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Abstract
Background: The regulatory subunit of cAMP-dependent protein kinase (PKA) exists in two
isoforms, RI and RII, which distinguish the PKA isozymes, type I (PKA-I) and type II (PKA-II).
Evidence obtained from a variety of different experimental approaches has shown that the relative
levels of type I and type II PKA in cells can play a major role in determining the balance between
cell growth and differentiation. In order to characterize the effect of PKA type I and type II
regulatory subunits on gene transcription at a global level, the PKA regulatory subunit genes for
RIα and RIIβ were stably transfected into cells of the ovarian cancer cell line (OVCAR8).

Results: RIα transfected cells exhibit hyper-proliferative growth and RIIβ transfected cells revert
to a relatively quiescent state. Profiling by microarray revealed equally profound changes in gene
expression between RIα, RIIβ, and parental OVCAR cells. Genes specifically up-regulated in RIα
cells were highly enriched for pathways involved in cell growth while genes up-regulated in RIIβ
cells were enriched for pathways involved in differentiation. A large group of genes (~3600) was
regulated along an axis of proliferation/differentiation between RIα, parental, and RIIβ cells. RIα/wt
and RIIβ/wt gene regulation was shown by two separate and distinct gene set analytical methods
to be strongly cross-correlated with a generic model of cellular differentiation.

Conclusion: Overexpression of PKA regulatory subunits in an ovarian cancer cell line dramatically
influences the cell phenotype. The proliferation phenotype is strongly correlated with recently
identified clinical biomarkers predictive of poor prognosis in ovarian cancer suggesting a possible
pivotal role for PKA regulation in disease progression.

Background
The critical role of cAMP acting as a second messenger and
exerting control over the regulation of cell growth and dif-
ferentiation in a wide variety of cell types has been well

established [1-3]. Experimental evidence has shown that
the selective modulation of two isoforms of cAMP-
dependent protein kinase (PKA-I and PKA-II) act as posi-
tive and negative intracellular regulators [4], respectively,
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of cell growth. PKA-I is only transiently overexpressed in
normal cells in response to the physiologic stimuli of cell
proliferation while, in contrast, it is constitutively overex-
pressed in cancer cells and this over-expression is associ-
ated with poor prognosis in many different human
cancers. The disruption of the normal balance between
PKA isozymes is highly associated with tumorigenesis and
tumor growth.

Global gene expression profiling by microarray has dem-
onstrated that antisense suppression of RIα in PC3M pros-
tate and LS-174T colon carcinoma cells, exogenously
treated with RIα antisense oligonucleotides, simultane-
ously up-regulates RIIβ and down-regulates a wide range
of genes involved in cell proliferation and transformation
[5]. Conversely, the vector-mediated overexpression of
RIIβ exhibits induction of differentiation genes along with
the suppression of cell proliferation and can lead to a
reversion of tumor phenotype. Thus, switching of PKA
isozymes can cause tumor cells to undergo a phenotypic
reversion of malignancy.

To investigate the molecular mechanisms of this phenom-
enon, ovarian carcinoma cells (OVCAR-8) were trans-
fected with human genes encoding PKA RIα or RIIβ
subunits. Ovarian cancer cells were chosen as a useful
model system since cAMP-signaling has already been
shown to be of vital importance for the normal function-
ing of the ovary [6]. RIIβ is hormonally up-regulated dur-
ing follicular development with expression of RIIβ
reaching a peak level at a highly differentiated state of fol-
licle development in response to a luteinizing hormone
(LH) surge and elevated intracellular concentrations of
cAMP. The importance of the sequence of these events led
us to expect a high sensitivity of ovarian cells to any mod-
ulations of the cAMP- dependent pathway, despite possi-
ble deregulation of this system in an established ovarian
cancer cell line. Moreover, previous studies had showed
the possibility of ovarian cancer cell growth inhibition
with the use of RIα antisense oligonucleotides [7].

Methods
Materials
OVCAR-8, human ovarian cancer cells, were obtained
from DCT-Tumor Repository (NCI – Frederick Cancer
Research Center). Tissue culture reagents were purchased
from (Invitrogen, Inc., Carlsbad, CA). Monoclonal anti-
body for RIα, RIIα, and RIIβ were purchased from BD Bio-
sciences Pharmingen (San Diego, CA). Polyclonal
antibodies for RAB25 were kindly provided by Dr. K.
Cheng from MD Anderson Cancer Center, University of
Taxes. All other antibodies were purchased from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA). DOTAP was
purchased from Roche Applied Science (Indianapolis,
IN). PKA inhibitor H89 and Protease Inhibitor Cocktail I

were obtained from EMD Biosciences (Darmstadt, Ger-
many).

