives (i.e. variant called due to polyhomonu-
cleotide run dephasing, or PCR duplicates that were not
eliminated by Picard). Finally, common variants (=1 % allele
frequency based on dbSNP 142 or >5 individuals in our
study cohort) were not prioritized.

IT-based variant analysis
All variants were analyzed using the Shannon Human
Splicing Mutation Pipeline, a genome-scale variant

analysis program that predicts the effects of variants on
mRNA splicing [91, 92]. Variants were flagged based on
criteria reported in Shirley et al. (2013): weakened nat-
ural site > 1.0 bits, or strengthened cryptic site (within
300 nt of the nearest exon) where cryptic site strength is
equivalent or greater than the nearest natural site of the
same phase [91]. The effects of flagged variants were fur-
ther analyzed in detail using the Automated Splice Site
and Exon Definition Analysis (ASSEDA) server [38].
Exonic variants and those found within 500 nt of an
exon were assessed for their effects, if any, on SRFBSs
[38]. Sequence logos for splicing regulatory factors (SRFs)
(SRSF1, SRSF2, SRSF5, SRSF6, hnRNPH, hnRNPAI,
ELAVLI, TIA1, and PTB) and their Ryegyence Values (the
mean information content [93]) are provided in Caminsky
et al. (2015) [36]. Because these motifs occur frequently in



Mucaki et al. BMC Medical Genomics (2016) 9:19

unspliced transcripts, only variants with large information
changes were flagged, notably those with a)>4.0 bit
decrease, i.e. at least a 16-fold reduction in binding site
affinity, with R;nitia1 = Reequence for the particular factor
analyzed, or b) > 4.0 bit increase in a site where R;f;4;>0
bits. ASSEDA was used to calculate R;;..,;, with the option
selected to include the given SRF in the calculation. Vari-
ants decreasing R;;;.; by < 3.0 bits (i.e. 8-fold) were pre-
dicted to potentially have benign effects on expression,
and were not considered further.

Activation of pseudoexons through creating/strengthen-
ing of an intronic cryptic SS was also assessed [94].
Changes in intronic cryptic sites, where AR;>1 bit and
R finat 2 Rsequence — 1 standard deviation [S.D.] of Ryeguence),
were identified. A pseudoexon was predicted if a
pre-existing cryptic site of opposite polarity (with
R; > [Rsequence - 1 S.D.]) and in the proper orientation
for formation of exons between 10-250 nt in length
was present. In addition, the minimum intronic dis-
tance between the pseudoexon and either adjacent
natural exon was 100 nt. The acceptor site of the
pseudoexon was also required to have a strong
hnRNPA1 site located within 10 nt (R;2 Rsequence)
[38] to ensure accurate proofreading of the exon
[37].

Next, variants affecting the strength of SRFs were ana-
lyzed by a contextual exon definition analysis of AR; ;-
The context refers to the documented splicing activity of
an SRF. For example, TIA1 has been shown to be an in-
tronic enhancer of exon definition, so only intronic sites
were considered. Similarly, hnRNPA1 proofreads the 3’
SS (acceptor) and inhibits exon recognition elsewhere
[95]. Variants that lead to redundant SRFBS changes (i.e.
one site is abolished and another proximate site [<2 nt]
of equivalent strength is activated) were assumed to have
a neutral effect on splicing. If the strength of a site
bound by PTB (polypyrimidine tract binding protein)
was affected, its impact on binding by other factors was
analyzed, as PTB impedes binding of other factors with
overlapping recognition sites, but does not directly en-
hance or inhibit splicing itself [96].

To determine effects of variants on transcription factor
(TF) binding, we first established which TFs bound to the
sequenced regions of the gene promoters (and first exons)
in this study by using ChIP-seq data from 125 cell types
(Additional file 1: Methods) [97]. We identified 141 TFs
with evidence for binding to the promoters of the genes
we sequenced, including c-Myc, C/EBPp, and Sp1, shown
to transcriptionally regulate BRCAI, TP53, and ATAM,
respectively [98-100]. Furthermore, polymorphisms in
TCF7L2, known to bind enhancer regions of a wide var-
iety of genes in a tissue-specific manner [101], have been
shown to increase risk of sporadic [102] and hereditary
breast [103], as well as other types of cancer [104, 105].
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IT-based models of the 141 TFs of interest were de-
rived by entropy minimization of the DNase accessible
ChIP-seq subsets [106]. Details are provided in Lu R,
Mucaki E, and Rogan PK (BioRxiv; http://dx.doi.org/
10.1101/042853). While some data sets would only yield
noise or co-factor motifs (i.e. co-factors that bind via
tethering, or histone modifying proteins [107]), tech-
niques such as motif masking and increasing the num-
ber of Monte Carlo cycles yielded models for 83 TFs
resembling each factor’s published motif. Additional file
3: Table S1 contains the final list of TFs and the models
we built (described below) [108].

These TFBS models (N = 83) were used to scan all var-
iants called in the promoter regions (10 kb upstream of
transcriptional start site to the end of IVS1) of HBOC
genes for changes in R; Binding site changes that
weaken interactions with the corresponding TF (to R; <
Riequence) are likely to affect regulation of the adjacent
target gene. Stringent criteria were used to prioritize the
most likely variants and thus only changes to strong
TEBSs (R, initiar = Rsequence)» Where reduction in strength
was significant (AR; > 4.0 bits), were considered. Alterna-
tively, novel or strengthened TFBSs were also considered
sources of dysregulated transcription. These sites were
defined as having R, fiar 2 Reequence and as being the
strongest predicted site in the corresponding genomic
interval (i.e. exceeding the R; values of adjacent sites un-
altered by the variant). Variants were not prioritized if
the TF was known to a) enhance transcription and IT
analysis predicted stronger binding, or b) repress tran-
scription and IT analysis predicted weaker binding.

Two complementary strategies were used to assess the
possible impact of variants within UTRs. First, SNPfold
software was used to assess the effect of a variant on 2°
structure of the UTR (Additional file 1: Methods) [20].
Variants flagged by SNPfold with the highest probability of
altering stable 2° structures in mRNA (where p-value < 0.1)
were prioritized. To evaluate these predictions, oligonucleo-
tides containing complete wild-type and variant UTR se-
quences (Additional file 4: Table S2) were transcribed
in vitro and followed by SHAPE analysis, a method that
can confirm structural changes in mRNA [44].

Second, the effects of variants on the strength of RBBSs
were predicted. Frequency-based, position weight matrices
(PWMs) for 156 RNA-binding proteins (RBPs) were ob-
tained from the RNA-Binding Protein DataBase (RBPDB)
[109] and the Catalog of Inferred Sequence Binding Prefer-
ences of RNA binding proteins (CISBP-RNA) [110, 111].
These were used to compute information weight matrices
(based on the method described by Schneider et al. 1984;
N =147) (see Additional file 1: Methods) [40]. All UTR
variants were assessed using a modified version of the
Shannon Pipeline [91] containing the RBPDB and CISBP-
RNA models. Results were filtered to include a) variants


http://dx.doi.org/10.1101/042853
http://dx.doi.org/10.1101/042853

Mucaki et al. BMC Medical Genomics (2016) 9:19

with |AR;| > 4.0 bits, b) variants creating or strengthening
sites (Ri,ﬁnal 2 Rsequence and the Rb initial < Rsequence)) and C)
RBBSs not overlapping or occurring within 10 nt of a stron-
ger, pre-existing site of another RBP.

