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Abstract

Background: Many genetic diseases are caused by mutations in non-coding regions of the genome. These
mutations are frequently found in enhancer sequences, causing disruption to the regulatory program of the cell.
Enhancers are short regulatory sequences in the non-coding part of the genome that are essential for the proper

regulation of transcription. While the experimental methods for identification of such sequences are improving every
year, our understanding of the rules behind the enhancer activity has not progressed much in the last decade. This is
especially true in case of tissue-specific enhancers, where there are clear problems in predicting specificity of
enhancer activity.

Results: We show a random-forest based machine learning approach capable of matching the performance of the
current state-of-the-art methods for enhancer prediction. Then we show that it is, similarly to other published
methods, frequently cross-predicting enhancers as active in different tissues, making it less useful for predicting tissue
specific activity. Then we proceed to show that the problem is related to the fact that the enhancer predicting models
exhibit a bias towards predicting gene promoters as active enhancers. Then we show that using a two-step classifier
can lead to lower cross-prediction between tissues.

Conclusions: We provide whole-genome predictions of human heart and brain enhancers obtained with two-step

classifier.
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Background

Transcription regulation is a complex process requir-
ing tight control at multiple steps including transcrip-
tion initiation, elongation and splicing. In case of tissue
specific genes in metazoan genomes, the control of the
transcription initiation is performed largely by means of
enhancers, i.e. distinct sequence elements, that allow for
binding of transcription factor proteins, facilitating tran-
scription [1]. While the exact molecular mechanism of
enhancer-promoter interaction remains a field of active
study, we have now accumulated a large body of examples
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of enhancer sequences to ask whether we can make pre-
dictions regarding enhancer location in the genome based
on sequence features. This is an important question, given
the complexity of a gene regulation system in a multi-
cellular organism such as humans composed of hundreds
of cell types, each of which expresses thousands of genes,
most of which are modulated with some cell-type speci-
ficity. Moreover, a typical cell-type-specific gene can be
controlled by multiple enhancers. Adding it all up, in order
to describe a tissue-specific gene regulation, we need
to describe on the order of 100 thousands of regulator
elements [2].

Mapping all these elements using experimental tech-
niques is currently completely unfeasible, as many cell-
types are too difficult to obtain in large quantities required
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for experimental assessment of enhancer activity. This
leads to a situation, where we have hundreds of well doc-
umented examples of regulatory elements functional in a
certain context (i.e. cell-type, developmental time) deter-
mined by a certain method (enhancer reporter assays
[3], STARR-Seq [4], luciferase assays, in-situ hybridiza-
tion etc). This, however, cannot easily be scaled up to
the level of complete coverage of all cell types and all
developmental time points. On the other hand, the data
collected by the ENCODE or Epigenome Roadmap [5] are
invaluable as a source for computational attempts at mak-
ing models that would be predictive beyond the collected
data and perhaps eventually help defining the principles
of tissue-specific action of regulatory elements.

Even before the complete sequence of the human
genome was known, people have been working on com-
putational descriptions of enhancer sequences — mostly
based on clusters of transcription factor binding sites
[6, 7]. Later, these models were improved by including
evolutionary conservation of sequence features [8] lead-
ing to a classical now approach of predicting enhancers
as evolutionarily conserved clusters of transcription factor
binding sites. While a number of methods following this
theme, but varying greatly on the technical side [9-11]
has been proposed in the first decade of 2000s, their rela-
tive performance was inherently limited by the imperfect
training data [12, 13]. The limitations were not only due to
the small training sets but also the difficulty to assess the
true quality of predictions.

Importantly, while the databases containing the position
weight matrices describing transcription factor binding
specificity grew rapidly, it became clear that they are
not necessarily the best representations of the impor-
tant sequence features for enhancer predictions [14]. This
is due to two main reasons: large similarity of many
transcription factor’s binding domains, leading to very
similar DNA specificity and the frequently artificial speci-
ficity encoded in the position weight matrices based on
context-specific determination of binding. Taking the two
together, the sequence motif databases were not optimal
for the task and it has been shown that the same or bet-
ter accuracy in enhancer prediction can be achieved with
counting k-mers, instead of the actual transcription factor
motifs [15].