Cell culture and treatment
OVCAR-8 cells were grown in RPMI Medium 1640 sup-
plemented with 10% heat-inactivated fetal bovine serum,
MEM non-essential amino acids, and antibiotic-antimy-
cotic, in a humidified incubator (95% air and 5% CO2) at
37°C. The stable transfectants, containing retroviral vec-
tors OT1521 or OT1529 with the internal inducible
mouse metallothionine-1 (MT-1) promoter, and genes
encoding PKA subunits RIα and RIIβ were obtained as
previously described [8]. For maximal induction of PKA
genes without cytotoxicity, cells were treated with 60 uM
ZnSO4 for 6 days prior to the start of the experiment. To
exclude other effects of Zn++, parental cells were treated
with ZnSO4 in the same manner as transfected cells.

Cell morphology studies
Whole-cell morphology was determined as previously
described [9]. Briefly, cells were washed with PBS, fixed
with 70% methanol and stained with Giemsa (BioRad,
Hercules, CA) according to the manufacturer's instruc-
tions. After staining, the cells were viewed under the
microscope.

Western blotting
Western blot analysis of proteins in parental and trans-
fected OVCAR-8 cells was performed as described earlier
[9]. Briefly, cells were lysed by homogenization in 20 mM
Tris-HCl, pH 7.5, 100 mM NaCl, 5 mM MgCl2, 1% NP40,
0.5% sodium deoxycholate, Protease Inhibitor Cocktail I
with subsequent centrifugation at 10 000 rpm, 10 min,
4°C. Equal amounts of protein lysate were subjected to
SDS-PAGE, transferred to nitrocellulose membranes, and
probed with antibodies as indicated in figure legends.
Complexes were visualized with the appropriate horserad-
ish peroxidase-conjugated secondary antibody and devel-
oped by enhanced chemiluminescence procedure (Santa
Cruz Biotechnology, Santa Cruz, CA).

RNA purification, northern blot analysis, microarray probe 
labeling
Total RNA was extracted using the Trizol Reagent method
(Invitrogen, Carlsbad, California 92008, cat. no. 15596-
026). Northern blot analysis was performed as described
earlier [8]. Additional purification was performed on
RNAeasy columns (Qiagen, Valencia, CA 913555, cat. no.
74104). The quality of total RNA samples was assessed
using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA).

RNA samples were labeled according to the manufacturers
recommended protocols. In short, 0.5 μg of total RNA
from each sample was labeled by using the Illumina RNA
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Amplification Kit (Ambion, Austin, TX 78744-1832, cat.
no. I1755). Single stranded RNA (cRNA) was generated
and labeled by incorporating biotin-16-UTP (Roche Diag-
nostics GmbH, Mannheim, Germany, cat. no.
11388908910). 0.85 ugs of biotin-labeled cRNA was
hybridized (16 hours) to Illumina's Sentrix HumanRef-8
Expression BeadChips (Illumina, San Diego, CA 92121-
1975, cat.no. 11201828). The hybridized biotinylated
cRNA was detected with streptavidin-Cy3 and quantitated
using Illumina's BeadStation 500GX Genetic Analysis Sys-
tems scanner.

For Affymetrix, 5 μg of total RNA from each sample was
converted into double-stranded cDNA by using the Super-
Script Choice system (Invitrogen) with an oligo-dT primer
containing the T7 RNA polymerase promoter. The dou-
ble-stranded cDNA was used in an in vitro transcription
reaction using the BioArray RNA transcript labeling kit
(Enzo Life Sciences, Inc., Farmingdale, NY 11735). 20 ugs
of biotin-labeled cRNA was fragmented and hybridized
(16 hours) to Affymetrix GeneChip® Human Genome
U133 Plus 2.0 Arrays. The hybridized biotinylated cRNA
was detected with phycoerythrin-streptavidin and quanti-
tated by scanning (Affymetrix GeneChip Scanner).

Quantitative RT-PCR (QRT-PCR) analysis
Reverse transcription was performed using total RNA iso-
lated from tissue or cells and processed with Applied Bio-
systems (Foster City, CA) High-Capacity cDNA Archive kit
first-strand synthesis system for RT-PCR according to the
manufacturer's protocol. QRT-PCR was performed using
the TaqMan assay system from Applied Biosystems. All
PCR amplifications were carried out in duplicate on an
ABI Prism® 7300 Sequence Detection System, using a
fluorogenic 5' nuclease assay (TaqMan® probes). Probes
and primers were designed and synthesized by Applied
Biosystems. Relative gene expressions are calculated by
using the 2-ΔΔCt method, in which Ct indicates cycle
threshold, the fractional cycle number where the fluores-
cent signal reaches detection threshold [10]. The normal-
ized ΔCt value of each sample is calculated using a total of
3 endogenous control genes (gapdh, actb, and pgk1). Fold
change values are presented as average fold change = 2-

(averageΔΔCt) for genes in treated relative to control samples.
Error bars represent the SEM for multiple biological repli-
cates.

Array data analysis
Preliminary analysis of Illumina data was performed
using Illumina BeadStudio software which returns the
trimmed mean average intensity for each single gene
probe type (non-normalized). Any gene consistently
below a background threshold level of D = .98 for all sam-
ples was eliminated from further analysis. This back-
ground filter resulted in the removal of approximately

55% of all the genes on the Illumina array. Z-transforma-
tion for normalization was performed on the remaining
11,048 genes for each Illumina sample/array on a stand-
alone basis [11] [see Additional File 1].

