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Abstract
Background: The role of microRNAs (miRNAs) in multiple myeloma (MM) has yet to be fully elucidated. To identify
miRNAs that are potentially deregulated in MM, we investigated those mapping within transcription units, based on
evidence that intronic miRNAs are frequently coexpressed with their host genes. To this end, we monitored host
transcript expression values in a panel of 20 human MM cell lines (HMCLs) and focused on transcripts whose expression
varied significantly across the dataset.

Methods: miRNA expression was quantified by Quantitative Real-Time PCR. Gene expression and genome profiling
data were generated on Affymetrix oligonucleotide microarrays. Significant Analysis of Microarrays algorithm was used
to investigate differentially expressed transcripts. Conventional statistics were used to test correlations for significance.
Public libraries were queried to predict putative miRNA targets.

Results: We identified transcripts specific to six miRNA host genes (CCPG1, GULP1, EVL, TACSTD1, MEST, and TNIK)
whose average changes in expression varied at least 2-fold from the mean of the examined dataset. We evaluated the
expression levels of the corresponding intronic miRNAs and identified a significant correlation between the expression
levels of MEST, EVL, and GULP1 and those of the corresponding miRNAs miR-335, miR-342-3p, and miR-561,
respectively. Genome-wide profiling of the 20 HMCLs indicated that the increased expression of the three host genes
and their corresponding intronic miRNAs was not correlated with local copy number variations. Notably, miRNAs and
their host genes were overexpressed in a fraction of primary tumors with respect to normal plasma cells; however, this
finding was not correlated with known molecular myeloma groups. The predicted putative miRNA targets and the
transcriptional profiles associated with the primary tumors suggest that MEST/miR-335 and EVL/miR-342-3p may play a
role in plasma cell homing and/or interactions with the bone marrow microenvironment.

Conclusion: Our data support the idea that intronic miRNAs and their host genes are regulated dependently, and may
contribute to the understanding of their biological roles in cancer. To our knowledge, this is the first evidence of
deregulated miRNA expression in MM, providing insights that may lead to the identification of new biomarkers and
altered molecular pathways of the disease.
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Background
Multiple myeloma (MM) is a plasma cell neoplasia char-
acterized by profound genomic instability involving
numerical and structural chromosomal aberrations [1].
The availability of human MM cell lines (HMCLs) has
been of critical importance in revealing many of the
molecular and biological aspects of MM. Over the last few
years, recurrent nonrandom genetic lesions have been
identified that seem to correlate with the clinical course of
MM and its response to therapy. Nearly half of MM
tumors are nonhyperdiploid, and frequently show chro-
mosome 13 deletion and constitutively activated CCND1
(11q13), CCND3 (6p21), MAF (16q24), MAFB (20q12),
or FGFR3/MMSET (4p16.3) as a result of chromosomal
translocations involving the immunoglobulin heavy
chain locus (IGH@) on chromosome 14q32 [2-5]. The
remaining tumors are hyperdiploid, which are character-
ized by multiple trisomies of nonrandom odd chromo-
somes, and a low prevalence of IGH translocations and
chromosome 13 deletions [1].

The recent discovery of microRNA (miRNA) genes encod-
ing a class of small (17–25 base pairs) noncoding RNAs
involved in the regulation of the cell cycle, survival, and
differentiation programmes has added a further level of
complexity to normal and cancer cell biology. Through
complementary base pairing to specific protein-coding
mRNA transcripts, miRNAs direct mRNA silencing by dif-
ferent mechanisms, including message degradation and
translational repression [6]. Several studies have reported
that chromosomal abnormalities and/or epigenetic events
contribute to miRNA deregulation; impaired miRNA
expression has already been demonstrated in a number of
solid tumors and, more recently, in some hematological
disorders [7-9]. To date, miRNA expression and deregula-
tion in MM remain to be investigated; recently, it has been
demonstrated that miR-21 can be induced by STAT3 and
mediate IL-6-dependent HMCL survival [10].

