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Abstract

Background: DNA amplifications alter gene dosage in cancer genomes by multiplying the gene
copy number. Amplifications are quintessential in a considerable number of advanced cancers of
various anatomical locations. The aims of this study were to classify human cancers based on their
amplification patterns, explore the biological and clinical fundamentals behind their amplification-
pattern based classification, and understand the characteristics in human genomic architecture that
associate with amplification mechanisms.

Methods: We applied a machine learning approach to model DNA copy number amplifications
using a data set of binary amplification records at chromosome sub-band resolution from 4400
cases that represent 82 cancer types. Amplification data was fused with background data: clinical,
histological and biological classifications, and cytogenetic annotations. Statistical hypothesis testing
was used to mine associations between the data sets.

Results: Probabilistic clustering of each chromosome identified |11 amplification models and
divided the cancer cases into clusters. The distribution of classification terms in the amplification-
model based clustering of cancer cases revealed cancer classes that were associated with specific
DNA copy number amplification models. Amplification patterns — finite or bounded descriptions
of the ranges of the amplifications in the chromosome — were extracted from the clustered data
and expressed according to the original cytogenetic nomenclature. This was achieved by maximal
frequent itemset mining using the cluster-specific data sets. The boundaries of amplification
patterns were shown to be enriched with fragile sites, telomeres, centromeres, and light
chromosome bands.

Conclusions: Our results demonstrate that amplifications are non-random chromosomal changes
and specifically selected in tumor tissue microenvironment. Furthermore, statistical evidence
showed that specific chromosomal features co-localize with amplification breakpoints and link
them in the amplification process.
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Background

Alterations that increase DNA copy number are frequently
observed in a variety of human cancers [1,2]. An amplifi-
cation is a mutation that increases the copy number of a
specific DNA segment in a cancer cell [3,4]. A normal dip-
loid genome contains two DNA copies, while amplifica-
tion increases the DNA copy number [5]. High-level gene
amplifications may significantly elevate the gene copy
number, e.g., the amplifications of MYC and EGFR onco-
genes have been shown to be more than hundred-fold in
neuroblastoma [6] and gliomas [7]. Gene amplifications
have clinical relevance as targets for therapy and in predic-
tive diagnosis. For example, amplification of the ERBB2
gene is an indicator for trastuzumab (Herceptin®) treat-
ment of patients with metastatic breast cancer. In general,
cancers with DNA copy number amplifications have
worse prognosis and poorer survival than cancers that do
not manifest amplifications. The amplifications have
been shown to associate with adverse clinical outcomes,
i.e., high grade and advanced stage, metastasis, and poor
response to therapy [8].

The guidelines for classification of tumors have been
established by the World Health Organization (WHO)
[9]. The WHO classification is based on the evaluation of
the primary organ site, morphology, cell type, histology,
and malignancy state. In addition, the epidemiological,
etiological, clinical, and genetic features of tumors have
been evaluated. In a subset of hematologic malignancies,
specific mutations and translocations have been used in
classification but otherwise tumor classification is based
on clinical, histological, and pathological parameters.
Although a wide range of cancer subtype-specific genetic
abnormalities are known, they are rarely used to classify
cancers. Given that genomic changes underlie the cancer
phenotype, DNA copy number amplification is a justified
foundation for classification. Nonetheless, molecular
properties underlie phenotypic changes in cancer cells
and contribute to the clinical outcome. Thus, molecular
classification of cancers is well-founded. DNA copy
number amplifications are suitable classification targets,
because they are relatively prevalent in a variety of cancers.
Since 1992, it has been possible to screen DNA copy
number amplifications in genome-wide coverage using
comparative genomic hybridization (CGH) [10] and large
amounts of DNA copy number data from different cancers
have been published and collected [1,11].