Affymetrix data in the form of CEL files was normalized
by the RMA method [12,13] using the web-based Biocon-
ductor software [12,14]. Probes close to or at background
were eliminated if any probe stayed consistently in the
lower (average) quartile for all assayed samples.

Significant changes in gene expression were calculated for
either RIA or RIIB versus control by Z test [15,16]. In addi-
tion, the mean difference of all calculated changes in gene
expression was expressed in units of standard deviation
from the average change of all genes for that comparison
and referred to as a Z ratio. Z ratios are a direct measure of
the likelihood that an observed change is an outlier in an
otherwise normal distribution and their use allows for the
detection of large changes with high variance which might
otherwise be missed by conventional significance testing.
Significant genelists were calculated for all categories (RIA
or RIIB, up or down, separately for both Affymetrix and
Illumina data) by selecting genes which satisfied signifi-
cance threshold criteria of Z test p- values less than or
equal to 0.001 (10-3), a false discovery rate less than or
equal to 0.1 [17], and a fold change ± 2 or greater, or a Z
ratio value greater than ± 3.0 [see Additional File 2]. Pro-
liferation/differentiation genes were computed by the
simple criteria that their average gene expression was
either RIα > Control > RIIβ (proliferation) or RIα < Con-
trol < RIIβ (differentiation) [see Additional File 3].

In order to combine data from both Affymetrix and the
Illumina gene expression arrays, we first mapped the gene
annotations for each platform to the Human Genome
Organization (HUGO) human gene symbols and names.
Only genes with a positive identification to a HUGO gene
were retained and this list was trimmed further to remove
genes consistently at or below background as measured
for either platform (as described above). Finally, duplicate
gene probes were averaged leaving a core group of 7,170
genes common to both platforms, identified and used in
subsequent analyses.

The myotube formation dataset was derived from a total
of 48 samples corresponding to a time course of nine days
of cells in culture following serum withdrawal (John Hall,
personal communication). A minimum of 5 replicates at
each time point were tested. In addition, cells were tested
with and without gamma interferon as an internal con-
trol. A total of 8,446 genes were identified as being present
and which had a clear functional annotation and were
retained for further analysis. Significant changes in gene
expression were calculated by the criteria outlined above
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by either comparing the average gene expression of the
entire time course (day 1–day 9) or the interferon treated
cells to the average gene expression at baseline.

Hierarchical clustering was performed using the Cluster
and TreeView software programs, developed at Stanford
University [18]. The clustering algorithm was set to com-
plete linkage clustering using the uncentered Pearson cor-
relation.

GSMA, GSEA, and functional annotation
Gene Set Matrix Analysis (GSMA) [19] was performed
using the median differences for differentially expressed
genes tested against genesets derived from a variety of
sources (for example, the Pathway genelists were origi-
nally obtained from the Gene Set Enrichment Analysis
(GSEA) website maintained by the Broad Institute @
http://www.broad.mit.edu/gsea.

PAGE calculations [20] were automatically derived using
a custom script for the GSMA algorithm implemented in
JMP (v6.0) the statistical analysis software from the SAS
Institute (Cary, NC), according to the formula:

Z = (Sm - μ)*m1/2/σ

where Sm is the median of Z ratio values of genes for a
given gene set and the size of the given gene set is m. The
median of total Z ratio values (μ) and standard deviation
of total Z ratio values (σ) of a given microarray data set
were calculated for all genes between two experimental
groups.

A variation of this procedure is the substitution of differ-
ent gene expression change measures such as fold
changes, logratios, or p-values, so, for example, both z
ratios and the log of fold changes were independently
tested in GSMA for both Affymetrix and Illumina meas-
urements [see Additional File 4]. These measurements
were shown to give highly concordant results at the gene
set level.

Z ratios were used as the gene expression change metric to
test the OVCAR significantly regulated genelists by GSMA
against the myoblast-myotube dataset. The top 250 genes
(by z ratio) of each significant genelist for either RIα or
RIIβ regulated genes were used for both GSMA and GSEA
analysis.

Functional annotation was performed using the Database
for Annotation, Visualization and Integrated Discovery
(DAVID), NIAID/NIH [21,22].

Results
Overexpression of PKA subunits
To study the role of PKA isozymes in the regulation of cell
proliferation in vitro, OVCAR-8 human ovarian cancer
cells were transduced with retroviral vectors containing
human PKA subunit genes, including the coding
sequences for RIα, RIIα, RIIβ, and the catalytic subunit
Cα. As shown in Figure 1A, a marked increase was seen for
the mRNA levels of PKA subunits in transfectants, while in
cells receiving the control vector, the subunit mRNA levels
remained unchanged compared with the parental cells.
Similarly, Western blot analysis (as shown in Figure 1B)
confirmed the specific overexpression of PKA subunit pro-
teins as compared with the parental cells.