Exonic protein-altering variant analysis

The predicted effects of all coding variants were assessed
with SNPnexus [112-114], an annotation tool that can
be applied to known and novel variants using up-to-date
dbSNP and UCSC human genome annotations. Variants
predicted to cause premature protein truncation were
given higher priority than those resulting in missense (or
synonymous) coding changes. Missense variants were
first cross referenced with dbSNP 142 [115]. Population
frequencies from the Exome Variant Server [116] and
1000Genomes [117] are also provided. The predicted
effects on protein conservation and function of the
remaining variants were evaluated by in silico tools:
PolyPhen-2 [118], Mutation Assessor (release 2) [119, 120],
and PROVEAN (v1.1.3) [121, 122]. Default settings were
applied and in the case of PROVEAN, the “PROVEAN
Human Genome Variants Tool” was used, which includes
SIFT predictions as a part of its output. Variants predicted
by all four programs to be benign were less likely to have a
deleterious impact on protein activity; however this did not
exclude them from mRNA splicing analysis (described
above in IT-Based Variant Analysis). All rare and novel
variants were cross-referenced with general mutation data-
bases (ClinVar [123, 124], Human Gene Mutation Database
[HGMD] [125, 126], Leiden Open Variant Database
[LOVD] [127-134], Domain Mapping of Disease Mutations
[DM?] [135], Expert Protein Analysis System [ExPASy]
[136] and UniProt [137, 138]), and gene-specific databases
(BRCA1/2: the Breast Cancer Information Core database
[BIC] [139] and Evidence-based Network for the Interpret-
ation of Germline Mutant Alleles [ENIGMA] [140]; TP53:
International Agency for Research on Cancer [IARC]
[141]), as well as published reports to prioritize them for
further workup.

Variant classification

Flagged variants were prioritized if they were likely to
encode a dysfunctional protein (indels, nonsense
codon > 50 amino acids from the C-terminus, or abo-
lition of a natural SS resulting in out-of-frame exon
skipping) or if they exceeded established thresholds
for fold changes in binding affinity based on IT (see
Methods above). In several instances, our classification
was superseded by previous functional or pedigree
analyses (reported in published literature or data-
bases) that categorized these variants as pathogenic or
benign.
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Positive control

We identified the BRCAI exon 17 nonsense variant
¢5136G > A (chrl7:41215907C > T; rs80357418; 2-5A)
[142] in the sample that was provided as a positive control.
This was the same mutation identified by the MGL as
pathogenic for this patient. We also prioritized another
variant in this patient (Table 1) [143].

Variant validation
Protein-truncating, prioritized splicing, and selected
prioritized missense variants were verified by Sanger

Table 1 Prioritized variants in the positive control

mRNA rsID
Protein (dbSNP
142)

rs80357418 Nonsense

Gene Category Consequence Ref

BRCAT ¢5136G> A
p.Trp1712Ter

BRCA2 c3218A>G
p.GIn1073Arg

151 AA short [142]

rs80358566 SRFBS Repressor action
of hnRNPAT at
this site abolished
(5.2 to 04 bits).
Blocking action of
PTB removed as
site is abolished
(5.5 to -7.5 bits)
and may uncover
binding sites of
other SRFs.

Listed in ClinVar
as conflicting
interpretations
(likely benign,
unknown) and in
BIC as unknown
clinical
importance. 2 in
silico programs
called deleterious.
The variant
occurs between
repeat motifs
BRC1 and BRC2 of
BRCA2, a region in
which pathogenic
missense
mutations have
not yet been
identified.

Missense [143]

SRFBS Repressor action
of hnRNPAT at
this site abolished
(5.2 to 04 bits).
Blocking action of
PTB removed as
site is abolished
(5.5 to -7.5 bits)
and may uncover
binding sites of
other SRFs.
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sequencing. Primers of PCR amplicons are indicated
in Additional file 5: Table S3.

Deletion analysis

Junctional read detection

Potential large rearrangements were detected with
BreakDancer software [144], which identifies novel
genomic rearrangements based on the respective
orientation and distance between ends of the same
read (and exceeding the lengths of NGS library inserts).
This approach can, in theory, approximately localize dele-
tions, duplications, or other types of breakpoints within
exons, introns, and regulatory regions (eg. promoters) that
could affect gene expression and function. We required at
least 4 reads per suspected rearrangement in a sample
separated by >700 nt, with each end mapping to proxim-
ate genomic reference coordinates to infer a potential de-
letion. Synthetic and cost limitations in the maximum
genomic real estate covered by the capture reagent led to
a tradeoff between extending the span of captured gen-
omic intervals and higher tiling densities over shorter se-
quences, ie. exons, to achieve the level of coverage to
reliably detect deletions based on read counts alone.

Prioritization based on potential hemizygosity

Our complete gene enrichment strategy with independ-
ent capture of both genomic strands enabled and facili-
tated development of a mew algorithm to identify
potential hemizygous genomic intervals in these individ-
uals. In each subject, we first searched for contiguous
long stretches (usually > > 1 kb) of non-polymorphic seg-
ments with diminished repetitive element content
(<10 %), which is consistent with the possibility of these
regions harboring a deletion. Then, we determined the
likelihood of homo- or hemizygosity by comparing the
degree of heterozygosity of variants in each of these in-
tervals in for an individual with all of the other individ-
uals sequenced with this protocol in this population.
Regions containing haplotype blocks in strong linkage dis-
equilibrium (LD; from HapMap [145]) were then excluded
as candidate deletion intervals. Some individuals without a
deletion are expected to be non-polymorphic, because de-
tection of heterozygosity depends on genomic length of
the region, marker informativeness, and the level of LD
for those markers. We required that >80 % of the control
individuals be heterozyogous for at least two well-
distributed loci within these intervals. Highly informative
SNPs with a random genomic distribution in the controls
(and other public databases) and which were non-
polymorphic in the individual with the suspected deletion
were weighted more heavily in inferring potential hemi-
zygosity. This analysis was implemented using a Perl script
that identified the most likely intervals of hemizygosity,
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which were then crossreferenced with the corresponding
genomic intervals in HapMap.

Results

Capture, sequencing, and alignment

The average coverage of capture region per individual
was 90.8x (range of 53.8 to 118.2x between 32 samples)
with 98.8 % of the probe-covered nucleotides having >
10 reads. Samples with fewer than 10 reads per nucleo-
tide were re-sequenced and the results of both runs were
combined. The combined coverage of these samples
was, on average, 48.2x (+36.2).

The consistency of both library preparation and capture
protocols was improved from initial runs, which signifi-
cantly impacted sequence coverage (Additional file 1:
Methods). Of the 102 patients tested, 14 had been previ-
ously Sanger sequenced for BRCAI and BRCA2 exons.
Confirmation of previously discovered SNVs served to
assess the methodological improvements introduced during
NGS and ultimately, to increase confidence in variant
calling. Initially, only 15 of 49 SNVs in 3 samples were
detected. The detection rate of SNVs was improved to
100 % as the protocol progressed. All known SNVs (N =
157) were called in subsequent sequencing runs where
purification steps were replaced with solid phase reversible
immobilization beads and where RNA bait was transcribed
the same day as capture. To minimize false positive variant
calls, sequence read data were aligned with CASAVA and
CRAC, variants were called for each alignment with GATK,
and discrepancies were then resolved by manual review.