In a previous amplification profiling study, we identified
four separate clusters and showed that the clusters based
on DNA copy number amplifications comprised anatom-
ically similar neoplasms [1]. For example, gastrointestinal
adenocarcinomas (gastric cancer, colorectal cancer, and
Barrett's adenocarcinoma) clustered together. Similar
clustering emerged when amplification-activated onco-
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genes were analyzed using hierarchical clustering [8]: can-
cers with similar embryonic background (hematopoietic,
mesenchymal or epithelial) formed separate clusters.
Even though cancer types inside the identified clusters
showed similar biological backgrounds, using the profil-
ing approach, specific amplifications could not be
appointed for specific cancer classes and analytical assess-
ment was not plausible. Here, we used probabilistic mod-
eling and a collection of DNA copy number
amplifications, and identified 111 specific amplification
models. Modeling was performed based on mixtures of
multivariate Bernoulli distributions (see sub-section of
methods entitled "Probabilistic modeling of DNA copy
number amplification" for details). Based on the amplifi-
cation modeling, the cancer cases were divided into clus-
ters. Specific cancer cases, either of the same type or
etiology, were shown to associate with specific amplifica-
tion model-based clusters. Compact and comprehensible
presentations for probabilistic amplification models,
amplification patterns, were extracted using maximal fre-
quent itemset mining (see sub-section of methods enti-
tled "Finite descriptions for continuous DNA copy
number amplification models" for details). Amplification
patterns represent the ranges and structures of the ampli-
cons. We present statistical evidence showing that fragile
sites, telomeres, centromeres, and light chromosome
bands are enriched at the amplicon boundaries, linking
them to the mechanisms of amplification.

Methods

DNA copy number amplification and cancer classification
data

DNA copy number amplification data were retrieved from
[12]. The compilation of DNA copy number amplification
data contains curated data from more than 800 published
CGH studies on 4590 cases [1]. The data set includes DNA
copy number amplification data at chromosome sub-
band resolution (393 bands). The original classification
of 73 human neoplasms was redefined to contain 95 spe-
cific neoplasm types by sub-classifying B-cell neoplasms
and neuroepithelial tumors. The studied neoplasms were
grouped according to the guidelines provided in the WHO
Classification of Tumors [9]. In addition to the WHO clas-
sification, the neoplasms were arranged according to cell-
lineage, which included determination of system, organ,
cell type, and embryonic lineages. Moreover, the neo-
plasm types were categorized using clinical and genetic
attributes. Gender and age group specificity was deter-
mined based on the WHO classification. Various etiolog-
ical factors were collected from the WHO classification:
tobacco, alcohol, hormonal imbalance, ultraviolet radia-
tion, obesity, diet, human immunodeficiency virus, AIDS,
human papilloma virus, Epstein-Barr virus, polyoma
virus, bacterial and parasite infections, radiation, and
prosthetic implant, as well as asbestos exposure and toxin
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exposures. Inflammatory etiologies of neoplasms and
underlying conditions were defined according to litera-
ture. Tumor behavior was defined according to the stage
(cancer, benign, and border line). After the neoplasms
were filtered to include only malignant cancers and to dis-
card benign, borderline, and non-malignant tumors, the
number of cancer types was 82.

Probabilistic modeling of DNA copy number amplification
We applied machine learning techniques to model DNA
copy number amplifications. The goal of probabilistic
modeling is to estimate an unknown probability distribu-
tion based on observations to describe the inherent struc-
ture in the data. Finite mixture models are powerful and
widely used in the estimation of complex probability dis-
tributions [13,14]. The advantage of a mixture model is
that its components can represent different parts of the
true distribution, which would be impossible to estimate
by a single parametric distribution. In this work, we con-
centrated on the mixtures of multivariate Bernoulli distri-
butions, since the representation of our DNA copy
number amplification data was binary.

Analysis of DNA copy number amplification data was car-
ried out separately for each human chromosome (except
chromosome Y). Due to the low number of observations
and insufficient resolution, the Y chromosome was
excluded from the analysis. The mixture models were con-
structed separately for each chromosome, since only 10
percent of the observations showed amplification in more
than one chromosome. The observations with amplifica-
tion in several chromosomes were included in the analysis
of corresponding chromosomes. In brief, DNA copy
number amplification data of cancers including N = 4402
cases were used in the modeling. DNA copy number
amplification data can be presented as binary vectors x
{0,1}4in which x;= 1 denotes an amplified chromosome
band and x; = 0 stands for a non-amplified band and d is
the number of bands. The probabilities of the outcomes of
observation x = (x,..., x;) were modelled as ;= P(x;=1),i
= 1,..., d. Probability of the observed vector x was esti-
mated using the finite mixture of multivariate Bernoulli
distributions