We next examined the growth properties of the PKA sub-
unit gene transfectants in vitro and determined that in
monolayer culture, as expected, RIIβ transfectants showed
a dramatic growth inhibition while, in contrast, RIα trans-
fectants grew at a much faster rate than parental control
cells (Figure 1C–F). These results were not surprising in
light of the fact that it had been previously demonstrated
that blockade of PKA-I protein with RIα antisense oligo-
nucleotides causes arrest of tumor cell growth, induces
apoptosis, inhibits tyrosine kinase signaling, and blocks
changes in cell morphology [7,23-27] while, conversely,
preferential expression of PKA-II is found in normal non-
proliferating tissues as well as in growth-arrested cells
[28,29].

RIα and RIIβ PKA subunit transfected cells were chosen
for further characterization based upon their distinct and
diametrically opposed phenotypes relative to each other
and to their parental (OVCAR) cell line. The cellular mor-
phology of RIα, parental, and RIIβ cells appeared to
define an axis which in the parental to RIα direction leads
to uncontrolled cell growth and proliferation and in the
parental to RIIβ direction leads to apparent cellular differ-
entiation and quiescence. We set out to determine
whether this axis could be defined at the molecular level,
on the basis of changes in global gene expression.

Microarray analysis of subunit gene expression
Three biological replicates for each of the two subunit cell
lines (RIα and RIIβ) and the parental OVCAR cells were
used for microarray measurement analysis using several
different platforms including Illumina, Agilent, and
Affymetrix [30]. The overall gene expression results were
shown to be highly correlated between platforms as illus-
trated, for example, by the similar results in calculations
of selected regulated pathways obtained using either
Affymetrix or Illumina (Figure 2C, Figure 3). For the pur-
poses of this report, only the microarray measurements
generated using Illumina BeadArrays will be used for all
data analysis and results unless otherwise specifically indi-
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PKA subunit overexpression in human ovarian cancer cells (OVCAR8)Figure 1
PKA subunit overexpression in human ovarian cancer cells (OVCAR8). 1A. Northern blot analysis of transfectants: 
parental cells, vector only, Cα PKA catalytic subunit, RIα, RIIα, RIIβ regulatory subunits as indicated. 1B. Western blot analysis 
– same transfectants. 1C. OVCAR 8 parental cells in culture. 1D. RIα-transfected cells in culture. 1E. RIIβ-transfected cells in 
culture. 1F. Growth response curves for PKA subunit transfectants.
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cated. A total of 11,048 genes were called present out of
24,350 genes tested on the arrays and were used as the
basis group for further analysis. All present genes are dis-
played in the heat map in Figure 2B constructed by
processing the data using unsupervised hierarchical clus-
tering [18]. In this view, only the gene expression values
have been re-sorted and the sample order has been held
constant in order to visibly demonstrate both the repro-
ducibility of replicates (r2 > 0.99) [30] within samples as
well as the dramatic changes in gene expression by sample
type. A subset of the results from a preliminary pathway
analysis of all the data by Gene Set Matrix Analysis
(GSMA) [19] focusing on the global regulation of either
RIα or RIIβ versus parental is displayed in Figure 2C. Mul-
tiple pathways are differentially regulated between RIα
and RIIβ cell types including genes related to apoptosis,
energy metabolism (mitochondrial pathway), mRNA
processing and splicing, and cell cycle. Interestingly, regu-
lated genes of the RIα and RIIβ cell types versus parental

were shown to be concordant with results from a series of
experiments in which fifty fibroblast cultures derived
from ten anatomic sites were cultured in 10% fetal bovine
serum and a stereotyped gene expression program identi-
fying genes that were reproducibly induced or repressed in
fibroblasts in response to serum was identified [31]. These
genes (Fig. 2C, CHANG_SERUM_RESPONSE_UP or DN)
were enriched in RIα and RIIβ cells for up and down-reg-
ulation matching serum stimulated (RIα) or serum
depressed (RIIβ) gene expression. Furthermore, Chang et
al. experimentally derived a subset of serum activated
genes which eliminated the contributions of genes
directly related to cell proliferation (i.e. directly related to
cell cycle progression). Testing of RIα and RIIβ regulated
genes against this core group of genes
(SERUM_FIBROBLAST_CORE_UP or DN) gave similar
results as before, demonstrating that the changes in gene
expression induced by these two PKA subunits went well
beyond just simple alterations of cell cycle. The genes

Heatmap visualization of gene expression data from PKA subunit transfectionsFigure 2
Heatmap visualization of gene expression data from PKA subunit transfections. 2A. Combined proliferation/differ-
entiation genes (1933/1660 genes, respectively: Supplementary Data 4) computationally derived from a total of 11,048 genes 
detected (2B, and Supplementary Data 1). All samples in triplicate (biological replicates), gene expression normalized by rows 
as well as by individual samples to enhance visualization. 2C. Heatmap of a subset of GSMA enrichment scores using gene lists 
of pathway and gene signatures from the Broad Institute (MSigDB c2: Curated Gene Sets) (see Supplementary Data 3 for all 
GSMA scores). Red indicates positive enrichment (median gene expression of all genes in list > 0), green indicates negative 
enrichment (median gene expression of all genes in list < 0). Datasets tested include z ratios and log fold changes generated for 
PKA subunits samples using both Affymetrix U133 Plus 2.0 arrays as well as Illumina BeadArrays.