GATK called 14,164 unique SNVs and 1147 indels. Only
3777 (15.3 %) SNVs were present in both CASAVA and
CRAC-alignments for at least one patient, and even fewer
indel calls were concordant between both methods (N =
110; 6.2 %). For all other SN'Vs and indels, CASAVA called
6871 and 1566, respectively, whereas CRAC called 13,958
and 110, respectively. Some variants were counted more
than once if they were called by different alignment pro-
grams in two or more patients. Intronic and intergenic vari-
ants proximate to low complexity sequences tend to
generate false positive variants due to ambiguous align-
ment, a well known technical issue in short read sequence
analysis [146, 147], contributing to this discrepancy. For
example, CRAC correctly called a 19 nt deletion of BRCAI
(rs80359876; also confirmed by Sanger sequencing) but
CASAVA flagged the deleted segment as a series of false-
positives (Additional file 6: Figure S1). For these reasons, all
variants were manually reviewed.

IT-based variant identification and prioritization

Natural SS variants

The Shannon Pipeline reported 99 unique variants in nat-
ural donor or acceptor SSs. After technical and frequency
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filtering criteria were applied, 12 variants remained (Add-
itional file 7: Table S4). IT analysis allowed for the
prioritization of 3 variants, summarized in Table 2.

First, the novel ATM  variant ¢3747-1G>A
(chr11:108,154,953G > A; sample number 7-4 F) abolishes
the natural acceptor of exon 26 (11.0 to 0.1 bits). ASSEDA
reports the presence of a 5.3 bit cryptic acceptor site 13 nt
downstream of the natural site, but the effect of the variant
on a pre-existing cryptic site is negligible (~0.1 bits). The
cryptic exon would lead to exon deletion and frameshift
(Fig. 3a). ASSEDA also predicts skipping of the 246 nt exon,
as the R; ;s of the natural acceptor is now below R; ,,,iimum
(1.6 bits), altering the reading frame. Second, the novel
ATM c.6347 + 1G> T (chr11:108188249G > T; 4-1 F) abol-
ishes the 10.4 bit natural donor site of exon 44 (AR; =-18.6
bits), and is predicted to cause exon skipping. Finally, the
previously reported CHEK2 variant, ¢320-5A>T
(chr22:29,121,360 T > A; rs121908700; 4-2B) [148] weakens
the natural acceptor of exon 3 (6.8 to 4.1 bits), and may
activate a cryptic acceptor (7.4 bits) 92 nt upstream of the
natural acceptor site which would shift the reading frame
(Fig. 4). A constitutive, frameshifted alternative isoform of
CHEK? lacking exons 3 and 4 has been reported, but skip-
ping of exon 3 alone is not normally observed.

Variants either strengthening (N =4) or slightly weaken-
ing (AR; < 1.0 bits; N = 4) a natural site were not prioritized.
In addition, we rejected the ATM variant (c.1066-6 T > G;
chr11:108,119,654 T > G; 4-1E and 7-2B), which slightly
weakens the natural acceptor of exon 9 (11.0 to 8.1 bits).
Although other studies have shown leaky expression as a
result of this variant [149], a more recent meta-analysis
concluded that this variant is not associated with increased
breast cancer risk [150].

Cryptic SS activation

Two variants produced information changes that could
potentially impact cryptic splicing, but were not priori-
tized for the following reasons (Table 2). The first vari-
ant, novel BRCA2 deletion ¢.7618-269 7618-260del10
(chr13:32931610_32931619del10; 7-4A) strengthens a
cryptic acceptor site 245 nt upstream from the natural
acceptor of exon 16 (R, si,. = 9.4 bits, AR; = 5.5 bits). Be-
ing 5.7-fold stronger than the natural site (6.9 bits), two
potential cryptic isoforms were predicted, however the
exon strengths of both are weaker than the unaffected
natural exon (R; oz, = 6.6 bits) and thus neither were pri-
oritized. The larger gap surprisal penalties explain the
differences in exon strength. The natural donor SS may
still be used in conjunction with the abovementioned
cryptic SS, resulting in an exon with R; 4., = 3.5 bits. Al-
ternatively, the cryptic site and a weak donor site 180 nt
upstream of the natural donor (R;=0.7 vs 1.4, cryptic
and natural donors, respectively) result in an exon with
R;tota1=6.5 bits. The second variant, BRCAI c.548-
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293G > A (chr17:41249599C > T; 7-3E), creates a weak
cryptic acceptor (R;f,q = 2.6 bits, AR;=6.2 bits) 291 nt
upstream of the natural acceptor for exon 8 (R;=0.5).
Although the cryptic exon is strengthened (final R; ;. =
6.9 bits, AR;=14.7 bits), ASSEDA predicts the level of
expression of this exon to be negligible, as it is weaker
than the natural exon (R;;y. = 8.4 bits) due to the in-
creased length of the predicted exon (+291 nt) [38].

Pseudoexon formation

The Shannon Pipeline initially reported 1583 unique var-
iants creating or strengthening intronic cryptic sites. We
prioritized 5 variants, 1 of which is novel (BRCA2
¢.8332-805G > A; 7-3 F), that were within 250 nt of a
pre-existing complementary cryptic site and have an
hnRNPA1 site within 5 nt of the acceptor (Table 2). If
used, 3 of these pseudoexons would lead to a frame-
shifted transcript.

SRF binding

Variants within 500 nt of an exon junction and all exonic
variants (N = 4015) were investigated for their potential ef-
fects on affinity of sites to corresponding SRFs [38]. IT
analysis flagged 54 variants significantly altering the
strength of at least one binding site (Additional file 8:
Table S5). A careful review of the variants, the factor af-
fected, and the position of the binding site relative to the
natural SS, prioritized 36 variants (21 novel), of which 4
are in exons and 32 are in introns. As an example, a novel
CHEK?2 exon 2 variant ¢.69C > A (p.Gly23=) is predicted
to increase the strength of an hnRNP A1l site (0.7 to 5.3
bits) and decrease total exon strength (AR ;5. = -5.7 bits).
A similar type of exonic variant in FANCM, which was
predicted to create an exonic hnRNP A1l site by IT, has
been shown to bind this exonic repressor and induce exon
skipping [37].

TF binding

We assessed SNVs with models of 83 TFs experimentally
shown to bind (Additional file 3: Table S1) upstream or
within the first exon and intron of our sequenced genes
(N'=2177). Thirteen variants expected to significantly
affect TF binding were flagged (Additional file 9: Table
S6). The final filtering step considered the known function
of the TF in transcription, resulting in 5 variants (Table 2)
in 6 patients (one variant was identified in two patients).
Four of these variants have been previously reported
(rs5030874, rs552824227, rs17882863, rs113451673) and
one is novel (c.-8895G > A; 7-4B).