J J d

p(x1@)=Ymp(x16;)= X [0} (1-0;) "

j=1 j=1 i=1

J
where © = {],{77:]-,0]- } ,1 } denotes the parameters of the
]:
model. The multivariate Bernoulli distributions p(x|8)), j
= 1,..., J, also called the component distributions, are

parameterized by ¢ = (6;,..., §,) and z; are mixture pro-
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portions with the properties 7z > 0 and ZﬁjZI.

Although the finite mixture of multivariate Bernoulli dis-
tributions have been shown to be non-identifiable [15],
they are useful in practical estimation problems [16].

In the case of N observations x”, n= 1,..., N and ] mixture
components, the maximum likelihood estimates of the

J

parameters {7% j,éj} are obtained by maximizing the

j=1
log-likelihood of the observations

I 4 —x,
lzilog an]'[e;;m(l—eﬁ)l |, The optimiza-
=1 =i

tion was carried out using the Expectation-Maximization
(EM) algorithm [17-19]. The derivation of the EM algo-
rithm for the finite mixture of multivariate Bernoulli dis-
tributions has been explained in detail by Everitt and
Hand [14]. In the E-step, the posterior probabilities that
the jth component distribution has generated the data
point x, are evaluated. In the M-step, the values of param-
eters {ﬁ' j,éj };_1 are updated using the evaluated poste-
rior probabilities. The iteration between E- and M-steps
gives monotonically increasing series of the values for the
log-likelihood. The EM algorithm was terminated when
the relative change in log-likelihood was smaller than10-
4. According to Carreira-Perpiran and Renals, and Tikka et
al. [16,20], the initial values of parameters 6}1-,]' =1,.,7] 1
= 1,..., d were selected randomly from range 0.25-0.75
and the initial values of mixture proportions were 7z;= 1/].

In order to select a model with an appropriate complexity,
the number of component distributions J was selected
using 5-fold cross validation [21] that was repeated 10
times varying J from 2 to 30. The selected number of com-
ponents maximized the validation log-likelihood, except
in five cases, when less complex models were chosen to
achieve validation log-likelihood that was in practice as
good as the estimated optimum. Less complex models
were chosen for chromosomes 3, 7, 8, 17, and 21. The
final mixture model, with the number of component dis-
tributions based on cross validation, was trained 5 times
and the model maximizing the log-likelihood was
selected. The repetitions were done to avoid the local
maxima in the log-likelihood. The obtained component
distributions were regarded as DNA copy number ampli-
fication models.
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Data mining from DNA copy number amplification model-
based clusters
We applied data mining techniques and WHO derived
cancer classifications as background data to explore the
amplification model-based clustering of cancer cases.
Cancer cases were divided into separate clusters for each
chromosome using the inherent structure of DNA copy
number amplification models. The component distribu-
tions of mixture model define clusters. Following the
probabilistic approach, each observation was allocated to
cluster j*, which maximizes the posterior probability
according to Bayes's theorem
. . d
it = arggnaxip(}p)fij‘]) = arggnaxnjneﬁf (1 -0 )1 o
i=1

Then, the observations belonging to cluster j were charac-
terized by the corresponding component distribution 6.
After clustering, the data in each cluster were divided into
a test group and a reference group according to the col-
lected classification terms. The test group contained those
cases that were associated with a specific classification
term (e.g., tobacco-related) and the reference group con-
tained all other cases (not related to tobacco). Proportions
of observations in each cluster f;; and f;, were calculated
for the test and the reference group, respectively. The dif-
ferences in cluster-specific observation proportions were
compared by performing a pooled proportions statistical
test [22]. The null hypothesis H, stated that the propor-

tions are equal f;; = f;, and alternative hypothesis H; was
that the proportion in the test group is larger than that in
the reference group f; > fj, or vice versa. The test statistic
for the pooled proportions test is defined as
fin—fjo fiimi+fjono
z= e
Ji7 ) (meimo)

and n, are the number of observations in the test group

, where f = and n,

and in the reference group, respectively. The test statistic z
is approximately normally distributed with zero mean
and unit variance. The described test was carried out for
each amplification pattern and classification term.