All dataProliferation/differentiation genes Pathway analysis

A CB
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induced in the fibroblast serum-response program are
expressed in tumors, by the tumor cells themselves, and
by tumor-associated fibroblasts. They are evident at an
early clinical stage and predict increased risk of metastasis
and death in breast, lung, and gastric carcinomas [31].
Further concordance of RIα and RIIβ regulated genes was
demonstrated with other empirically derived gene expres-
sion signatures related to cancer and cancer progression,
including, for example, the down-regulation of genes in
RIIβ cells related to DNA replication (E2F1_DNA_UP)
[32], as well as to genes down-regulated following suc-
cessful treatment of sarcoma cell lines with Ecteinascidin
743 (ET743_SARCOMA_DN) [33], and to p53-depend-
ent down-regulation of gene expression in the ovarian
cancer cell line 2774 following the ectopic expression of
p21(CDKN1A) (P21_P53_ANY or MIDDLE_DN) [34].
Conversely, the up-regulation of genes in RIα cells was
shown to be concordant with genes up-regulated in
mouse skin by the phorbol ester carcinogen, TPA
(TPA_SKIN_UP) [35], with genes down regulated in

human fibroblasts due to old-age and progeria
(OLDAGE_DN) [36], with genes associated with the over-
expression of human telomerase in human mammary epi-
thelial cells (HMECs) leading to a diminished
requirement for exogenous growth factors
(SMITH_HTERT_UP) [37], and to 30 genes whose up-reg-
ulation most clearly defined the progression from MM1 to
MM4 subgroups in patients with multiple myeloma, cor-
relating to clinical parameters of poor prognosis for this
cohort
(ZHAN_MULTIPLE_MYELOMA_SUBCLASSES_DIFF)
[38]. Figure 3 illustrates a breakout of one of these corre-
lating gene expression signatures on a gene by gene basis
(VERNELL_PRB_CLSTR1) which catalogues a group of
genes which are up-regulated by E2F and down-regulated
by pRB and p16 in human osteosarcoma cells. GSMA gene
set analysis indicated that as a group, these genes were
down regulated in RIIβ cells and, as shown in Fig. 3,
include the specific down-regulation of genes involved in

Graphical representation of a subset of genes taken from one of the genelists tested by GSMA ((Vernell_PRB_Clstr2) and found to be negatively enriched for down-regulated genes in RIIβ transfected cells but not in RIA transfected cells, each relative to parental cellsFigure 3
Graphical representation of a subset of genes taken from one of the genelists tested by GSMA 
((Vernell_PRB_Clstr2) and found to be negatively enriched for down-regulated genes in RIIβ transfected cells 
but not in RIA transfected cells, each relative to parental cells. Fold changes (fc) derived from either the Affymetrix 
or Illumina platforms are shown. Featured genes include those involved in cell division.
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DNA replication and repair (PCNA, FANCA), and control
of the cell cycle, and cell division (CDCA5).

Identification and validation of key regulatory genes
Several candidate genes identified in previous studies of
ovarian cancer progression were identified in the PKA
OVCAR model system by microarray and validated by RT-
PCR (Figure 4). These genes include RAB25, a member of
the RAS oncogene family, recently implicated in the regu-
lation of cell proliferation and apoptosis in ovarian cancer
cells [39] and with reports that tumor cells overexpressing
the RAB25 protein were more aggressive and associated
with a poorer clinical outcome [40]. A high level of RAB25
protein in patients with either breast or ovarian cancer
was associated with an almost 50% reduction in five year
survival rates. RAB25 mRNA levels were elevated between
10- (microarray) to 100-fold (RT-PCR), in RIα transfected
OVCAR cells relative to either RIIβ transfected or parental
OVCAR cells.

The loss of a tumor suppressor gene, tumor suppressor
candidate 3 (TUSC3), was seen in RIα cells compared to
either RIIβ transfected or to parental OVCAR cells. Loss of
heterozygosity on chromosomal band 8p22 and
decreased gene expression of TUSC3 has been associated
with an increase of metastatic potential in prostate, color-
ectal, and ovarian cancer [41-43]. In particular, TUSC3
showed significantly lower expression in grade 3 primary
ovarian carcinoma tumors compared with tumors of

lower grade or compared with normal controls [41].
Taken together, the dramatic up-regulation of RAB25 and
down-regulation of TUSC3 in RIα cells appears to faith-
fully mimic the activity profiles of proven markers of ovar-
ian cancer clinical progression.