The advent of the ChIP-Seq technology [16], allowing
researchers to directly assay transcription factor binding
as well as multiple histone modifications, changed the
situation. The availability of genome-wide measurements
of transcription factor binding enabled much more com-
prehensive training of the predictors based on generic
machine learning methods [17, 18], however they uncov-
ered an unanticipated complexity of enhancer activity.
In particular, the ChIP-Seq based methods allowed us
to uncover many regulatory elements that were clearly
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functional without a detectable sequence conservation
between species [17], and the studies of transcription fac-
tor binding across developmental time-points or condi-
tions detected large scale context dependency of enhancer
function [19]. These findings were later corroborated by
multiple studies using DNAse-Seq methods [20, 21].

The wide adoption of ChIP-Seq technique together with
concentrated experimental efforts of ENCODE and simi-
lar allowed for the new wave of computational approaches
to appear. Typically these would take advantage of hun-
dreds genome-wide tracks of ChIP-Seq, DNAse-Seq and
other information (such as mRNA-Seq or GRO-Seq) and
use a state-of-the-art machine learning method such as
SVM [22, 23], Bayesian Networks [18], random forests
[24, 25], neural networks [26] or regression based, such as
support vector regression [27] or logistic regression [28].
The first study by Erwin et al. should be noted especially
for their careful analysis of the specificity of the classifiers.
They observed, that when they trained their models on
positive vs. random data sets, the resulting classifiers gave
overlapping predictions between tissues. Erwin et al. used
a specific way of two-layer classification, where they first
predicted whether a sequence is an enhancer and in the
second step they actually predicted to which class from
the training set it belongs. This is an important observa-
tion, however, the solution leaves room for improvement
as it yields classifiers that are only capable of discerning
between the activity classes known at the time of learn-
ing. In particular, using this approach one cannot make
any claims regarding the overlap of predictions with the
regions with activity in any other tissue.

It should be noted that many of these studies differ
significantly also in their choice of the training sets. For
example Zhu et al. [28] use eRNAs as their positive set,
Danko et al. [27] utilize GRO-Seq data, Firpi et al. [26]
use histone modification Chip signals preprocessed by
Heintzmann et al. [17] while Rajagopal [25] uses p300 dis-
tal binding sites. All of these are then very difficult to
compare with approaches such as ours or Erwin et al’s [22]
that use Vista enhancers.

While enhancer predictions in these studies have
reached the level of approximately 90 percent of AUC
(Area under the ROC curve) in cross-validated setup,
their ability to help us understand the function of
enhancers is limited, partially because of their founda-
tion on a very large set of measurements and somewhat
opaque machine learning approaches. This has prompted
us to approach this problem with a slightly different
methodology. We have focused on the issue of enhancer
tissue-specificity, i.e. the ability of enhancer sequences to
be active only under a very defined set of circumstances
and to define a set of features that are crucial for predict-
ing the activity. This has led us to focus less on quality
of predictions, but still above “acceptable” level of 80
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percent AUC, while retaining the possibility of rigorously
assessing the relative importance of the features used for
prediction. This has lead to many interesting predictions
that are very specific to heart or brain (See Additional
file 1: Figure S8, S9 and S10 for representative examples).

In this work we report our findings based on applying
Random Forest classification to the problem of enhancer
prediction in the human genome. Based on our previous
experiences with the Drosophila [24, 29], we have used
histone modification ChIP-Seq datasets from ENCODE
and the enhancer sequences from the Vista project. Using
these data, we have defined a set of features that are rele-
vant to define active enhancers and then we went to assess
the tissue specificity of the prediction using the heart and
brain tissue annotation from the Vista project. This has
lead to our discovery that both groups share an enrich-
ment for predictions in the group of proximal-promoter
sequences leading to two kinds of problems: firstly both
classifiers predict promoters as enhancer and secondly,
both classifiers use shared features to predict promoter
regions leading to further overlap in genome-wide pre-
dictions. In order to tackle this problem we proposed
building two-layer classifier, where one layer is respon-
sible for detecting tissue-specific enhancer signals while
the other is a pure sequence-based filter of promoter-like
sequences that ensures greater specificity of the complete
classifier.