Due to the large number of hypotheses, we used the fol-
lowing procedure for control of the false discovery rate

[23]. Let p, <p, <..<p, denote the observed ordered

unadjusted p-values, where m is the number of hypotheses
(m =13659). For control of the false discovery rate at level

a search i :rnax{i:p, Sia}.
i m
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The null hypotheses are rejected in the case of i <i*. In the
experiments, we used the significance level « = 0.001,
which corresponded to the unadjusted p-value 0.00005.
Thus, the alternative hypothesis was accepted, i.e., the dif-
ference was regarded statistically significant, when the p-
value of the test was lower than 0.00005.

Finite descriptions for continuous DNA copy number
amplification models

Fusing of amplification models with relevant genomic
mapping data required that continuous models were
transformed into compact representations in the original
nomenclature of the chromosomal bands. Finite descrip-
tions, namely amplification patterns, were formed using
maximal frequent itemset mining as presented earlier
[24]. For the definitions and notations used in the follow-
ing brief technical description of maximal frequent item-
sets, we refer to Burdick et al. [25]. In a binary database
with x; = {0,1}4and index set [ = {1,...d}, an itemset is a
subset of the index set I and a k-itemset is an itemset with
cardinality k [25]. Support for an itemset X is defined as
the frequency of the rows in the database including the
items in X, i.e., how often X occurs in the database. ois a
predefined parameter that sets a threshold for selecting
frequent itemsets. The mining task is to find all itemsets
that have a frequency higher than o. These are regarded as
frequent itemsets. If an itemset X is frequent and no super-
set of X is frequent, we say that X is a maximal frequent
itemset. The implementation by Burdick et al. [25] inte-
grates a depth-first traversal of the itemset lattice with
effective pruning mechanisms that significantly improve
mining performance. We use maximal frequent itemsets
in summarizing the marginal distribution of the clusters
in a compact and understandable manner. In mining for
the amplification patterns in the clustered data sets, we
used a frequency threshold of o= 0.5, so that the amplifi-
cation patterns would be representative of the clusters in
question. In simple terms, amplification patterns portray
amplification models using finite ranges that capture the
chromosomal structure of the amplified DNA element
(also referred to as amplicon). The resulting amplification
patterns are collections of the largest sets of chromosomal
bands that occur jointly (together) in more than half of
the data cases. The amplification patterns are thought to
be representative of the whole cluster. As such, they repre-
sent the most probable amplicon structures and were used
to map amplicon boundaries and putative DNA double-
strand breakpoints.

Data mining from amplification patterns

A way to investigate the nature of DNA copy number
amplification patterns is to compare them with relevant
cytogenetic background data. For data mining, amplifica-
tion patterns were used to depict the amplicon structures
and identify putative ends of the amplified regions.
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Cytogenetic features on amplicon boundaries were char-
acterized to elucidate the genomic features that predis-
pose to DNA double-strand breaks and enable
amplification. Mechanistic models of amplification pre-
dict that DNA double-strand breaks must occur at the
ends of the amplified chromosomal element. Enrichment
of specific chromosomal regions in the ends of the ampli-
fication patterns (putative amplicons) was tested. The
tested chromosomal regions included fragile sites, telom-
eres, centromeres, light and dark G-bands, and variable
regions. Fragile sites were mapped according to the
National Center for Biotechnology Information database
annotations. Chromosome bands mapping to telomeric,
centromeric and variable regions, as well as dark and light
bands were extracted from the International System for
Human Cytogenetic Nomenclature (2005) annotations
[26]. We were interested in knowing whether the ends of
amplification patterns were involved in an unexpectedly
large number of specific chromosomal features, which
would provide a possible explanation for DNA breakage
associated with amplification. The test statistics were the
differences between frequencies of chromosomal features
in different sites of a given amplification pattern (borders,
inside, and in general). If many patterns are based on one
component distribution of the Bernoulli mixture model,
they are very likely to overlap. In cases like this, the
hypothesis testing includes the band in both sets with
equal importance. We executed a permutation test of
10000 iterations to the hypothesis of comparing the pro-
portions of chromosomal features. When executing the
permutation test, an equal number of random bands to
the number of bands of the chromosomal feature that was
tested were distributed along the amplification patterns.
Then, the corresponding proportions of the randomized
sites occurring in the border and inside bands were calcu-
lated. This can be seen as a means to obtain empirical
samples of the test statistic under the null hypothesis. The
difference in proportions of the true test statistic and the
randomized reference could then be calculated. The p-
value for the one-tailed test was calculated using the dif-
ference in the proportions of the test statistic and rand-
omized reference values. The threshold for significant
findings was p < 0.05.