Approximately one third of miRNAs are located within
the intronic regions of coding transcription units [11-13].
The expression of these miRNAs largely coincides with the
transcription of the corresponding host genes, which sug-
gests that they can share the same regulatory sequences as
their host transcription units [11] and can be cotran-
scribed with them under the regulation of the RNA
polymerase II (PolII) following the coordinated process-
ing of intronic miRNAs and cognate mRNA [14]. How-
ever, the mechanism of intronic miRNA maturation
remains to be fully understood, because miRNAs in an
antisense orientation to their corresponding host gene
may possess independent regulatory motifs [12], and
miRNAs located within genomic repetitive elements may
be transcribed by RNA polymerase III (PolIII) [15].

In the present study, we investigated the expression of
miRNAs located within transcription units found to be
differentially expressed in a panel of HMCLs that we
recently profiled using gene expression microarrays [16].
This approach led to the identification of three miRNAs
(miR-335, miR-342-3p, and miR-561) that were differen-
tially expressed, along with their corresponding host
genes, in the dataset of HMCLs. In addition, we found that
overexpression of these miRNAs/host genes was recurrent
in MM primary tumors compared with normal plasma
cells. The data discussed here may suggest a possible role
for deregulated intronic miRNA species in myeloma.

Methods
Cell lines
The HMCLs were obtained from DMSZ-German collec-
tion of Microorganisms and Cell Culture, Germany (NCI-
H929, OPM2, JJN3, RPMI-8226, and KMS-12); or kindly
provided by Dr. T. Otsuki, Kawasaki Medical School,
Okayama, Japan (KMS-28, KMS-34, KMS-18, KMS-11,
KMS-26, KMS-27, KMM-1 and KMS-20); Dr S. Iida,
Nagoya City University Graduate School of Medical Sci-
ences, Nagoya, Japan (KM4, FR4, and AMO1), and Dr. F.
Malavasi, Department of Genetics, University of Torino,
Italy (LP-1); or were established in our laboratory (CMA-
01, CMA-02 and CMA-03) [17]. They were cultured in
Iscove's modified Dulbecco's medium supplemented with
10% fetal calf serum at concentrations ranging from 3 ×
105 to 8 × 105, at 37°C in a 5% CO2 humidified atmos-
phere. CMA-01, CMA-02 and CMA-03 were cultured in
presence of 20 U/ml recombinant human IL-6 (R&D Sys-
tem, Minneapolis, MN, USA).

Specific miRNA quantification by RealTime RT-PCR
Total RNA was extracted from at least 2 × 106 purified
plasma cells by using Trizol reagent. Quantitative assess-
ment of the RNA was performed using Nanodrop ND-
1000 Biophotometer (NanoDrop Technologies): the min-
imum OD260/280 ratio to be considered acceptable is 1.98–
2.10. In the reverse transcription step, 50 ng total RNA was
employed in RT reactions using reagents from the Taq-
ManR MicroRNA RT kit (Applied Biosystems) and specific
miRNA primers provided with the TaqManR MicroRNA
Assays. 15 μl reactions were incubated in an Applied Bio-
systems 9700 Thermocycler. All reverse transcriptase reac-
tions were run in duplicate. Real Time PCR was performed
in triplicate using TaqManR MicroRNA Assays together
with the TaqManR Universal PCR Master Mix on an
Applied Biosystems 7700 Sequence Detection System. All
RNA samples were normalized based on the Z30 Taq-
ManR MicroRNA Assays-Control. The threshold cycle (CT)
was defined as the fractional cycle number at which the
fluorescence passes the fixed threshold. All signals with CT
≥ 40 were manually set to undetermined. Relative quanti-
fication of miRNA expression was calculated with the 2-ΔCt
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method (Applied Biosystem User Bulletin N°2). Data
were presented as relative quantity of target miRNA, nor-
malized to Z30 housekeeping gene.

Bioinformatic Analysis
mRNA targets were predicted for the 3 miRNA of interest
by querying four different bioinformatic algorithms
which are miRanda [18,19], TargetScan [20,21], PicTar
[22,23], and Diana microT [24,25].

