Skip to main content

Table 1 Comparison of model architectures and settings across three Deep Learning-based cancer survival prognosis approaches

From: Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations

Properties

Models

Cox-nnet

DeepSurv

AECOX

Deep Learning Architecture

Single-layer neural networks

Multi-layer neural networks

Multi-layer Autoencoder neural networks

Deep Learning Programming Framework

Theano

Theano, Lasagne

PyTorch

Hyper-parameters

L2 regularization weight λ.

Learning rate; Number of hidden layers; Hidden layer sizes; Learning rate decay; Momentum; L2 regularization weight λ; Dropout rate.

Learning rate; Autoencoder input-output error weight λ1; L1 regularization weight λ2; L2 regularization weight λ3; Dropout rate; Number of hidden layers; Regularization method.

Hyper-parameters Searching Methods

Line search

Sobol solver

Sobol solver

Number of iterations for searching hyper-parameters

12

100

100

Maximum epochs

4000

500

300

Number of Hidden Layers

1

1, 2, 3, or 4

0, 2, 4, 6, or 8

Last hidden Layer sizes

Integer value in range [131, 135]

Integer value in range [30, 50]

16

Regularization Methods

L1, L2, Dropout

L2, Dropout

Dropout, L1, L2, Elastic Net

Basic Objective (Loss) Functions

\( \hat{\Theta}={\mathrm{argmin}}_{\Theta}\left\{{\sum}_{i:{C}_i=1}\left(\sum \limits_{k=1}^K{\beta}_k{X}_{ik}-\log \left({\sum}_{j:{Y}_j\ge {Y}_i}{\theta}_j\right)\right)\right\} \)

Optimization Methods

Nesterov accelerated gradient descent

Stochastic gradient descent (SGD)

Adaptive Moment Estimation (Adam)

Network Architectures

(Input Layer) – (Hidden Layer) (tanh) – (Hazard Ratio)

(Input Layer) – (Hidden Layer) (ReLU/SELU) – … – (Hidden Layer) (ReLU/SELU) – (Hazard Ratio)

(Input Layer) – (Hidden Layers) (ReLU/Dropout) – (Code) – (Hidden Layers) (ReLU/Dropout) – (Output Layer); (Code) (tanh) – (Hazard Ratio)