Results

Probabilistic models of DNA copy number amplification
We identified 111 amplification models (Figure 1). The
number of clusters in chromosomes 1-22 and X varied
between 2 and 7: chrl (6), chr2 (4), chr3 (7), chr4 (2),
chr5 (5), chr6 (6), chr7 (6), chr8 (7), chr9 (4), chr10 (3),
chr1l (7), chr12 (6), chrl3 (6), chr14 (3), chrl5 (2),
chr16 (4), chr17 (7), chr18 (4), chr19 (4), chr20 (6),
chr21 (4), chr22 (3), and chrX (5). The Y chromosome
was omitted from the analysis due to the low number of
cases. Figure 1 shows the number of cancer cases (N.)
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included in each amplification model. Vectors of proba-
bility parameters ¢ represent the resulting amplification
models, where each mixture component assigns a contin-
uous probability value 8; to each chromosome band. One
chromosome band may have non-zero probabilities in
different components, since components may correspond
to different amplicon structures. Figure 2 shows that the
clustering based on the probabilistic model of DNA copy
number amplification manages to predetermine the struc-
ture of amplifications. It represents a typical amplification
pattern and the general properties observed in an amplifi-
cation, which may encompass additional bystander areas
around the target gene locus.

DNA copy number amplification model-based clustering of
cancer cases

The identified DNA copy number amplification models
can be used to divide cases into clusters with similar
molecular aberration. Figure 2 shows the data from chro-
mosome 1 for reference. The clusters based on DNA copy
number amplification models can be fused with known
background data of the cancer types to study the underly-
ing specificity of the amplifications.

Classification data of 95 human neoplasms were collected
from the literature [see Additional file 1]. The analysis was
restricted to malignant cancers of 82 different cancer
types. Figure 3 presents the classification distribution
based on cell lineages, age, and gender. Classification
based on cell lineage contained anatomical system, organ,
tissue, differentiation, and embryonic lineages. These
attributes were divided into classification terms, e.g., nerv-
ous system (anatomical system), brain (organ), and gli-
oma (cell). The classification terms can partially overlap
with different attributes. Differentiation lineage (e.g., ade-
nocarcinoma) refers to the histological type of the malig-
nancy. Embryonic lineage divides cases into four main
developmental compartments: epithelial, mesenchymal,
hematopoieticc, and neuroepithelial. The clinical
attributes were age (pediatric, young adults, and adults)
and gender specifications. In addition, 19 different etio-
logical factors were collected (Figure 4). In all, 29
attributes and 100 classification terms were accumulated.
Classification terms were appointed for cancers as primary
data of individual cases was not available in the amplifi-
cation data compilation. The compilation of DNA copy
number amplification data was revised regarding the new
annotations [12].

Frequencies of classification annotation terms were com-
pared between cases in the studied cluster and a reference
group that contained all other cases. The statistical signif-
icance of difference in the frequencies observed in each
amplification model based cluster was determined using
a hypothesis test. The significance threshold was set to
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Probabilistic models of DNA copy number amplification. The models are component distributions of chromosome
specific mixture models. Models are marked in the figure on separate lines. The probability of an amplification in each chromo-
some band is denoted using white to black scaling, where black indicates a chromosome band with a high probability of an
amplification (p = I) and white indicates a chromosome band with a low probability of an amplification (p = 0). Probabilities
between 0 and | have been linearly scaled as shades of gray. Amplification patterns (based on the maximal frequent itemsets)
are reported on the left side of the amplification models. Prevalence of the amplification patterns in terms of the number of

cancer cases (N_) is shown on the right side of the models.
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0.00005 and p-values were corrected for multiple testing
using the Benjamini-Hochberg false discovery rate
method [23]. Statistically significant observations are pre-
sented in Figure 5. Individual cancers (Figure 5A) and

sample groups with specific classification terms (Figure
5B) were tested against all other samples. Our results
show that a subset of amplifications is associated with
specific cancer type, whereas some amplifications are
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Figure 3