Genome-wide DNA profiling analysis
Genome-wide DNA profiling was performed on Affyme-
trix GeneChip Human Mapping 250 k NspI arrays. To find
the corresponding copy number (CN) values, we firstly
extracted the raw data from the CEL files using the Affyme-
trix packages GTYPE 4.1 and Copy Number Analysis Tool
4.0.1 (Affymetrix, Santa Clara, CA, USA) and the Mapping
Array 250 k NspI probe annotations released on July, 12
2007. In order to keep only the raw data and thus to avoid
the CN inference facility of the latter software package, the
Hidden Markov Model Genomic Smoothing window was
set to 0. After the preprocessing, piecewise constant esti-
mates of the underlying local DNA CN variation was cal-
culated using the DNA copy Bioconductor package, which
looks for optimal breakpoints using circular binary seg-
mentation (CBS). In order to overcome scaling biases
related to the greatly altered ploidy of HMCLs (reflected in
a median value for SNP probes different from two in
almost all samples) the median of the estimated profiles
for each sample was scaled back to assign to a nominal
multiplicity of two those values of probes mapped to
regions for which FISH information was available and
indicated the presence of exactly two alleles [16]. After
scaling, a k-means clustering algorithm was used to deter-
mine the interval values for inferring discrete CN values.
As such, inferred CN higher than 1.73, 2.16, and 2.64 cor-
responded to two, three or more than four DNA copies,
respectively; whereas CN below 1.73, and 1.37 to one
copy or biallelic deletion, respectively. CN data of these
HMCLs have been deposited in National Center for Bio-
technology Information's Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo) and are accessi-
ble through GEO Series accession number GSE11522
[26].

Gene expression profiling database
Patients database included the proprietary database (4
normal samples, 12 MGUS, 132 MM, and 9 PCL),
together with 20 normal samples, 22 MGUS, and 137 MM
taken from 2 publicly available MM gene expression data-
sets [1,27] (GSE6477 and GSE6691, CEL files available at
Gene Expression Omnibus [26]), all profiled on HG-
U133A. The probe level data were converted to expression
values using the Bioconductor function for the Robust
Multi-Array average (RMA) procedure [28], and the
absence of outlier patients in the normalization process

due to hybridization signals was verified by Expression
Console tools (Affymetrix, Santa Clara, CA, USA). The
supervised analyses were performed using SAM software
version 3.0 [29,30]. The cut-off for significance was deter-
mined by tuning the Delta parameter on the false discov-
ery rate (FDR) and controlling the q-value for the gene list
(at a q-value = 0). The selected lists were functionally ana-
lyzed using the Database for Annotation, Visualization
and Integrated Discovery (DAVID) Tool 2006 (U.S.
National Institutes of Health [31]) and NetAffx [32].

Results
Identification of intronic miRNAs deregulated in HMCLs
We searched for potentially deregulated miRNAs mapping
to the intronic, exonic, or 3' UTR regions of the most dif-
ferentially expressed transcripts in a proprietary dataset of
20 HMCLs previously profiled on HG-U133A GeneChip
arrays [16].

For each annotated probeset, we calculated the ratios of
each individual expression value to the mean expression
value of that probeset across the whole dataset. These
ratios (or the inverse ratios whenever the individual
expression value was lower than the mean) were then
averaged to obtain the "average fold change" for each
probeset, which is suitable as a measure of the variability
of a transcript expression in a group of samples. The anal-
ysis revealed a subset of 1,032 most variable probes (spe-
cific to 799 transcripts), at an average fold change greater
than 2 (2AVEFC probes). To identify which of these tran-
scripts was a host gene for miRNA, we screened the
miRNA Registry [33] (Sanger database, miRBase
Sequence, version 10.0, release 2007/08/01 [34]), which
includes 533 human miRNA sequences, 300 of which
map to the intronic, exonic, or 3' UTR regions of 240 tran-
scripts. Of these, 137 (specified by 261 probes) are repre-
sented on HG-U133A GeneChip array (additional file 1).
By merging these 261 probes with the 1,032 2AVEFC
probes from the HMCLs dataset, we identified ten
2AVEFC probes specific to six host genes, all of which con-
tain intronic miRNA (Table 1). Specifically, we found the
following pairs of host genes and intronic miRNAs:
CCPG1 (cell cycle progression 1) and miR-628; GULP1
(engulfment adaptor PTB domain containing 1) and miR-
561; MEST (mesoderm specific transcript homolog,
mouse) and miR-335; EVL (Enah/Vasp-like) and miR-
342-3p; TACSTD1 (tumor-associated calcium signal
transducer 1) and miR-559; and TNIK (TRAF2 and NCK
interacting kinase) and miR-569 (details in Table 1). The
expression levels of the six genes are shown in Fig. 1.