UTR structure and protein binding

There were 364 unique UTR variants found by sequen-
cing. These variants were evaluated for their effects on
mRNA 2° structure (including that of splice forms with
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Table 2 Variants prioritized by IT analysis
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Patient Gene mRNA rsID (dbSNP 142) Information Change Consequence’ or Binding Factor
D Romiar Rome DR OT R Affected
Allele Frequency 96)° (bits) (bits) (bits)
Abolished Natural SS
7-4 F ATM c3747-1G > A® Novel 11.0 0.1 -109 Exon skipping and use of alternative
splice forms
4-1 F ATM 6347 +1G>TP Novel 104 -83 -186 Exon skipping
Leaky Natural SS
4-2B CHEK2 ~ ¢320-5T>A° rs121908700 6.8 4.1 -2.7 Leaky splicing with intron inclusion
0.08
Activated Cryptic SS
7-3E BRCAT €548-293G> A rs117281398 -12.1 26 14.7 Cryptic site not expected to be used.
074 Total information fqr natural exon is
stronger than cryptic exon.
7-4A BRCA2  ¢.7618-269_7618-260del10  Novel 39 94 55 Cryptic site not expected to be used.
Total information for natural exon is
stronger than cryptic exon.
Pseudoexon formation due to activated acceptor SS
7-3F BRCA2  .8332-805G> A Novel -93 54 56° 6065/211/592°
7-3D CDH1 €164-2023A> G rs184740925 -66 43 6.5¢ 61,236/224/1798"
03
5-3H CDH1 €c2296-174 T> A rs565488866 73 85 50° 1175/50/124'
0.02
Pseudoexon formation due to activated donor SS
3-6A BRCAT c212+253G>A rs189352191 4.1 6.7 5.2¢ 186/63/12501
0.08
5-2G BRCA2 ¢.7007 +2691G > A rs367890577 47 7.2 7.7¢ 2589/103/5272°
0.02
Affected TFBSs
7-4B BRCAT ~ c-8895G > A Novel 109 -0.2 -1 GATA-3 (GATA3)
5-3E CDH1 c-54G>C rs5030874 1.7 120 104 E2F-4 (E2F4)
7-4E 0.16
5-2B PALB2 c-291C>G 15552824227 12.1 =13 -134 GABPa (GABPA)
0.1
7-2F TP53 €-28-3132T>C rs17882863 -63 109 17.2 RUNX3 (RUNX3)
03
4-1A TP53 €c-28-1102T>C rs113451673 5.1 123 7.2 E2F-4 (E2F4)
04 80 129 48 Sp1 (SPT)
Affected RBBSs
7-4G ATM C-244T>A rs539948218 9.8 -199 -29.7 RBFOX
C-744T>A 0.04
c-1929T>A
c-3515T>A
5-3C CDH1 C*424T> A Novel -203 96 299 SF3B4
8.2 1.8 -6.4 CELF4
7-2E CHEK2 c-588G> A rs141568342 109 37 ~7.2 BX511012.1
4-3C5-4G CHEK2 C-345C>T° rs137853007 33 114 82 SF3B4
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Table 2 Variants prioritized by IT analysis (Continued)
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3-1A TP53 c-107T>C rs113530090

4-1H c-188T>C 0.72

4-2H TP53 cX¥1175A>C 1578378222

7-2 F c*¥1376A > C 0.26
c*¥1464A > C

10.5 45 -6.0 ELAVL1

10.7 4.1 -6.6 KHDRBST

?Confirmed by Sanger sequencing
PAmbiguous Sanger sequencing results

“Prioritized under missense change and was therefore verified with Sanger sequencing. Variant was confirmed

dIf available
€R; of site of opposite polarity in the pseudoexon

fConsequences for pseudoexon formation describe how the intron is divided: “new intron A length/pseudoexon length/new exon B length
None of the variants have been previously reported by other groups with the exception of CHEK2 ¢.320-5T>A [148]

alternate UTRs in the cases of BRCAI and TP53)
through SNPfold, resulting in 5 flagged variants (Table 3),
all of which have been previously reported.

Analysis of three variants using mFOLD [83] revealed
likely changes to the UTR structure (Fig. 5). Two variants
with possible 2° structure effects were common (BRCA2
c-52A >G [N =26 samples] and c¢.*532A >G [N =40])
and not prioritized. The 5 UTR CDH1 variant c.-71C> G
(chr16:68771248C > G; rs34033771; 7-4C) disrupts a
double-stranded hairpin region to create a larger loop
structure, thus increasing binding accessibility (Fig. 5a and

b). Analysis using RBPDB and CISBP-RNA-derived IT
models suggests this variant affects binding by NCL
(Nucleolin, a transcription coactivator) by decreasing
binding affinity 14-fold (R; ;4. = 6.6 bits, AR; =-3.8 bits)
(Additional file 10: Table S7). This RBP has been shown to
bind to the 5" and 3’ UTR of p53 mRNA and plays a role
in repressing its translation [151].

In addition, the TP53 variant ¢.*485G > A (NM_000546.5:
chr17:7572442C > T; rs4968187) is found at the 3° UTR
and was identified in two patients (4-2E and 5-4A). In silico
mRNA folding analysis demonstrated this variant disrupts a
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Fig. 3 Predicted Isoforms and Relative Abundances as a Consequence of ATM splice variant c.3747-1G > A. Intronic ATM variant c.3747-1G > A

abolishes (11.0 to 0.1 bits) the natural acceptor of exon 26 (total of 63 exons). a ASSEDA predicts skipping of the natural exon (R; e from 14.5 to
3.6 bits [a 1910 fold decrease in exon strength]; isoform 7) and/or activation of a pre-existing cryptic acceptor site 13 nt downstream (R; ot fOr
cryptic exon = 9.0 bits; isoform 1) of the natural site leading to exon truncation. The reading frame is altered in both mutant isoforms. The other
isoforms use weak, alternate acceptor/donor sites leading to cryptic exons with much lower total information. b Before the mutation, isoform 7 is
expected to be the most abundant splice form. ¢ After the mutation, isoform 1 is predicted to become the most abundant splice form and the
wild-type isoform is not expected to be expressed
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Fig. 4 Predicted Isoforms and Relative Abundances as a Consequence of CHEK2 splice variant ¢.320-5 T > A. Intronic CHEK2 variant ¢.320-5 T > A
weakens (6.8 to 4.1 bits) the natural acceptor of exon 3 (total of 15 exons). a ASSEDA reports the weakening of the natural exon strength (R; o¢ar
reduced from 13.2 to 10.5 bits), which would result in reduced splicing of the exon otherwise known as leaky splicing. A pre-existing cryptic acceptor
exists 92 nt upstream of the natural site, leading to a cryptic exon with similar strength to the mutated exon (R; oo = 10.0 bits). This cryptic exon would
contain 92 nt of the intron. b Before the mutation, isoform 1 is expected to be the only isoform expressed. ¢ After the mutation, isoform 1 (wild-type)
is predicted to become relatively less abundant and isoform 2 is expected to be expressed, although less abundant in relation to isoform 1

G/C bond of a loop in the highest ranked potential mRNA
structure (Fig. 5¢ and d). Also, SHAPE analysis showed a
difference in 2° structure between the wild-type and mutant
(data not shown). IT analysis with RBBS models indicated
that this variant significantly increases the binding affinity
of SF3B4 by>48-fold (R;fum =110 bits, AR;=56 bits)

Table 3 Variants predicted by SNPfold to affect UTR structure

(Additional file 10: Table S7). This RBP is one of four sub-
units comprising the splice factor 3B, which binds upstream
of the branch-point sequence in pre-mRNA [152].

The third flagged variant also occurs in the 3° UTR of
TP53 (c.*826G > A; chr17:7572,101C > T; rs17884306),
and was identified in 6 patients (2-1A, 7-1B, 5-2A.7-1D,

Class? Patient ID Gene mRNA UTR rsID (dbSNP 142) Rank® p-
pasition Allele Frequency (9%)° value
F In 26 patients BRCAZ® c-52A>G 5" UTR 5206118 2/900 0.002
14.86
F In 40 patients BRCAZ® C*532A>G 3" UTR rs11571836 239/2700 0.089
19.75
p 7-4C CDHI1¢ c-71C>G 5"UTR rs34033771 69/600 0.115
0.56
F 4-2E TP53° c*485G > A 3" UTR 154968187 169/4500 0.038
5-4A 511
F 2-1A, 7-1B, 5-2A.7-1D, 7-2B, 7-2F TP53° c*¥826G > A 3" UTR rs17884306 37174500 0.082
7-4C 571

F:Flagged; P:Prioritized

PLong Range UTR SNPfold Analysis
“Local Range SNPfold Analysis

9If available

€Rank of the SNP, in terms of how much it changes the mRNA structure compared to all other possible mutations
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differences in reactivity between mutant and variant mRNAs, confirming alterations to 2° structure

7-2B, 7-2 F, and 7-4C). It disrupts a potential loop struc-
ture, stabilizing a double-stranded hairpin, and possibly
making it less accessible (Fig. 5e and f). Analysis using
RBPDB-derived models suggests this variant could affect
the binding of both RBFOX2 and SF3B4 (Additional file
10: Table S7). A binding site for RBFOX2, which acts as
a promoter of alternative splicing by favoring the inclu-
sion of alternative exons [153], is created (R =9.8
bits; AR; = -6.5 bits). This variant is also expected to sim-
ultaneously abolish a SF3B4 binding site (R . =-20.3
bits; AR; = -29.9 bits).