Distribution of cancer classification attributes and classification terms. Classification data was compiled from the
WHO sources [9]. Figure is divided to individual pie charts according to different classification attributes. Each pie chart
describes the numbers of cancer types in specific classification terms.

Page 8 of 13

(page number not for citation purposes)



BMC Medical Genomics 2008, 1:15 http://www.biomedcentral.com/1755-8794/1/15

W
&
=
@
& 2 E
= =
= § B 2
= o
4 ; @« 3‘ E g o E
Q — < = -
s = = E S B @ s Z s 3 z
Z = g 9w, & £ k= E Z = g E
L =, 38 =2 2 S = = 22T 2 5 g
Cs = E S e = M = =2 = = 8 © 2 E
ancer A = = A A = = O T E =~ /A —
Myeloma and plasmocytoma | ]
Intrah ¢ cholangiocarcinoma [ |
Renal cell carcinoma
Small cell lung cancer
Non-small cell lung cancer
Oral squamous cell carcinoma
Colorectal adeno ma
3 eal adenocarcinoma
| carcinoma
carcinoma
Head and neck squamous cell carcinoma
Acute myeloid leukemia
Nasophai | carcinoma |

Urothelial inoma
Pancreatic adenocarcinoma
Penile squamous cell carcinoma
Anal squamous cell carcinoma
Testicular germ cell tumor
Cerv carcinoma

Adenoid cystic carcinoma
Breast cancer

Endometrial carcinoma
Fallopian tube carcinoma
Ovarian cancer

Prostate adenocarcinoma
Leiomyosarcoma

Skin squamous cell carcinoma
Merkel cell carcinoma
Malignant melanoma

!

Mesothelioma

Neuroendoerine lung carcinoma

Gastric adenocarcinoma

Gastrocsophageal junction adenocarcinoma
Marginal B cell lymphoma

Biliary tract cancer

Diffuse large B cell lymphoma

Precursor B-cell leukemia

Classical Hodgkin lymphoma

Burkitt's lymphoma

Thyroid carcinoma -
Synvial sarcoma -

Chronic myeloid leukemia
Astrocytoma
nant fibrous histiocytoma of bone

Malig
Eye melanoma [

Malignant peripheral nerve tumor
Adult 1l leukemia/lymphoma

Yolk sac tumor
Germinoma
Mixedteratoma-germinoma

Dermatofibro:
Adrenocortic:
Pulmonary sarcoma

Follicular lymphoma

Chronic lymphocytic leukemia

al large B cell lymphoma
1 lymphoma
Liposarcoma

T cell promyelocytic leukemia
Malignant mesenchymoma
Rhabdomyosarcoma

Ewing's sarcoma

Chondrosarcoma

Brenner tumor

Chordoma

Choriocarcinoma

Ovarian germ cell tumor
astrocytoma

U ¢ leiomyosarcoma
Oligodendrog
Glioblastoma multiforme
Ependymoma
Oligo-astrocytic tumor
Glioma, chordoid
Astroblastoma
Neuroblastoma
Medulloblastoma
Retinoblastoma
Miscellaneous sarcomas
Nephroblastoma

Figure 4

Etiological factors of cancers. Etiological data was compiled from the WHO sources [9]. Each row describes a cancer type
and the etiological factors that have been associated with it (indicated by black boxes). Cancer type rows and etiological factor
columns are sorted according to hierarchical clustering. Between groups-linkage method and Squared Euclidean distance meas-
ure for binary classification terms were used in clustering.
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Associations between DNA copy number amplification models and classification terms. Data are presented for A)
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more commonly shared by cancers of similar etiology or
cell-lineage. For example, 1q33-q44 amplification is spe-
cific to breast cancers and 17q12-q21 region is specifically
amplified in gastric cancer and Barrett's adenocarcinoma
(Figure 5A). Similarly, 1q32-q44 amplification is specifi-
cally present in cancers associated with hormonal imbal-
ance, obesity, female genital tract, breast tissue, and
adenocarcinoma as well as cancers with female overrepre-
sentation (Figure 5B). On the other hand, 17q12-q21
amplicon is enriched in cancers that associate with
tobacco, obesity, diet, bacterial infections, inflammation,
gastrointestinal tract, esophagus, stomach, adenocarci-
noma, epithelial origin, and ethnic prevalence (Figure
5B).