Several other interesting genes displayed direct counter-
regulation between RIα and RIIβ cells, including the
human baculoviral IAP repeat-containing 3 (BIRC3) gene
mRNA. The BIRC3 gene codes for a protein whose func-
tion includes the antagonism of the activation of apopto-
sis-promoting ICE-like proteases. Elevated levels of BIRC3
have been shown by others to promote tumor cell survival
[44,45], and the down-regulation of BIRC3 in RIIβ cells
may indicate the release of a block to apoptosis which
may account for, in part, for the decreased cell number in
this cell type. Counter-regulation in the opposite direction
was displayed by the peroxisome proliferator-activated
receptor gamma (PPARG) gene, which was highly up-reg-
ulated in RIIβ cells and mildly down-regulated in RIα
cells. PPARG is a gene which has been shown to play a piv-
otal role in the processes of cellular differentiation, adipo-
genesis, and several reports connect PPARG status with
neoplastic processes suggesting that PPARG may act as a
tumor suppressor for some tissues and in some cellular
contexts [46,47].

RT-PCR validation of gene expression changes in selected PKA subunit proliferation/differentiation genesFigure 4
RT-PCR validation of gene expression changes in selected PKA subunit proliferation/differentiation genes. The 
fold changes for selected genes calculated from either RT-PCR (RT) or microarray (MA) are shown. T-test p-values are indi-
cated by asterisks.
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Cross-model validation
PKA regulated genes were tested directly against an unre-
lated in vitro model system of cellular proliferation/differ-
entiation for confirmation that these data were
representative of a generic cellular response. A gene
expression profile for a time course of human myotube
formation (Figure 5A) was used for comparison and will
be described in detail elsewhere. Examination of the myo-
tube gene expression profile shows that the major pro-
grammatic changes start almost immediately following
serum withdrawal and remain relatively constant
throughout the time course.

Genelists were derived from the OVCAR data using the
top 250 genes (by size of fold change) significantly regu-
lated for either RIα or RIIβ cells versus parental cells as
previously described [30] and these genelists were tested
against all calculated changes in gene expression between
day 2–9 and day 0–1 from the myotube dataset for con-

cordance by Gene Set Matrix Analysis (GSMA) analysis
[19]. The results as shown in Figure 5B, demonstrated a
highly significant correlation for RIα up-regulated genes
((p < 2E-4) and RIIβ down-regulated genes (p < 1E-11)
and the gene expression differences which distinguish
myoblasts from myotube cells. Genes up-regulated in rap-
idly dividing myocytes correlate well with genes up-regu-
lated by RIα or down-regulated by RIIβ in OVCAR cells.
These apparently unrelated, and certainly biologically dis-
tinct, cell types are connected by a common theme at the
level of gene expression.

As a cross check to the GSMA calculations, we decided to
test the same dataset/genelist combination using another
increasingly popular gene set analysis method, Gene Set
Enrichment Analysis (GSEA) [48-50]. In this instance,
genelists derived from significantly regulated genes in the
myotube/myoblast dataset were used as positive controls
and OVCAR PKA subunit significant genelists derived

Cross model validation of PKA subunit regulated genes versus human myotube differentiation genesFigure 5
Cross model validation of PKA subunit regulated genes versus human myotube differentiation genes.A. Heat 
map of the hierarchical clustering of gene expression accompanying myotube induction following the withdrawal of serum from 
myoblasts in culture from baseline (day 0) to day 9. B. GSMA results using genelists corresponding to the top 250 RIα and RIIβ 
significantly up- or down-regulated genes versus either the myotube dataset or IFN-treated myoblasts (as a negative control). 
Significant concordance between RIα up-regulated and, conversely, RIIβ down-regulated genes with myoblast up-regulated 
genes is shown. GSMA scores are shown as significance values [1-log(p)] generated from a two-tailed test of the Standard Nor-
mal Distribution.

Day      0     1     2    3     5    7   9    - +   IFN

human myotube formation

A B
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from three different commercial platforms [51] were
tested simultaneously against the entire myoblast/myo-
tube dataset. GSEA, without supervision, grouped all the
submitted genelists in the predicted direction (Table 1),
i.e. RIIβ up-regulated and RIα down-regulated genelists
were associated with myotube formation (MYO_UP),
while RIα up-regulated and RIIβ down-regulated genelists
were associated with myoblasts (MYO_DOWN). In GSEA,
the difference data is rank ordered from the largest posi-
tive change to the largest negative change (the grey profile
at the bottom of each GSEA graph – Figure 6). Genes from
the submitted genelists are mapped to this distribution
(blue bar code) and enrichment for any particular gene
list at either end of the distribution is statistically calcu-
lated. The Illumina derived OVCAR gene lists, in particu-
lar, performed consistently well, with three of the four
lists surviving a stringent permutation estimate of signifi-
cance (NOM p-val) followed by a multiple comparison
correction (FDR q-val < 0.1). The functional annotation of
the core group of genes (highlighted in Fig. 6 by red cir-
cles) corresponding to the overlap between RIα and
myoblast up-regulated genes included genes involved in
energy metabolism, mRNA processing, and ribosome for-
mation. Functional annotation of the core group of genes
corresponding to the overlap between RIβ and myotube
up-regulated genes included genes involved in the forma-
tion of extracellular matrix, focal adhesion and cell-cell
communication. In the ovarian cancer cell model we have
used, a shift in the relative amounts of the RIα and the
RIIβ regulatory subunits of PKA is sufficient to trigger a
programmatic shift that both morphologically and at the
level of gene expression looks very much like a generic
program of cellular proliferation and differentiation.