Methods

Training set and data preparation

Positive training set We downloaded all human
sequences available in VISTA Enhancer Browser on April
15th, 2014. Our heart training set consists of sequences
that show heart activity (among others) but no brain
activity, and brain training set is defined as sequences
with activity in at least one of those tissues: hindbrain,
midbrain, forebrain, neural tube, cranial nerve, but does
not show heart activity. Non-specific classifier is trained
on both heart and brain sets, defined as above.

Negative training set Negative training sets were cho-
sen randomly from the human genome hgl9 in the way
that they preserve chromosome and length distribution
the same as in corresponding positive set. We draw
lengths of sequences from Negative Binomial Distribu-
tion with parameters matching mean and variance of
lengths of sequences in the positive training set. Since
heart enhancers in VISTA database are on average longer
than brain enhancers (see Additional file 1: Figure S3),
we draw separate negative training sets for heart and
brain classifiers. We ensure we do not include sequences
with ambiguous bases and sequences that have less than
10% of signal in more than quarter of considered histone
modifications tracks.
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Sequence features Our sequence feature set consist of
all possible k-mers — continuous sequences of k bases,
excluding second alphabetically k-mer for each pair of
reverse complement k-mers. Each feature is represented
by number of occurrences of k-mer (or its reverse com-
plement) over length of sequence. Since our random set is
chosen in the way, that it doesn’t contain ambiguous bases,
we have almost no such bases in the sequences so while
counting we skip k-mers containing ‘N’

Histone modifications features Histone modification
signal was obtained from ChIP-Seq experiment results
from ENCODE database. We used downloaded nor-
malized signal for all histone modifications available
for cells from Tierl (HIhESC, GM12878, K562) and
normal (non-cancer) cells from Tier2 (CD20+, CD20+_
RO01778, CD20+_R0O01794, HUVEC, Monocytes-
CD14+_RO01746). For list of files see Additional file 1:
Table S1. Each ChIP-Seq track contributes one feature
to our dataset — mean signal over considered region
(e.g. enhancer).

Training and performance of classifiers

We used Python implementation of random forest from
scikit-learn version 0.14.1. We trained initial classifiers
with 100 and 1000 trees. Results in terms of AUC were
very similar (improvement by 0.02 to 0.16 points between
100 and 1000 trees), so in favor of time we decided to use
100-trees classifier. We used Gini criterion for split qual-
ity (default), as well as other default options, which for
example ensures building trees that split training samples
perfectly.

Each training was performed with positive and negative
training sets of equal sizes. If necessary, when positive and
negative sets had different size, subset of samples is drawn
from larger set before training.

For performance assessment we used stratified 10-fold
cross-validation and computed Area Under Receiver-
Operator Characteristic Curve (AUC). Presented val-
ues are mean AUC from 10 rounds of training (with,
when necessary, independently drawn subsets of our
training sets).

P-value of difference of AUC between two classifiers
trained on same training set (but different features) is
computed as presented in [30], i.e. it is the p-value (two
tailed) for a z-score of tested AUC against expected AUC.

Feature importance

We run Boruta algorithm ([31], version 3.1), a wrapper
around Random Forest, that allows assessment of feature
importance comparing to random features. It runs multi-
ple rounds of classification (here up to 100) and compares
importance of each feature (defined as Z-score of loss
of accuracy if feature is permuted), with importance of
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random features (shuffled initial features). Features that
where significantly (p-value 0.01, Bonferroni correction),
more often more important that best random feature are
marked as Important, more often less important that best
random feature are marked as Unimportant, and after all
of rounds the rest is marked as Tentative.

Whole-genome predictions

To compute whole-genome predictions we divided hgl9
genome (all autosomal chromosomes) into windows of
length 1500 bp, every 750 bp. We excluded windows with
ambiguous sequence (i.e. containing at least one ‘N’). For
each window we output probability of being enhancer —
a result of Random Forest voting (as fraction of trees that
predict a sequence is active).

Comparison with DNase hypersensitivity sites

To compare enhancers predictions with DNase hyper-
sensitivity sites we downloaded DNase clusters data
(V3) from ENCODE database (https://genome.ucsc.edu/
ENCODE/) and DNAse ChIP-Seq data from Roadmap
Epigenomics database (http://www.roadmapepigenomics.
org/). We compare non-specific 4-mers classifier’s pre-
dictions on DHS windows (overlapping DHS clusters by
at least 100 bp) with non-DHS windows (other). We
excluded windows containing TSS and plot results for
1000 randomly selected DHS and non-DHS windows
from the 1-st chromosome.