Pattern description for probabilistic models of DNA copy
number amplification

In order to facilitate the interpretation, we generated com-
pact and understandable descriptions of the amplification
models. The descriptions, i.e., amplification patterns, are
local, finite, and plausible representations of the chromo-
somal areas of amplification. The amplification patterns
were identified as maximal frequent itemsets and the
chromosome bands are expressed following the original
cytogenetic nomenclature. Amplification patterns depict
the structures of the amplicons. One amplification model
may result in many patterns. In fact, we extracted 140
maximal frequent itemsets from the 111 amplification
models. When multiple patterns were identified for a spe-
cific amplification model, the most frequent pattern was
chosen. Amplification patters are reported alongside their
representative models in Figure 1. Amplification patterns
in chromosome 1 are marked in Figure 2.

http://www.biomedcentral.com/1755-8794/1/15

Mechanisms of DNA copy number amplification
Amplification patterns were used to investigate the mech-
anisms of DNA copy number amplification. Our hypoth-
esis was that patterns represent the general structures of
amplicons and can thus be applied to map amplicon
boundaries and genomic loci that are susceptible to DNA
double-strand damage. Differences in the proportions of
labile chromosomal features in amplification patterns
and within border bands or inside amplification patterns
were determined using a hypothesis test (Table 1). Note-
worthy is that the same band can occur both inside and on
the border of the patterns, which can overlap. This is
exemplified in Figure 2, where the ends of one pattern are
inside another pattern. To be precise, the telomeric ends
of the amplification patterns for models four and five
(1923 and 1q25, respectively) are inside the amplification
pattern of model three (1q11-1q44). Statistically signifi-
cant differences in proportions (p-value < 0.05) were iden-
tified when the proportions of fragile sites within the
borders of amplification patterns were compared with the
proportions of fragile sites in the amplification patterns.
Similarly, light chromosome bands, telomeres, and cen-
tromeres were more frequent in the border bands than in
the patterns in general. Dark chromosome bands inside
the amplification patterns were more frequent than those
in patterns as a whole.

Discussion

A machine learning approach was utilized to model DNA
copy number amplifications in a landscape of cancers.
The current modeling approach disregarded the cancer
type information and modeled amplifications based on
case-specific data vectors. This resulted in identification of
111 amplification models (Figure 1). The identified mod-

Table I: Hypothesis testing of proportions of labile chromosomal sites within the amplification patterns.

Labile chromosomal site Proportion in patterns Proportion in amplification Proportion inside amplification  p-value
pattern borders patterns
Fragile sites 0.3086 0.3693 - 0.0069*
0.3086 - 0.2975 0.8448
Dark chromosome bands 0.3739 0.3182 - 0.9896
0.3739 - 0.4301 0.0000%*
Light chromosome bands 0.4629 05114 - 0.0405*
0.4629 - 0.4122 1.0000
Telomere bands 0.1217 0.2330 - 0.0000
0.1217 - 0.0000 1.0000*
*
Centromere bands 0.1187 0.1477 - 0.0378*
0.1187 - 0.1147 0.7481
Variable bands 0.0445 0.0227 - 0.9388
0.0445 - 0.0430 0.7154

The proportion of chromosomal attributes in patterns in general is compared to the proportion of chromosomal attributes on the borders of the
amplification patterns as well as inside amplification patterns (excluding the borders). Statistical significance of the difference in proportions was
determined using permutation tests and p-values are marked in the table. Significant findings are marked with an asterisk.

*Statistically significant findings (p < 0.05).