Expression levels of miR-335, miR-342-3p, and miR-561 
correlate with those of their corresponding host genes in 
HMCLs
To verify whether the six intronic miRNAs were coordi-
nately expressed with their host mRNAs in HMCLs, we
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investigated miRNA expression levels using quantitative-
real time RT-PCR (Q-RT-PCR) assays (TaqManR micro-
RNA assays) [35]. Although we know that the levels of
mature miRNAs are not always correlated to the corre-
sponding precursors and that the measure of pri-miRNAs
or pre-miRNAs would give a more complete and reliable
information about the possibly coordinated transcrip-
tional levels of miRNAs and their host genes, we chose to
evaluate only mature miRNA expression, thus focusing
our interest on the biologically functional molecule. The
results, normalized for the expression of the housekeep-
ing Z30 small nucleolar RNA, are reported in additional
file 2. Specifically, we found appreciable levels of expres-
sion for miR-335, miR-342-3p, and miR-628, whereas
mir-561 and mir-559 were moderately expressed. mir-569
was barely detectable among the HMCLs in the dataset,

and thus it was excluded from further analysis. A regres-
sion analysis of Q-RT-PCR miRNA values and microarray
expression levels of matching host genes, conducted with
R packages/software, revealed a significant correlation
with the corresponding host genes for miR-335, miR-342-
3p, and miR-561 (R higher than 0.6 in all cases with a p
value < 0.005; see Fig. 2), but not for miR-559 (R = 0.12
at p value = 0.60) or miR-628 (R = 0.32 at p value = 0.15).
As specified in Table 1, miR-335, miR-342-3p, miR-561,
and miR-559 are all sense oriented, whereas miR-628 is in
an antisense orientation with respect to its host gene.

Based on these findings, we focused our study on the miR-
NAs/host genes that were coordinately expressed. As
described in additional file 3, the bioinformatic target pre-
diction for miR-335, miR-342-3p, and miR-561 suggests
that they might play an important role in proliferation,
cell cycle control, cellular migration, and angiogenesis.

miR-335, miR-342-3p, and miR-561 deregulations are not 
associated with genomic alterations
Because miRNA transcripts may be deregulated in cancer
as a result of DNA CN variations [9], we investigated
whether the coordinated overexpression of the three miR-
NAs and host transcripts was associated with CN altera-
tions in our dataset. To this end, we performed a genome-
wide DNA profiling analysis on the entire panel of
HMCLs using high-density 250K SNP-arrays (Affymetrix).
By referring to the University of California Santa Cruz
(UCSC) Genome Browser Database [36] annotations, we
positioned MEST between telomeric SNP_A-1960494 and
centromeric SNP_A-2263405, EVL between telomeric
SNP_A-1927639 and centromeric SNP_A-2289968, and
GULP1 between telomeric SNP_A-4201038 and centro-
meric SNP_A-1941986. The CNs associated with these
SNP intervals were calculated using the DNAcopy Biocon-
ductor package (see Methods). For each HMCL, the
inferred CN values and the miRNA Q-RT-PCR expression
data are reported in Fig. 3. Different CNs were not
reflected by a corresponding modulation of miRNA
expression levels.