Discussion
We chose to characterize RIα and RIIβ transfected ovarian
cancer cells where the relative levels of Type I and Type II
PKA isozymes have been deliberately shifted with obvious
and profound consequences (Fig. 1C–E). It appeared
likely that these effects would also be paralleled at the
level of gene expression and they were indeed reproduci-
ble and profound (Fig. 2B). In order to directly investigate
the apparent antagonistic effects of RIα and RIIβ in ovar-
ian cancer cells at the gene expression level, a large group
of genes was identified solely on the basis that their gene
expression progressed through the RIα-parental-RIIβ axis
and these genes were tested for biological relevancy by
looking for patterns of functional enrichment of genes
involved in proliferation (RIα > parental > RIIβ), or differ-
entiation (RIα < parental < RIIβ). We performed gene set
analysis on these data and showed that the association of
RIα and RIIβ with proliferation/differentiation genes was
consistent with the resulting patterns of GSMA enrich-
ment scores, a subset of which is featured in Fig. 2C. One
particularly striking example of this enrichment was the
precise overlap of RIα and RIIβ with up- and down-regu-
lation in the Chang serum response data [31]. The Chang
study investigated aspects of cancer invasion and metasta-
sis that appear to overlap with the gene expression pattern
of wound healing (modeled by response to serum expo-
sure) since genes induced in the fibroblast serum-
response program are often found to be coordinately up-
regulated in many human tumors as well [31]. Our data
tends to support their hypothesis of a connection since
RIα-induced gene expression not only correlates well with
a positive response to serum but also simultaneously sig-
nificantly up-regulates genes, like RAB25 (Fig. 4), inde-
pendently associated with advanced metastasis in ovarian
cell cancer.

Table 1: GSEA gene set analysis of PKA subunit regulated genes versus human myotube differentiation data.

NAME SIZE ES NES NOM p-val FDR q-val

MYOTUBE_UPREG 250 0.889 1.607 0.007 0.005
RIIB_UPREG_OC_AFFY_TOP250 143 0.335 1.465 0.008 0.037
RIA_DOWNREG_OC_ILLUMINA_TOP250 225 0.357 1.368 0.03 0.057
RIIB_UPREG_OC_ILLUMINA_TOP250 199 0.337 1.363 0.037 0.048
RIA_DOWNREG_OC_AFFY_TOP250 157 0.317 1.221 0.14 0.145

MYOTUBE_DOWNREG 250 -0.857 -1.563 0.007 0.014
RIIB_DOWNREG_OC_ILLUMINA_TOP250 222 -0.418 -1.496 0.012 0.021
RIA_UPREG_OC_ILLUMINA_TOP250 175 -0.305 -1.148 0.254 0.51
RIIB_DOWNREG_OC_AFFY_TOP250 178 -0.296 -1.038 0.369 0.451
RIA_UPREG_OC_AFFY_TOP250 153 -0.24 -0.932 0.591 0.563

The top 250 up- or down-regulated genes from either RIα or RIIβ cells were derived from independent measurements made on either Affymetrix 
or Illumina microarrays and tested against the results of a human myotube versus myoblast comparison dataset. Bolded rows indicate statically 
significant results (FDR q-val < 0.25). MYOTUBE_UP and MYOTUBE_DOWN are control genelists derived from the top 250 up- or down-
regulated genes derived directly from the myotube dataset. Size refers to the number of genes in the dataset found using a particular gene list, ES = 
enrichment score, NES = normalized enrichment score, NOM = nominal p-value following permutation analysis, FDR = false discovery rate 
(multiple comparisons correction), FWER = family wise error rate. For a complete discussion of this method see GSEA Algorithm.
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Over-expression of RAB25 in both breast and ovarian can-
cer cells reportedly decreased apoptosis and increased
proliferation of these cells in culture and increased their
aggressiveness in vivo [52]. RAB25 was among a group of
genes whose overexpression distinguished ovarian/pri-
mary peritoneal serous carcinoma (OC/PPC) from diffuse
peritoneal malignant mesothelioma (DMPM), two highly
aggressive tumor types which are closely related, both
morphologically and histogenetically [53]. All evidence to
date suggests that increased RAB25 gene expression (both
by increases in DNA copy number as well as accompany-

ing increases in mRNA expression levels [54]) is specifi-
cally associated with ovarian cancer progression and our
results demonstrate that elevated levels of the RIα PKA
regulatory subunit can lead directly to elevated levels of
RAB25 in ovarian cancer cells. Similarly, the TUSC gene
encodes a protein with oligosaccahryl transferase activity
which was originally identified as a homozygous deletion
in metastatic prostate cancer [42]. TUSC3 has since been
shown to be hypermethylated in acute lymphoblastoid
leukemia (ALL) cells [55], as well as in cervical intraepite-
lial neoplasia [56], and to be specifically associated with