RBPDB- and CISBP-RNA-derived information model
analysis of all UTR variants resulted in the prioritization
of 1 novel, and 5 previously-reported variants (Table 2).
No patient within the cohort exhibited more than one
prioritized RBBS variant.

To evaluate the background rate of prioritizing vari-
ants flagged by this method, all 5" and 3" UTR SNVs in
dbSNP144 for the 7 genes sequenced (excluding those
already flagged in Table 3) were evaluated by SNPfold

and our RBP information models. Of 1207 SNVs, only
10 were prioritized with both methods, which results in

a background rate of 0.83 %.

Exonic variants altering protein sequence
Exonic variants called by GATK (N = 245) included in-
sertions, deletions, nonsense, missense, and synonymous

changes.

Protein-truncating variants

We identified 3 patients with different indels (Table 4).
One was a PALB2 insertion ¢.1617_1618insTT
(chr16:23646249_23646250insAA; 5-3A) in exon 4, pre-
viously reported in ClinVar as pathogenic. This mutation
results in a frameshift and premature translation termin-
ation by 626 residues, abolishing domain interactions
with RAD51, BRCA2, and POLH [137]. We also identi-
fied two known frameshift mutations in BRCAI:
¢.4964_4982dell19 in exon 15 (chrl7:41222949 412229
67dell9; rs80359876; 5-1B) and ¢.5266_5267insC in
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Table 4 Variants resulting in premature protein truncation
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Patient  Gene  Exon mRNA Protein rsID (dbSNP 142) Clinvar®ef Details Ref
ID Allele Frequency (%)
Insertions/Deletions
5-1B BRCAT 15 0f 23 c4964_4982del19%  rs80359876 6% Pathogenic/likely pathogenic®; STOP at p.1670 -
Familial breast and breast-ovarian cancer,
p-Ser1655Tyrfs Hereditary cancer-predisposing syndrome". 193 AA short
5-3C BRCAT 190f 23 ¢5266_5267insC*  rs397507247 13% Pathogenic, risk factor®; STOP at p.1788  [148, 154]
Familial breast, breast-ovarian,
P.GIn1756Profs and pancreatic cancer, Hereditary 75 AA short
cancer-predisposing syndrome'.
5-3A PALB2 40f 13 c1617_1618insTT® - 19 Pathogenic®; Hereditary . STOP at p.561 -
0 Asn540Leufs cancer-predisposing syndrome'. 626 AA short
Stop Codons
7-1G BRCA2 150f27 ¢7558C>T° 1s80358981 59. Pathogenic®; Familial breast, and 899 AA short [158]
breast-ovarian cancer, Hereditary
PArg2520Ter cancer-predisposing syndrome'.
4-47 BRCA2 25 0f 27 c9294C>G* 1$80359200 39 Pathogenic®; Familial breast 321 AA short [159]
0 Tyr3098Ter and breast-ovarian cancer'.
7-3A PALB2 4 0f13  c1240C>T° rs180177100 3% pathogenic®; Familial breast cancer, 773 AA short [58]
o Argd14Ter Hereditary cancer-predisposing syndrome".
4-4D PALB2 40f13  c1042C>T° Novel - 839 AA short -
p.GIn348Ter

?Confirmed by Sanger sequencing
PNot confirmed by Sanger sequencing
“If available

4Number of submissions

€Clinical significance

fCondition(s)

exon 19 (chr17:41209079_41209080insG; rs397507247;
5-3C) [148, 154]. Both are indicated as pathogenic
and common in the BIC Database due to the loss of one
or both C-terminal BRCT repeat domains [137]. Trunca-
tion of these domains produces instability and impairs nu-
clear transcript localization [155], and this bipartite
domain is responsible for binding phosphoproteins
that are phosphorylated in response to DNA damage
[156, 157].

We also identified 4 nonsense mutations, one of which
was novel in exon 4 of PALB2 (c.1042C>T; chr
16:23646825G > A; 4-4D). Another in PALB2 has been
previously reported (c.1240C > T; chr16:23646627G > A;
rs180177100; 7-3A) [58]. As a consequence, functional
domains of PALB2 that interact with BRCA1, RAD5I,
BRCAZ2, and POLH are lost [137]. Two known nonsense
mutations were found in BRCA2, c.7558C > T in exon
15 [158] and ¢.9294C > G in exon 25 [159]. The first
(chr13:32930687C > T; rs80358981; 7-1G) causes the loss
of the BRCA2 region that binds FANCD?2, responsible
for loading BRCA2 onto damaged chromatin [160]. The
second (chr13:32968863C > G, rs80359200; 4-4A) does
not occur within a known functional domain, however
the transcript is likely to be degraded by nonsense medi-
ated decay [161].

Missense

GATK called 61 missense variants, of which 18 were
identified in 6 patients or more and 19 had allele fre-
quencies > 1.0 % (Additional file 11: Table S8). The 40
remaining variants (15 ATM, 8 BRCAI, 9 BRCA2, 2
CDH1, 2 CHEK2, 3 PALB2, and 1 TP53) were assessed
using a combination of gene specific databases, pub-
lished classifications, and 4 in silico tools (Additional
file 12: Table S9). We prioritized 27 variants, 2 of which
were novel. None of the non-prioritized variants were
predicted to be damaging by more than 2 of 4
conservation-based software programs.

Variant classification

Initially, 15,311 unique variants were identified by
complete gene sequencing of 7 HBOC genes. Of these,
132 were flagged after filtering, and further reduced by IT-
based variant analysis and consultation of the published
literature to 87 prioritized variants. Figure 6 illustrates the
decrease in the number of unique variants per patient at
each step of our identification and prioritization process.
The distribution of prioritized variants by gene is 34 in
ATM, 13 in BRCAI1, 11 in BRCA2, 8 in CDHI, 6 in
CHEK2, 10 in PALB2, and 5 in TP53 (Additional file 13:
Table S10), which are categorized by type in Table 5.
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Fig. 6 Ladder Plot Representing Variant Identification and Prioritization. Each line is representative of a different sample in each sequencing run
(a-e), illustrating the number of unique variants at important steps throughout the variant prioritization process. The left-most point indicates the
total number of unique variants. The second point represents the number of unique variants remaining after common (>5 patients within cohort
and/or 2 1.0 % allele frequency) and false-positive variants were removed. The right-most point represents the final number of unique. No variants
were prioritized in the following patients: 2-1A, 2-5A, 2-6A, 3-2A, 3-3A, 3-4A, 3-5A, 3-8A, 4-1B, 4-2C, 4-2 F, 4-3B, 4-3D, 4-4B, 4-4E, 5-1G, 5-1H, 5-3D,
5-4C, 5-4D, 5-4 F, 5-4G, 5-4H, 7-1B, 7-1C, 7-1D, 7-1H, 7-2B, 7-2C, 7-2H, 7-3H, 7-4A, 7-4D, 7-4H. The average number of variants per patient at each
step is indicated in a table below each plot, along with the percent reduction in variants from one step to another
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Three prioritized variants have multiple predicted roles:
ATM ¢1538A>G in missense and SRFBS, CHEK2
¢190G > A in missense and UTR binding, and CHEK2
c433C>T in missense and UTR binding. Of the 102
patients that were sequenced, 72 (70.6 %) exhibited at
least one prioritized variant, and some patients harbored
more than one prioritized variant (N=33; 32 %).