Table 1: Selected HG-U133A probes with average fold-change higher than two in HMCLs

HG-U133A probe Host gene Host gene intron Intron length (bp) Strand direction miRNA Location Fold-change

222156_x_at CCPG1 intron 5 4,903 - miR-628 15 q21 2.3
217838_s_at EVL intron 3 25,879 + miR-342 14q32 2.7
204235_s_at GULP1 intron 1 90,649 + miR-561 2q32 4.3
204237_at GULP1 4
215913_s_at GULP1 2.5
202016_at MEST intron 2 1,632 + miR-335 7q32 4.8
201839_s_at TACSTD1 intron 5 1,874 + miR-559 2p 9.7
211828_s_at TNIK intron 21 5,584 - miR-569 3q26 3
213107_at TNIK 2.4
213109_at TNIK 2.3

Host gene expression levelsFigure 1
Host gene expression levels. Expression levels of GULP1, 
TNIK, MEST, EVL, TACSTD1, and CCPG1 assessed by DNA 
microarray analysis of HMCLs. The scaled values on the ver-
tical axis represent the relative intensity levels as determined 
on HG-U133A arrays.
Page 4 of 9
(page number not for citation purposes)



BMC Medical Genomics 2008, 1:37 http://www.biomedcentral.com/1755-8794/1/37
miR-335, miR-342-3p, and miR-561 are overexpressed in 
primary MM tumors
We investigated the expression levels of the three miR-
NAs/host genes in normal plasma cells and MM primary
tumors by querying a proprietary gene-expression-profil-
ing (GEP) database including four normal samples, 12
monoclonal gammopathies of undetermined significance
(MGUS), 132 MM, and nine plasma cell leukemias
(PCLs), all profiled on HG-U133A. The MM cohort of
patients was characterized for the presence of the main
IGH chromosomal translocation, chromosome 13q dele-
tion, 1q gain/amplification, and hyperdiploid status by
fluorescence in situ hybridization (FISH) analyses, and
stratified into the five molecular groups according to the
proposed translocation/cyclin D expression (TC) classifi-
cation [37]. In addition, we included in the analyses 20
normal samples, 22 MGUS, and 137 MM from two pub-
licly available MM gene expression datasets [1,27]. To
identify samples showing correlated host gene/miRNA
deregulation, we considered the entire database to estab-
lish a cut-off expression level for MEST, EVL, and GULP1
genes by calculating the mean expression value + three
standard deviations (STDEV) derived from the 24 normal
samples. In particular, we found nine MM and two PCL
samples with MEST gene expression levels exceeding the
cut-off value ("positive" patients); likewise, we identified
four MGUS, 47 MM, and three PCL "positive" patients for

miRNA and cognate host gene expression correlation analy-sisFigure 2
miRNA and cognate host gene expression correla-
tion analysis. Correlation analyses between host genes 
(GEP data, ordinate) and miRNA expression levels (Q-RT-
PCR, abscissa) in 20 HMCLs. To compare these data, we 
converted gene expression and Q-RT-PCR (expressed as 2-

ΔCt) results between the interval values 0–1. Linear regres-
sions, as well as the correlation coefficient R and the p values 
are indicated in each panel.

miRNA and DNA CN correlation analysisFigure 3
miRNA and DNA CN correlation analysis. Correlation 
analysis between DNA CN variations and miRNA expres-
sion. The red lines represent mature miRNA expression, 
normalized to Z30 small nucleolar RNA, expressed as 2-ΔCt, 
and converted between the interval values 0–1 (vertical axis 
on the right side). The spots represent the HMCL inferred 
DNA CNs (vertical axis on left side). Horizontal axis: 
HMCLs ordered according to increasing inferred CNs. The p 
value is indicated above each panel (Kendall's tau correlation 
test).
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GULP1, and one MGUS, ten MM, and one PCL for EVL,
although for each of these three genes some of the sam-
ples displayed a gene expression level slightly above the
cut-off value (Fig. 4). The distribution of the spiked
expression of MEST, EVL, and GULP1 with respect to the
major genetic characteristics of the 132 MM patients
included in the proprietary dataset are specified in addi-
tional file 4. No significant associations were found
between the subgroups of MM patients deregulating EVL
or GULP1 and any of the genetic aberrations that occur
frequently in MM. Concerning MEST, the limited number
of positive samples precluded contingency analysis.

To verify the correlated miRNA/host gene expression in
primary tumors, we used Q-RT-PCR to test for specific
miRNA expression in all of the available "positive" sam-
ples belonging to the proprietary database (Fig. 4). For
each gene, a representative number of "negative" patients

were also investigated (see results in additional file 5).
Notably, although we tested only a limited number of
samples, we found a significant correlation in expression
with the corresponding host genes for miR-335, miR-342-
3p, and miR-561 (R = 0.95 at p value = 5.03E-09, R = 0.7
at p value = 5E-03, and R = 0.78 at p value = 2E-04, respec-
tively).