To define tissue-specific DHS and non-DHS windows
we use DNAse ChIP-Seq signal. One thousand windows
with highest aggregate signal create DHS set, non-DHS
set of 1000 windows is drawn randomly from all win-
dows with maximal signal smaller than 10. We compared
distribution of prediction for those sets.

Promoter predictions and two-step classifiers

We define promoter predictions as those windows from
whole-genome 4-mers predictions that have high score (>
0.8) and contain at least one TSS from the list of 215,881
TSS from ENSEMBL (downloaded on July 1, 2015). Clas-
sifiers trained on promoter predictions are trained on 50
(out of 1775) heart and 50 (out of 632) randomly cho-
sen brain predicted promoters. Second-step classifiers
trained on random or VISTA sequences use sequences
with length adjusted (extended or shrunken) to 1500 bp,
but maintaining same middle position.

Validation of predictions on new VISTA sequences

After initial training of the classifiers on VISTA sequences
few more records were deposited to this database (5 heart
and 3 brain enhancers, as of October 10th, 2016). We
took the opportunity to validate our classifier on those
sequences (see Additional file 1: Table S7). While heart
4-mers classifier predictions were distinguishing heart
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from brain enhancers (average predictions 0.64 and 0.49),
and two-step heart classifier rated heart sequences only
slightly above brain (0.3 and 0.27), brain one-step classi-
fier distinguished brain from heart sequences worse (avg.
0.78 and 0.71) than two-step approach (0.52 to 0.33).

Results

Predicting mammalian enhancers using random forest
classifier

Our goal was to use supervised machine learning
approach to build a method, that given a set of active
enhancers and set of non-enhancers can predict proba-
bility of a sequence being active as an enhancer in same
tissue as sequences from positive training set. We chose
to use Random Forest classifier [32], which performs
well on both small and larger feature sets, and enables
assessment of importance of individual features. In this
method many decision trees trained on subsets of train-
ing data are incorporated in order to get a more robust
classifier. We trained classifiers on training datasets with
various tissue-specificity, aiming to obtain tissue-specific
enhancer classifiers (Fig. 1). We also used different feature
sets to compare importance of various groups of features
for prediction of enhancers.

As our training set we use experimentally validated
active enhancers (as positive examples) and random
genomic sequences (as a negative set). We took enhancers
from VISTA Enhancer Browser [33], database that con-
tains over thousand of human and mouse sequences
tested in transgenic mice, with activity confirmed on
particular moment of embryonic development. VISTA
sequences are also annotated with tissue (or tissues) of
activity. For tissue-specific prediction we chose heart and
brain tissue, since these where the most abundant in our
active enhancers database, and for non-specific we use
both heart and brain active sequences.

Adding histone modifications data to sequence
information improves prediction
One of the goals of our work was to check whether ran-
dom forest classifiers can be effective in combining two
types of biological data: DNA sequence of a region and
histone modifications within that region to improve pre-
diction accuracy. SVM classifiers were previously shown
to do so [22]. As a representation of sequence information
we use frequency of k-mers — words of length k. k-mers
are simpler model than TFBS motifs and they do not limit
information representation only to sequences that repre-
sent known TFBS motifs. We took k = 4, as it gives
us relatively small number of features (below 200) while
giving slightly better results than 3-mers (see Table 1).
Histone modifications data came from ENCODE
project ([34]). We used all available at the time ChIP-Seq
tracks for histone modifications in the most well studied
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Fig. 1 Scheme of our machine learning approach to predict enhancers

Table 1 AUC obtained by different classifiers (mean from 10

rounds of training under 10-fold crossvalidation)