Table 5 Summary of prioritized variants by gene

Additional file 14: Table S11 presents a summary of all
flagged and prioritized variants for patients with at least
one prioritized variant.

Prioritization of potential deletions
Using BreakDancer, none of the individuals analyzed exhib-
ited large rearrangements that met the level of stringency

Indel  Nonsense  Missense  Natural Splicing ~ Cryptic Splicing ~ Pseudoexon SR Factor TF  UTR Structure  UTR Binding  Total
ATM 0 0 14 2 0 0 18 0 0 1 34°
BRCAT 2 0 2 0 0 1 7 T 0 0 13
BRCA2 0O 2 3 0 0 2 4 0 0 0 M
CDH1 0 0 2 0 0 2 1 1 1 1 8
CHEK2 O 0 2 1 0 0 3 0 0 2 6°
PALB2 1 2 3 0 0 0 3 1 0 0 10
TP53 0 0 1 0 0 0 0 2 0 2 5
Total 3 4 27 3 0 5 36 5 1 6

Three variants were prioritized under multiple categories: ATM chr11:108121730A >
and CHEK2 chr22:29130520C > T (missense, UTR binding)

G (missense and SRFBS), CHEK2 chr22:29121242G > A (missense, UTR binding),

? Counts represent the number of unique variants identified (i.e. a variant is not counted twice if it appeared in multiple individuals)
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required, but a small intragenic rearrangement in BRCAI
was identified and confirmed by Sanger sequencing. At-
tempts to detect deletions with BreakDancer only flagged
single, non-contiguous paired-end reads, rather than a
series of reads clustered within the same region within the
same individual, which would be necessary to indicate the
presence of a true deletion or structural rearrangement.

After prioritizing individuals for potential hemizygosity in
the sequenced regions, potential deletions were detected in
BRCA2 and CDHI. Patient UWO5-4D exhibited a non-
polymorphic 32.1 kb interval in BRCA2, spanning introns 1
to 13, that was absent from all of the other individuals
(chr13:32890227-32922331).  Haploview  (hapmap.org)
showed very low levels of LD in this region. The potential
deletion may extend further downstream, however the
presence of a haploblock, covering the entire sequenced
interval beyond exon 11, with significant LD precludes de-
lineation of the telomeric breakpoint. We also flagged a
non-polymorphic 2.6 kb interval near the 3’ end of CDHI
in 6 individuals (UWO3-5, UWO4-2C, UWO4-4E,
UWO4-4 F, UWO4-2G, UWO5-2H). This is a low LD re-
gion spanning chr16:68861286-68863887 that includes
exons 14 and 15, and is polymorphic in all of the other in-
dividuals sequenced. CDH1 mutations are characteristically
present in families with predisposition to gastric cancer,
however breast cancer frequently co-occurs [69]. A study of
CDH1 deletions in inherited gastric cancer identified two
families with deletions that overlap the intervals prioritized
in the present study [162].

Comparison to combined annotation dependent
depletion

The analysis and prioritization of non-coding variants
can also be accomplished using Combined Annotation
Dependent Depletion (CADD; [163]), which uses
known and simulated variants to compute a C-score,
an ad hoc measure of how deleterious is likely to be.
The suggested C-score cutoff is between 10 and 20,
though it is stated that any selected cutoff value would
be arbitrary (http://cadd.gs.washington.edu/info). This
contrasts with information-based methods, which are
based on thermodynamically-defined thresholds. To
directly compare methods, CADD scores were ob-
tained for all prioritized or flagged SNVs. Half of pri-
oritized variants met this cutoff (C>10), while only
28.6 % of flagged variants did the same. All prioritized
nonsense variants (4/4) and 26/27 missense variants
had strong C-scores. Prioritized non-coding variant cat-
egories that correlated well with CADD include natural
splicing variants (4/4), UTR structure variants (1/1), and
RBPs (4/6). Weakly correlated variants included those af-
fecting SRFBPs (5/36), TEBS (2/5), and pseudoexon acti-
vating variants (0/5). Missense mutations comprised 75 %
of the flagged variants with C>10. The aforementioned
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flagged splicing variant ATM ¢.1066-6 T > G also exceeded
the threshold C value (C=11.9). Meanwhile, the flagged
TP53 variant, shown by SHAPE analysis to alter UTR
structure, did not (C=5.3). Despite consistency between
some variant categories, the underlying assumptions of
each approach probably explain why these results differ
for non-coding variants. The limited numbers validated,
deleterious non-coding variants also contributes to the ac-
curacy of these predictions [163].

Variant verification

We verified prioritized protein-truncating (N =7) and spli-
cing (N =4) variants by Sanger sequencing (Tables 2 and 4,
respectively). In addition, two missense variants (BRCA2
¢.7958 T > C and CHEK2 c433C>T) were re-sequenced,
since they are indicated as likely pathogenic/pathogenic in
ClinVar (Additional file 12: Table S9). All protein-
truncating variants were confirmed, with one exception
(BRCA2 ¢.7558C>T, no evidence for the variant was
present for either strand). Two of the mRNA splicing muta-
tions were confirmed on both strands, while the other two
were confirmed on a single strand (ATM ¢.6347 +1G>T
and ATM ¢.1066-6 T > G). Both documented pathogenic
missense variants were also confirmed.

Discussion

NGS technology offers advantages in throughput and
variant detection [126], but the task of interpreting the
sheer volume of variants in complete gene or genome
data can be daunting. The whole genome of a Yoruban
male contained approximately 4.2 million SNVs and 0.4
million structural variants [164]. The variant density in
the present study (average 948 variants per patient) was
5.3-fold lower than the same regions in HapMap sample
NA12878 in Illumina Platinum Genomes Project (5029
variants) [165]. The difference can be attributed primar-
ily to the exclusion of polymorphisms in highly repetitive
regions in our study.

Conventional coding sequence analysis, combined with
an IT-based approach for regulatory and splicing-related
variants, reduced the set to a manageable number of pri-
oritized variants. Unification of non-coding analysis of di-
verse protein-nucleic acid interactions using the IT
framework accomplishes this by applying thermodynamic-
based thresholds to binding affinity changes and by select-
ing the most significant binding site information changes,
regardless of whether the motifs of different factors
overlap.