Transcriptional profile associated with miR-335, miR-342-
3p, and miR-561 overexpression
To gain insight into the possible role of these three miR-
NAs deregulation in MM, we looked for a specific gene
expression signature associated with MM patients display-
ing deregulated host gene/miRNA. For each host gene, we
performed a supervised analysis grouping the 269 MM
samples according to the specific cut-off expression values
evaluated with normal plasma cells. We identified genes
that were expressed differentially among the two classes
using Significant Analysis of Microarrays software (SAM).
Interestingly, in the nine multiple myeloma patients over-
expressing MEST, 70 genes were significantly upregulated.
Of these, 12 are involved in the cell cycle (p < 0.001,
DAVID tool 2006), particularly in the M phase of the cell
cycle, and nine others are involved in actin polymeriza-
tion and microtubule-based processes. With regard to
miR-342-3p, solely the EVL itself resulted significantly
upregulated in the ten samples overexpressing EVL.
Finally, the 47 patients overexpressing GULP1 upregu-
lated 35 probes specific to 29 genes with miscellaneous
biological function. Overall the three supervised analyses
did not identify downregulated transcripts in patient
groups that overexpressed each miRNA; thus, no informa-
tion was provided regarding putative direct targets regu-
lated at the transcriptional level by the miRNAs
themselves in MM. Full details of the differentially
expressed genes resulting from the three supervised analy-
ses are given in additional file 6.

Discussion
Information concerning miRNA expression and deregula-
tion in MM is still lacking. Based on the hypothesis that
intronic miRNAs are coordinately expressed with host
transcripts [11,14,38], we sought to identify miRNAs
potentially deregulated in MM by focusing on those map-
ping within the intronic regions of host genes that were
significantly differentially expressed in a representative
panel of HMCLs profiled with U133A gene expression
chips.

Following this approach, we identified six genes contain-
ing intronic miRNAs; all but one showed appreciable
expression levels. For three miRNAs, miR-335, miR-342-
3p, and miR-561, we demonstrated coordinated expres-
sion with their cognate protein-coding genes MEST, EVL,
and GULP1; conversely, we did not find correlated expres-

Host gene expression level in primary tumors databaseFigure 4
Host gene expression level in primary tumors data-
base. Expression levels of MEST, EVL, and GULP1, as assessed 
by DNA microarray analysis of a patient database including 
samples from 24 normal donors (N), 34 MGUS, 269 MM, and 
nine PCL. The scaled values on the vertical axis represent the 
fluorescence intensity of streptavidin-PE-stained biotinylated 
cRNA hybridized to specific probes set on HG-U133A 
arrays; the baseline was set at the cut-off value calculated as 
mean + 3STDEV in 24 normal samples. The samples are 
ordered and grouped on the horizontal axis. Samples above 
the cut-off level and analysed by Q-RT-PCR are coloured in 
red; for MEST, the gene expression value is also reported of 
the sample barely exceeding the cut-off and not analysed by 
Q-RT-PCR.
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sion of miR-628 and miR-559 and their host genes
CCPG1 and TACSTD1. Notably, miR-335, miR-342-3p,
miR-561, and miR-559, but not miR-628, are sense ori-
ented with respect to the corresponding host gene. This
finding is in agreement with the evidence that intronic
miRNAs are usually oriented in the same direction as the
pre-mRNA, and thus could be under the control of the
same regulatory motifs as their host genes and processed
from the same primary mRNA transcripts regulated by
PolII. On the other hand, our data may also support the
previous suggestion that even miRNAs in a sense orienta-
tion to annotated genes (e.g., miR-559) may have their
own regulatory motifs that can be regulated by either PolII
or PolIII [12].