Tissue Kmers Hmods AUC

Non-specific 3 mers - 0.871
Non-specific 4 mers - 0.894
Non-specific 4 mers HThESC 0.910
Non-specific 4 mers Tier1&2 0910
Heart 3 mers - 0.771
Heart 4mers - 0.780
Heart 4 mers HThESC 0.809
Heart 4 mers Tier1&2 0.844
Brain 3 mers - 0.878
Brain 4 mers - 0.906
Brain 4 mers HThESC 0923
Brain 4 mers Tier1&2 0923

cell types — cells in Tier 1 (defined by ENCODE as most
important to their research cell types) and non-cancer
cells from Tier 2 (group with second importance) avail-
able at the moment. We will refer to that set as Tier1&2.
We also performed training for subset of described data
— histone modification only from embryonic stem cells
(H1hESC) to see how much of the information from the
extensive ENCODE dataset can be extracted from the
ground state of the Embryonic stem cells. See list of all
used data in Additional file 1: Table S1.

We performed multiple runs of classifier training using
different subsets of our feature set and we compared
obtained classifiers by measuring their Area Under ROC
Curve (AUC). In every case Random Forest classifier gave
results comparable with other state of the art methods
(AUC between 0.87 and 0.93 — see Table 1). Addition
of histone modification data from HI1hESC or Tierl&2
improved prediction, although the changes are not signif-
icant (p-value = 0.09, computed as in [30]). More results
can be found in the Table 1. These results are strikingly
similar to the earlier results by Erwin et al. (see Fig. 2a)
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Fig. 2 Classifier performance from different perspectives. a: Results (as Area Under ROC Curve) of RF classifiers trained on different subsets of training
data, compared to EnhancerFinder results, a method developed by Erwin et al., based on SVM and using 4-mers and histone modifications along
with TF-binding, DHS and evolutionary conservation. b: Number of important features selected with Boruta framework for classifier trained on 4-mers
and Tier1&2 histone modifications. First row presents how many features where selected important by either heart or brain classifier, whereas second
row presents how many of those features were important only for one of tissue-specific classifier ¢: Predictions by non-specific (trained on both heart
and brain) classifier for genomic windows labeled as non-specific DHS, compared to non-DHS. Scores returned by classifier, can be interpreted as
“probability of being enhancer”. d: Predictions for tissue-specific (fetal heart and fetal brain) DHS and non-DHS, returned by tissue-specific classifiers

especially when one considers the difference in size of
feature sets (besides k-mers and evolutionary conserva-
tion 2496 features were used for EnhancerFinder training,
comparing to 8 for our HIhESC or 78 for Tier1&2 clas-
sifier). While the best performance of EnhancerFinder is
higher, it is only achieved when it is using evolutionary
conservation. However if we do not allow EnhancerFinder
to include this data (which is fair, as conservation was part
of selection of candidates to the Vista database), its per-
formance is inferior to our method despite much larger
number of features.

Feature importance
Great advantage of Random Forest classifiers over SVM
methods is the ability to easily analyse their structure and
measure the importance of individual features, e.g. sin-
gle 4-mers. To do that, we used Boruta algorithm ([31]),
a wrapper around Random Forest, that runs classification
multiple times and compares feature importance defined
as loss of accuracy if feature is permuted, with impor-
tance of random features (shuffled initial features). It
labels features that are significantly more important than
the best random feature as ‘Confirmed; and rejects the
features that are less important than best random. The
features that do not meet either of the criteria are labeled
“Tentative’

Using Boruta algorithm we found features important for
4 mers+Tier1&2 classifier for heart and brain (see sum-
mary in Fig. 2b, full data in Additional file 1: Table S2).

Both types of attributes (sequence and histone modifica-
tion) were found among important ones: most of histone
modifications from H1hESC, some histone modifications
from HUVEC and other cell types, and almost one-third
of 4-mers. While almost all of the ESC histone features
were important for both heart and brain, majority of
non-ESC modifications were only predictive in specific
tissues. The k-mers were also much more specific in their
relevance.

This is consistent with the view that the basic enhancer
markers such as H3K4mel are actually already deposited
on enhancers very early in the stem cell stage and the later
modifications of these marks are not adding more infor-
mation for the classifier. However, the early marks may be
helpful in finding the negative examples of sequences with
the right features, which are positioned in the chromatin
context not allowing them to be activated and therefore
not marked epigenetically already in the ESC stage. This is
consistent with previous reports we found in Drosophila
developmental enhancers [18].