Previously, rule-based systems have been proposed for
variant severity classification [166, 167]. Functional valid-
ation and risk analyses of these variants are a prerequisite
for classification, but this would not be practical to accom-
plish without first limiting the subset of variants analyzed.
With the exception of some (but not all [37]) protein
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truncating variants, classification is generally not achiev-
able by sequence analysis alone. Only a minority of vari-
ants with extreme likelihoods of pathogenic or benign
phenotypes are clearly delineated because only these types
of variants are considered actionable [166, 167]. The pro-
posed classification systems preferably require functional,
co-segregation, and risk analyses to stratify patients.
Nevertheless, the majority of variants are VUS, especially
in the case of variants occurring beyond exon boundaries.
Of the 5713 variants in the BIC database, the clinical sig-
nificance of 4102 BRCAI and BRCA2 variants are either
unknown (1904) or pending (2198), and only 1535 have
been classified as pathogenic (Class 5) [168]. Our results
cannot be considered equivalent to validation, which usu-
ally include expression assays [36] or the use of RNA-seq
data [169] (splicing), qRT-PCR [170] (transcription),
SHAPE analysis (nRNA 2° structure) [44], or binding as-
says to determine functional effects of variants. Classifica-
tion of VUS in BRCAI and BRCA2 by the ENIGMA
Consortium addresses mRNA splicing and missense vari-
ants. Criteria define risk based on whether the variant oc-
curs within a protein structural domain, the impact on
protein function, and the segregation pattern of variant
with disease in pedigrees [171]. These guidelines cannot
be fully implemented here for several reasons: a) patients
were anonymized in this study, precluding segregation
analysis, b) the splicing mutation guideline does not take
into account predicted leaky or cryptic SS mutations, nor
other non-canonical changes that have been demonstrated
to alter the expression of these and numerous other genes,
¢) conserved domains have not been identified in regions
of the proteins encoded by these genes, especially BRCA2,
where many missense mutations reside, and d) the guide-
lines are currently silent as to the potential impact of
regulatory variants affecting splicing, RNA stability, and
transcriptional regulation.

While the miRNA variant prediction program mrSNP
[172] was used to evaluate all of the 3° UTR variants, 41.4 %
of the variants were predicted to alter the stability of the
miRNA-target mRNA duplex for at least one miRNA
expressed in breast tissue. However, only 2 of these interac-
tions could be confirmed using TarBase [173], and these
variants could not be prioritized for disruption of miRNA
regulation. Other post-transcriptional processes, including
miRNA regulation, that were not addressed in this study,
may also be amenable to such IT-based modeling. With the
proposed approach, functional prediction of such variants
could precede or at least inform the classification of VUS.

It is unrealistic to expect all variants to be functionally
analyzed, just as it may not be feasible to assess family
members for a suspected pathogenic variant detected in a
proband. The prioritization procedure reduces the chance
that significant variants have been overlooked. Capturing
coding and non-coding regions of HBOC-related genes,
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combined with the framework for assessing variants, bal-
ances the need to comprehensively detect all variation in a
gene panel with the goal of identifying variants likely to be
phenotypically relevant.

The location of variants in relation to known protein
domains was documented in this study, but was not dir-
ectly incorporated into our prioritization method. The
locations and impact of splicing mutations in BRCAI
and BRCA2 were mapped to the known functional do-
mains of the encoded proteins [174]. A high concentra-
tion of variants predicted to result in splicing changes
occurred in the BRCT, RING finger, and NLS domains
of BRCAI. However, BRCA2 variants were generally
concentrated outside of known functional domains
(aside from the C-terminal domain). Because of these in-
consistencies, domain-mapping was not integrated with
IT based prioritization. However, where adequate infor-
mation on structure-function relationships is available
(eg. TPS53), we suggest that such analysis be carried out
subsequent to IT-based variant prioritization.

Non-coding variants

Although coding variants are typically the sole focus of a
molecular diagnostic laboratory (with the exception of the
canonical dinucleotide positions within SS), non-coding
mutations have long been known to be disease causing
[19, 36, 175-183]. In this study, variant density in non-
coding regions significantly exceeded exonic variants by >
60-fold, which, in absolute terms, constituted 1.6 % of the
15,311 variants. This is comparable to whole genome se-
quencing studies, which typically result in 3-4 million vari-
ants per individual, with <2 % occurring in protein coding
regions [184]. IT analysis prioritized 3 natural SS, 36
SRFBS, 5 TFBS, and 6 RBBS variants and 5 predicted to
create pseudoexons. Two SS variants in ATM (c.3747-
1G> A and ¢.6347 + 1G > T) were predicted to completely
abolish the natural site and cause exon skipping. A
CHEK?2 variant (c.320-5A > T) was predicted to result in
leaky splicing.

The IT-based framework evaluates all variants on a
common scale, based on bit values, the universal unit
that predicts changes in binding affinity [185]. A variant
can alter the strength of one or a “set” of binding sites;
the magnitude and direction of these changes is used to
rank their significance. The models used to derive infor-
mation weight matrices take into account the frequency
of all observed bases at a given position of a binding
motif, making them more accurate than consensus se-
quence and conservation-based approaches [36].

IT has been widely used to analyze natural and cryptic
SSs [36], but its use in SRFBS analysis was only intro-
duced recently [38]. For this reason, we assigned conser-
vative, minimum thresholds for reporting information
changes. Although there are examples of disease-causing
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variants resulting in small changes in R; [174, 186-192],
the majority of deleterious splicing mutations that have
been verified functionally, produce large information
changes. Among 698 experimentally verified deleterious
variants in 117 studies, only 1.96 % resulted in < 1.0 bit
change [36]. For SRFBS variants, the absolute informa-
tion changes for deleterious variants ranged from 0.2 to
17.1 bits (mean 4.7 + 3.8). This first application of IT in
TEBS and RBBS analysis, however, lacks a large refer-
ence set of validated mutations for the distribution of in-
formation changes associated with deleterious variants.
The release of new ChIP-seq datasets will enable IT
models to be derived for TFs currently unmodeled and
will improve existing models [193].

Pseudoexon activation results in disease-causing muta-
tions [194], however such consequences are not custom-
arily screened for in mRNA splicing analysis. IT analysis
was used to detect variants that predict pseudoexon for-
mation and 5 variants were prioritized. Previously, we
have predicted experimentally proven pseudoexons with
IT (Ref 42: Table 2, No #2; and Ref 195: Table 2, No #7)
[42, 195]. Although it was not possible to confirm priori-
tized variants in the current study predicted to activate
pseudoexons because of their low allele frequencies,
common intronic variants that were predicted to form
pseudoexons were analyzed. We then searched for evi-
dence of pseudoexon activation in mapped human EST
and mRNA tracks [196] and RNA-seq data of breast
normal and tumour tissue from the Cancer Genome
Atlas project [15]. One of these variants (rs6005843) ap-
peared to splice the human EST HY160109 [197] at
the predicted cryptic SS and is expressed within the
pseudoexon boundaries.

Variants that were common within our population
sample (i.e. occurring in > 5 individuals) and/or common
in the general population (>1.0 % allele frequency) re-
duced the list of flagged variants substantially. This is
now a commonly accepted approach for reducing candi-
date disease variants [166], based on the principle that
the disease-causing variants occur at lower population
frequencies. Variants occurring in > 5 patients all either
had allele frequencies above 1.0 % or, as shown previ-
ously, resulted in very small AR; values [198].

The genomic context of sequence changes can influence
the interpretation of a particular variant [36]. For example,
variants causing significant information changes may be
interpreted as inconsequential if they are functionally re-
dundant or enhancing existing binding site function (see
IT-Based Variant Analysis for details). Our understanding
of the roles and context of these cognate protein factors is
incomplete, which affects confidence in interpretation of
variants that alter binding. Also, certain factors with im-
portant roles in the regulation of these genes, but that do
not bind DNA directly or in a sequence-specific manner
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(eg. CtBP2 [199]), could not be included. Therefore, some
variants may have been incorrectly excluded.