**By definition, telomeres can not be located inside the amplification patterns and therefore this test could not yield any significant findings.
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els could be viewed as specific cancer classes that allow
more refined dissection of amplification processes. Our
hypothesis was that cancers with a common amplification
model might exhibit dependency on a specific oncogene
amplification and therefore share common biological
background. We tested this hypothesis by analyzing the
distribution of WHO classification terms in the amplifica-
tion modeling-based clustering of cancer cases. Specific
amplification models were shown to associate with spe-
cific cancer types and classification terms (Figure 5). The
non-random structure in the spectrum of DNA copy
number amplifications in cancer suggests that cancer eti-
ology and tumor microenvironment could manifest as
specific amplification signatures. According to our results,
amplifications are selected according to the anatomical
locations and biological background of the cancers. Theo-
retically, carcinogenesis could be viewed as an evolution-
ary process that involves the selection of cancer cells in the
somatic tissue by specific mutations. In the Darwinian
perspective, the classification based on DNA copy number
amplifications reflects the differences in the selective
properties in different anatomical locations and in spe-
cific adaptation of cancers with similar biological back-
grounds.

DNA copies generated in amplification manifest as con-
catenated homogenously staining regions and extra-chro-
mosomal acentric DNA fragments, double minutes and
episomes [3,27]. Models of DNA amplification mecha-
nisms, the breakage-fusion-bridge cycle and excision of
extrachromosomal DNA segments, state that two inde-
pendent DNA double-strand breaks that flank the ampli-
fied region are required to initiate the amplification
pathway [28]. Using the amplification modeling and pat-
tern discovery approach, presented in the current study,
fixing of finite amplicon structures became feasible and
amplification patterns, representations of amplicon struc-
tures, were determined from the DNA copy number
amplification models. The amplification patterns could
then be used to identify specific chromosomal sites that
associate with amplicon boundaries. By fusing the bound-
aries of amplification patterns with cytogenetic annota-
tions of the genome it was possible to elucidate the
features in the chromosomal structure and genomic archi-
tecture that predispose the genome to amplifications. The
hypothesis was that specific genomic regions may be dam-
age-prone and susceptible to DNA double-strand breaks.
The statistical hypothesis testing demonstrated that fragile
sites, light chromosome bands, telomeres, and centro-
meres were enriched in the ends of the amplicons (Table
1). This suggests that these sites might be associated with
the amplification mechanisms and DNA double-strand
breakage at amplicon boundaries. Fragile sites are dam-
age-prone genomic regions when cells are treated with
chemicals that interfere with replication [29], which

http://www.biomedcentral.com/1755-8794/1/15

makes it likely that they are often found at amplification
breakpoints. In addition to fragile sites, chromosome
ends are unstable and may produce double-strand DNA
breaks due to telomere shortening during replication and
cell division [30]. Similarly, centromere regions have been
shown to be unstable and damage-prone upon replication
stress [31], which might explain the accumulation of
amplicon boundaries on them. Light chromosome bands
were also enriched at amplicon boundaries. The light
bands contain euchromatin and are gene-rich, G/C-rich
and late-replicating, whereas dark bands correspond to
gene-poor, A/T-rich and early replicating heterochroma-
tin. Due to its high gene content, the structure of euchro-
matin is more open than that of heterochromatin [32],
which may affect its physical protection and render
euchromatin more susceptible to DNA damage than the
gene-poor heterochromatin. We hypothesize that open
chromatin reduces the protection of chromosomal DNA
and serves as preferential target for DNA damage. Open
chromatin might therefore expose light chromosome
bands to DNA double-strand breaks that initiate the
amplification pathways.

Conclusion

We classified human cancers based on DNA copy number
amplification models. Cancer cases were fused with the
WHO classification annotations. The inherent structure in
the probabilistic clustering suggests that amplifications
are non-randomly selected according to biological back-
grounds of cancers. Amplification patterns were extracted
and probed using cytogenetic annotations. We show sta-
tistical evidence that connects fragile sites, telomeres, cen-
tromeres, and light chromosome bands to the
amplification mechanism. These results suggest that labile
chromosomal features are involved in the amplification
process by promoting the formation of DNA double-
strand breaks at amplicon margins.
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