Whole-genome predictions correlate with DHS

Activity of an enhancer is dependent on (among other fac-
tors) accessibility of DNA in the region where it is located.
DNasel digestion is one of the main methods used to eval-
uate this property [21]. Using such measurements, allows
us to test our prediction quality on a technically inde-
pendent experimental dataset, as well as to test (at least
to some extent) the true negative predictive value (this
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is not possible on the randomized training set as we are
not sure how many of the random sequences are indeed
non-functional. We expect that active enhancers will all
be located in open chromatin, although enhancers will
consist only part of all DNasel hypersensitive regions.
We used our classifiers to compute predictions on the
whole human genome, divided into overlapping windows
of length 1500 bp. We compared values returned by our
4-mers classifiers for windows overlapping DNase Hyper-
sensitive Sites (DHS) and windows without hypersensitiv-
ity (non-DHS) (see Fig. 2c and d). For general set of DHS
from the ENCODE [34], derived from multiple cell-lines
and not specific to heart or brain, the classifiers results
for DHS were slightly, but significantly above results for
non-DHS (Mann-Whitney tests p-value < 107%). Sit-
uation was different with fetal heart and brain DNase
data from the Epigenomics Roadmap project — our clas-
sifier returned clearly higher rates for DHS in compare to
specific-non-DHS (p-values < 107130),

Tissue-specificity of predictions is low

Even though tissue-specific classifiers seem to work well
in predicting heart or brain enhancers against random
sequences, they perform worse on enhancers from dif-
ferent tissue (that show now activity in selected tissue),
although their confidence is usually lower than those from
relevant enhancers (see Fig. 3a and b). It is also clearly
visible in cross-comparison using DNase-Seq data — pre-
dictions for DHS windows specific only to heart or brain
(windows with promoters or hypersensitive in both tissues
excluded) by tissue-specific classifier is small, but signifi-
cant. For brain classifier see Fig. 3c (Mann-Whitney test
p-value < 10718 for DHS), for heart classifier Additional
file 1: Figure S5) (p-value < 0.015).

This result is in agreement with the previous reports
by Erwin et al., who also noticed significant overlaps in
genome wide predictions made by classifiers trained on
data from different tissues. While their approach is to use
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direct machine learning to discern between the known
classes of enhancers, we have gone a different route and
tried to find a more direct explanation for this problem
and a slightly different solution.

Whole-genome predictions show promoter-bias

We analyzed locations of high confidence enhancer pre-
dictions (i.e. windows with score over 0.8) with respect
to nearest transcription start site (TSS) (see Fig. 4a). We
found that out of all 18,376 windows predicted by 4-
mers heart classifier 22% were located within 1500 bp
upstream of TSS (TSS-proximal), and for 4807 predicted
brain enhancers the ratio was 26%.

This is in contrast with our set of random training
sequences where promoter proximal sequences amounted
to less than 10% (9% of random sequences for heart clas-
sifier and 7% of sequences for brain classifier). This is a
significant enrichment (binomial test p-value < 1072°0).
Region of 1500 bases upstream of TSS should contain
promoter sequences and many promoter-related tran-
scription factor binding sites, and this promoter-related
signal seems to be picked up by the machine learning
algorithm leading to a non-specific bias. This problem
is not only affecting our method — it is also an issue
in EnhancerFinder [22], for which 23% of heart predic-
tions and 16% of brain predictions are TSS-proximal
(p-value < 107199), It is related to the fact that the train-
ing sets, especially heart-specific sequences are slightly
enriched in regions overlapping promoters (17% for
heart, 9% for brain, p-values 0.03 and 0.08), however
the machine-learning predictions are yet significantly
enriched with TSS-proximal regions over the positive
examples (p-value < 10780),

Although promoters are well annotated, so TSS-close
predictions can easily be filtered out, we were interested
whether we could train our model to discern between
enhancers and promoters. If successful, this could help
us in the task of predicting tissue-specific enhancer
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predictors that are not dependent on the knowledge of
the “unwanted” enhancer classes, but rather leverage the
removal of the promoter bias.