Prioritization of potential deletions

Although individuals can be prioritized based on poten-
tial hemizygosity, this does not definitively identify dele-
tions. Nevertheless, it should be possible to prioritize
those individuals worthy of further detailed diagnostic
workup. It has not escaped our attention that the
weighted probabilities obtained from this analysis could
be represented and formalized using the same units of
Shannon information (in bits) as the other sequence
changes we have described, analogous to single or multi-
nucleotide gene variants predicted to affect nucleic acid
binding sites. Full development and validation of this
method is in progress.

Coding sequence changes

We also identified 4 nonsense and 3 indels in this cohort.
In one individual, a 19 nt BRCAI deletion in exon 15
causes a frameshift leading to a stop codon within 14 co-
dons downstream. This variant, rs80359876, is considered
clinically relevant. Interestingly, this deletion overlaps two
other published deletions in this exon (rs397509209 and
rs80359884). This raises the question as to whether this
region of the BRCAI gene is a hotspot for replication er-
rors. DNA folding analysis indicates a possible 15 nt long
stem-loop spanning this interval as the most stable pre-
dicted structure (data not shown). This 15 nt structure oc-
curs entirely within the rs80359876 and rs397509209
deletions and partially overlaps rs80359884 (13 of 15 nt of
the stem loop). It is plausible that the 2° structure of this
sequence predisposes to a replication error that leads to
the observed deletion.

Missense coding variants were also assessed using mul-
tiple in silico tools and evaluated based on allele fre-
quency, literature references, and gene-specific databases.
Of the 27 prioritized missense variants, the previously re-
ported CHEK2 variant ¢433G > A (chr22:29121242G > A;
rs137853007) stood out, as it was identified in one patient
(4-3C.5-4G) and is predicted by all 4 in silico tools to have
a damaging effect on protein function. Accordingly, Wu
et al. (2001) demonstrated reduced in vitro kinase activity
and phosphorylation by ATM kinase compared to the
wild-type CHEK2 protein [200], presumably due to the
variant’s occurrence within the forkhead homology-
associated domain, involved in protein-phosphoprotein
interactions [201]. Implicated in Li-Fraumeni syndrome,
known to increase the risk of developing several types of
cancer including breast [202, 203], the CHEK?2: ¢.433G >
A variant is expected to result in a misfolded protein that
would be targeted for degradation via the ubiquitin-
proteosome pathway [204]. Another important mis-
sense variant is ¢.7958 T > C (chr13:32,936,812 T > C;
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rs80359022; 4-4C) in exon 17 of BRCA2. Although
classified as being of unknown clinical importance in
both BIC and ClinVar, it has been classified as patho-
genic based on posterior probability calculations [205].

It is unlikely that all prioritized variants are pathogenic
in patients carrying more than one prioritized variant.
Nevertheless, a polygenic model for breast cancer suscep-
tibility, whereby multiple moderate and low-risk alleles
contribute to increased risk of HBOC may also account
for multiple prioritized variants [206, 207]. There was a
significant fraction of patients (29.4 %) in whom no vari-
ants were prioritized. This could be due to a) the inability
of the analysis to predict a variant affecting the binding
sites analyzed, b) a pathogenic variant affecting a function
that was not analyzed or in a gene that was not sequenced,
¢) a large rearrangement/deletion where both breakpoints
occur beyond the captured genomic intervals (which is
unlikely, as this would have been observed as an extended
non-polymorphic sequence), or d) the significant family
history was not due to heritable, but instead to shared en-
vironmental influences.

BRCA coding variants were found in individuals who
were previously screened for lesions in these genes, sug-
gesting this NGS protocol is a more sensitive approach
for detecting coding changes. However, previous testing
of a number of these patients had been predominantly
based on PTT and MLPA, which have lower sensitivity
for detecting mutations than sequence analysis. Never-
theless, we identified 2 BRCAI and 2 BRCAZ2 variants
predicted to encode prematurely truncated proteins.
Fewer non-coding BRCA variants were prioritized
(15.7 %) than expected by linkage analysis [49], however
this presumes at least 4 affected breast cancer diagnoses
per pedigree, and, in the present study, the number of
affected individuals per family was not known.

Prioritization of a variant does not equate with pathogen-
icity. Some prioritized variants may not increase risk, but
may simply modify a primary unrecognized pathogenic
mutation. A patient with a known BRCAI nonsense vari-
ant, used as a positive control, was also found to possess an
additional prioritized variant in BRCA2 (missense variant
chr13:32911710A > G), which was flagged by PROVEAN
and SIFT as damaging, as well as flagged for changing an
SREBS for abolishing a PTB site (while simultaneously
abolished an exonic hnRNPA1 site). This variant has been
identified in cases of early onset prostate cancer and is con-
sidered a VUS in ClinVar [143]. Similarly, variants priori-
tized in multiple patients may act as risk modifiers rather
than pathogenic mutations. A larger cohort of patients with
known pathogenic mutations would be necessary to calcu-
late a background/basal rate of falsely flagged variants.

Other groups have attempted to develop comprehen-
sive approaches for variant analysis, analogous to the
one proposed here [208—210]. While most employ high-
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throughput sequencing and classify variants, either the
sequences analyzed or the types of variants assessed tend
to be limited. In particular, non-coding sequences have
not been sequenced or studied to the same extent, and
none of these analytical approaches have adopted a com-
mon framework for mutation analysis.

Our published oligonucleotide design method [77]
produced an average sequence coverage of 98.8 %. The
capture reagent did not overlap conserved highly repeti-
tive regions, but included divergent repetitive sequences.
Nevertheless, neighboring probes generated reads with
partial overlap of repetitive intervals. As previously re-
ported [147], we noted that false positive variant calls
within intronic and intergenic regions were the most
common consequence of dephasing in low complexity,
pyrimidine-enriched intervals. This was not alleviated by
processing data with software programs based on differ-
ent alignment or calling algorithms. Manual review of all
intronic or intergenic variants became imperative. As
these sequences can still affect functional binding ele-
ments detectable by IT analysis (i.e. 3’ SSs and SRFBSs),
it may prove essential to adopt or develop alignment
software that explicitly and correctly identifies variants
in these regions [147]. Most variants were confirmed
with Sanger sequencing (10/13), and those that could
not be confirmed are not necessarily false positives. A
recent study demonstrated that NGS can identify vari-
ants that Sanger sequencing cannot, and reproducing se-
quencing results by NGS may be worthwhile before
eliminating such variants [211].

Conclusions

Through a comprehensive protocol based on high-
throughput, IT-based and complementary coding
sequence analyses, the numbers of VUS can be re-
duced to a manageable quantity of variants, prioritized
by predicted function. While exonic variants corre-
sponded to a small fraction of prioritized variants,
there is considerably more evidence for their patho-
genicity because clinical sequencing has concentrated
in these regions. Our sequencing approach illustrates
the importance of sequencing non-coding regions of
genes to establish pathogenic mutations not already
evident from changes in the amino acid based genetic
code. We suggest our approach for variant flagging
and prioritization bridges the phase between high-
throughput sequencing, variant detection with the
time-consuming process of variant classification, in-
cluding pedigree analysis and functional validation.
Subsequent to completion of the present study, ethics
approval was obtained for a similar analysis of con-
sented patients with clinical information. This work
has since been described elsewhere [212].
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Availability of supporting data

Variants will be deposited with the ENIGMA Consor-
tium (www.enigmaconsortium.org), which is a desig-
nated organization for curation of HBOC mutations
and which is charged with protection of genetic priv-
acy of participants. Additionally, all likely pathogenic
variants were submitted to ClinVar (submission ID:
SUB1332053) while other novel variants were submit-
ted to dbSNP (ss1966658584-1966658622).
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