The coregulation of these three miRNA/host gene pairs
was also found in primary MM tumors. Specifically, our
data showed that miR-335, miR-342-3p, and miR-561
were overexpressed in a fraction of the pathological sam-
ples with respect to normal plasma cells, without correla-
tion to any of the known genetic alterations frequently
found in MM; this finding may provide further evidence
of the genetic complexity of this disease. In addition,
despite the fact that miR-335 deregulation in melanoma
and ovarian carcinoma was reported to be concordant
with CN gain [39], neither miR-335 nor miR-342-3p and
miR-561 expression levels were significantly correlated
with their corresponding locus CN in our panel of HMCLs
tested by SNPs arrays. This finding indicates that DNA CN
alterations may not be a critical factor affecting expression
of these miRNA/host genes in MM, and suggest the occur-
rence of epigenetic mechanisms.

Although determining the precise contribution of each
miRNA to myelomagenesis was beyond the scope of this
investigation, some evidence supports the potential
involvement of deregulated miRNAs/host genes in mye-
loma. Interestingly, miR-335 and miR-342-3p were
recently reported to be involved in human cancer;
depleted expression of miR-335 was found to be associ-
ated with metastatic processes in human breast cancer.
Specifically, miR-335 was shown to suppress metastasis
by altering cell morphology and decreasing cell motility,
which would limit metastatic migration [40]. Notably, we
found that the fraction of primary myeloma samples over-
expressing miR-335/MEST also showed upregulation of
genes implicated in actin polymerization and microtu-
bule-based processes. In agreement with these data, bioin-
formatic tools predicted that a set of genes involved in
actin cytoskeleton organization and biogenesis (DAAM1,
ARPC5L, JAG1, MAP2, and RASA1) were putative miR-335
targets (additional file 6). Therefore, one can speculate
that miR-335 may be involved in MM in the physiological
mechanisms reported to be altered in breast cancer, possi-
bly influencing different processes such as plasma cell
homing into the bone marrow and/or interactions with

the bone marrow microenvironment. Notably, MM
patients overexpressing miR-335/MEST also upregulated
genes promoting cell proliferation, a finding apparently in
contradiction with the function of miR-335 as an apopto-
sis permissive factor and cell cycle suppressor, as demon-
strated in cortical neurosphere cultures [41]. One possible
explanation might be that the cellular context and cooper-
ation among multiple miRNAs play a key role in the final
biological effect of miRNA. Alternatively, one cannot
exclude a specific effect of MEST overexpression itself in
promoting cell proliferation.

With regard to miR-342-3p, it is usually expressed in a
variety of human tissues, together with its host gene EVL.
Notably, it is specifically silenced in the majority of color-
ectal cancers following methylation of CpG islands
located upstream of EVL, although the functional conse-
quences of its silencing in carcinogenesis remain to be elu-
cidated [42]. In addition, miR-342-3p was substantially
downregulated in patients with primary myelofibrosis,
polycythemia vera, or essential thrombocythemia [43],
and specifically upregulated in acute promyelocytic leuke-
mia cell lines during retinoic acid-induced differentiation
[44]. Intriguingly, EVL is an actin-associated protein that
is involved in a variety of processes related to cytoskeleton
remodeling and cell polarity [45]; among miR-342-3p
predicted targets, we recognized genes involved in actin
cytoskeleton organization and biogenesis (FHL3 and,
again, RASA1). One can speculate that miR-342-3p and
EVL deregulation may target plasma cell homing into the
bone marrow and/or interactions with the bone marrow
microenvironment, much the same as for miR-335.

Finally, there is no information concerning the possible
role of deregulated miR-561 and its cognate host gene
GULP1 (which codes for an evolutionarily conserved
adaptor protein required for efficient engulfment of apop-
totic cells by phagocytes [46]) in normal or tumor cells.
Because of the high frequency of GULP1 overexpression in
MM (34%) compared with normal plasma cells, both
miR-561 and its cognate host gene warrant further inves-
tigation.

Conclusion
Our data extend the current view of miRNA origins, pro-
vide further support for the hypothesis that intronic miR-
NAs and their host genes may be regulated dependently,
and may contribute to the understanding of their biolog-
ical role in cancer. In addition, to the best of our knowl-
edge, this is the first evidence of putative deregulated
miRNAs in MM and may lead the way to identifying new
biomarkers and altered molecular pathways associated
with the disease.
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