Two-step classifiers improve specificity

Our first approach was to add enhancers vs. promoters
classifiers. As a negative training set we used promoter-
containing windows selected by our first-level 4-mers
classifiers (heart and brain) with prediction over 0.8. As a
positive set we used our previous set of heart and brain
enhancers, after adjusting lengths of this sequences to
our window length, and removing regions containing TSS.
While we were able to discern the enhancers from pro-
moters (AUC = 84%), it proved to be unusable for our
purposes as still mixed the promoter and enhancer signa-
tures into a single model. That resulted in the situation,
where many random sequences were rated high because
of their dissimilarity to the set of promoter sequences
(See Fig. 4b).

For this reason we have turned to training our second
classifier on promoter vs. randomly selected sequences.
Here we consider random sequences (of length 1500) the
positive training set, and promoter windows the nega-
tive set. We combine two classifiers by multiplying their
predictions, where a high score can be achieved only if
the sequence has similar features to the enhancers from
the positive set of the first classifier and dissimilar to the
promoters of the second classifier. This multiplication of
scores leads to slight decrease of the model performance
(e.g. AUC from 0.91 to 0.82 for the brain) likely because
some of the enhancers indeed include promoter-like fea-
tures and are likely to be not specific to only one tissue.
Nonetheless, we then show that two-step classifiers for
both heart and brain indeed show specificity in their pre-
diction against the other class (See Fig. 4c, d). This is,
importantly, despite the fact that the second classifier is
not built to specifically exclude the other known tissue,
but rather to exclude the non-specific promoter signal.
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Discussion and conclusion

Computational predictions of tissue-specific enhancer
activity based on the sequence and epigenetic features is
an important field of research, given the complexity of
metazoan organisms and the difficulty of obtaining com-
prehensive experimental measurements of such activity.

Given the current wealth of experimental data, this
problem can be formulated as a supervised machine learn-
ing task with the positive set taken from an experimen-
tal dataset such as the Vista database and the negative
set usually taken from a controlled randomized set of
genomic sequences.

In our paper, we describe a new approach that uses
random forests for this classification task. It has sev-
eral advantages over the previous studies in this area.
In particular, we were able to assess the relative util-
ity of different histone modifications as well as different
sequence features for prediction of active enhancers in
different tissues.

This allowed us to define a greatly reduced set of
features including only histone modifications from the
embryonic stem cells (8 ChIP-Seq experiments) and k-
mers to achieve over 90 percent AUC score.

Using the Boruta package, we were also able to verify
which sequence features were the most important and see
that the data we have are consistent with the hypothesis
that the tissue-specific activity of an enhancer is a com-
bined result of the epigenetic context laid out early in
the development and the sequence specific binding of the
transcription factors expressed in a given tissue.

We have assessed the genome-wide specificity of such
classifiers on the brain and heart related datasets from the
Vista database and found that while there is a detectable
difference between the positive sequence sets for different
tissues, both classifiers are ranking the positive sequences
from a different tissue significantly better than the con-
trol sequences. This is in agreement with our comparisons
with the DNAse-seq data, which point to the same conclu-
sion of the predictions being specific only in comparison
with negative controls, but not between classifiers trained
on different positive sets.

We found that at least part of this problem is related to
the fact that such classifiers are prone to “learning” the
enrichment of enhancer-proximal sequences in the posi-
tive training sets. This leads to great over-representation
of promoter sequences in the predictions of both our
classifier as well as the previously published methods.

To find out whether the cause of this observation can be
the actual set of sequence features contained in promoter-
proximal sequences we have tried to construct a classifier
based on purely sequence features that would discern pro-
moters from a control set of sequences. This has proven to
be possible and indeed we have further shown that com-
bined classifier using both the promoter related features
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and the enhancer-trained classifier, is resulting in a much
greater specificity between tissues.

We consider our results promising, in the sense that
they bring a finer understanding of the mechanisms
behind tissue-specific enhancer activity while giving us
at the same time useful classifiers and genome-wide pre-
dictions. Simultaneously, our results bring new questions
into the field. In particular, of our results are correct,
we should pay much more attention to the mechanistic
difference between enhancers and promoters when build-
ing computational methods of analysis and detection of
regulatory sequences.

In the long term, these results can lead to better under-
standing of how mutations in regulatory sequences can
disrupt enhancer or promoter function and allow us
to better understand the root causes of some genetic
diseases.
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