GSEA gene set analysis of PKA subunit regulated genes versus human myotube differentiation dataFigure 6
GSEA gene set analysis of PKA subunit regulated genes versus human myotube differentiation data. The top 
250 RIα, RIIβ, and myotube significantly up- and down-regulated genes are graphically displayed as indicated across a rank 
ordered distribution of all myotube versus myoblast changes in gene expression. The red curves report the values of a modi-
fied Kolmogorov-Smirnoff cumulative statistic [50] across the distribution of all changes in gene expression (of the myotube 
dataset). The peak of the curve (either above or below the midpoint of zero) becomes the maximum enrichment score (ES) 
which is normalized by gene list size to generate a normalized enrichment score (NES) and tested for significance by permuta-
tion analysis (NOM p-val, as reported in Table 1). Myotube up- or down-regulated genelists were used as positive controls. 
RIIβ and RIα up- and down-regulated genes are shown to cross correlated with myotube changes in gene expression (red cir-
cles indicate areas of enrichment).

MYO UP RIIB UP RIA DOWN

MYO DOWN RIIB DOWN RIA UP

A B C

D E F
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loss of heterozygosity (LOH) on chromosomal band
8p22, a common event in several epithelial tumors
including ovarian carcinoma [41]. Significantly lower
expression of TUSC3 was correlated with an increase in
clinical grade severity in a study of 58 primary ovarian car-
cinoma tissues [41]. The overexpression of RIα PKA regu-
latory subunit leads directly to significantly decreased
levels of TUSC3 in the OVCAR PKA subunit model sys-
tem.

We have accumulated evidence from cell growth and mor-
phology, from pathway involvement in global gene
expression patterns, and from key regulatory genes which
act as biomarkers for clinical ovarian cancer progression,
that the transfection of PKA regulatory subunits in an
ovarian cancer cell line directly controls cell fate along an
axis which we have characterized as proliferation/differ-
entiation (RIα-parental-RIIβ). We tested this characteriza-
tion directly by correlating significant changes in gene
expression derived from the OVCAR model system against
the entire dataset of gene expression changes generated
from an in vitro model system of human myotube forma-
tion using both a parametric (GSMA) and a non-paramet-
ric (GSEA) approach. Both analytical techniques returned
results, without supervision, which indicated a significant
overlap between the two model systems.

While it is always hazardous to extrapolate without hesi-
tation from immortalized cell lines in tissue culture into
the behavior of cells in an intact environment under vari-
ous physiological conditions and stresses, cell lines, how-
ever, are still widely used as in vitro models in cancer
research because they are relatively easy to handle, and are
a renewable resource that can be grown in almost infinite
quantities [57]. In general, they exhibit a relatively high
degree of homogeneity and preserve in vitro, the genetic
aberrations unique to their parent histology from which
they were derived despite the fact that they are prone to a
measurable level of genotypic and phenotypic drift during
their continual culture [58]. Despite these caveats we have
demonstrated that an established ovarian epithelial can-
cel line, OVCAR8, can be manipulated by the selective
overexpression of PKA regulatory subunits into states,
which at the level of gene expression, are clearly associated
with either progression or differentiation. We show that
these states are both general (canonical pathway regula-
tion) as well as specifically correlated with patterns of
gene expression related to cancer progression as reported
from other publicly available microarray studies. We pro-
vide evidence on a gene-by-gene basis that biomarkers
specifically associated with poor prognosis in ovarian can-
cer (elevated levels of RAB25, decreased levels of TUSC3)
are dramatically elevated by RIα over expression in a cell
line which may well be acting, in this case, as a stage-spe-
cific surrogate to a full blown ovarian cancer cell malig-

nancy. Finally, we provide evidence that this stage-specific
transition can not only be triggered solely by the differen-
tial expression of PKA regulatory subunits but also corre-
lates well with an, otherwise, unrelated model system of
proliferation/differentiation generated by the mapping of
gene expression changes between myoblast and myotube
cells.

Conclusion
The overexpression of PKA regulatory subunits in an ovar-
ian cancer cell model has been used to show that cells
enter either a hyperproliferative (RIα) or a quasi-quiescent
(RIIβ) phenotypic state which, at the level of gene expres-
sion, mimics changes in gene expression associated with
good or poor prognosis in ovarian cancer clinical out-
comes. These patterns of gene expression are also clearly
related to a more generalized pattern of gene expression in
other model systems of cellular proliferation and differen-
tiation. Taken altogether, these observations support the
conclusion, already suggested by a great deal of previous
work, that whether causative or in part as a reaction to
other cellular events, the state and condition of PKA
remains a fundamental determinant of cell fate.
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