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Abstract
Background: Inflammation is a hallmark of many human diseases. Elucidating the mechanisms
underlying systemic inflammation has long been an important topic in basic and clinical research.
When primary pathogenetic events remains unclear due to its immense complexity, construction
and analysis of the gene regulatory network of inflammation at times becomes the best way to
understand the detrimental effects of disease. However, it is difficult to recognize and evaluate
relevant biological processes from the huge quantities of experimental data. It is hence appealing
to find an algorithm which can generate a gene regulatory network of systemic inflammation from
high-throughput genomic studies of human diseases. Such network will be essential for us to
extract valuable information from the complex and chaotic network under diseased conditions.

Results: In this study, we construct a gene regulatory network of inflammation using data
extracted from the Ensembl and JASPAR databases. We also integrate and apply a number of
systematic algorithms like cross correlation threshold, maximum likelihood estimation method and Akaike
Information Criterion (AIC) on time-lapsed microarray data to refine the genome-wide
transcriptional regulatory network in response to bacterial endotoxins in the context of dynamic
activated genes, which are regulated by transcription factors (TFs) such as NF-κB. This systematic
approach is used to investigate the stochastic interaction represented by the dynamic leukocyte
gene expression profiles of human subject exposed to an inflammatory stimulus (bacterial
endotoxin). Based on the kinetic parameters of the dynamic gene regulatory network, we identify
important properties (such as susceptibility to infection) of the immune system, which may be
useful for translational research. Finally, robustness of the inflammatory gene network is also
inferred by analyzing the hubs and "weak ties" structures of the gene network.

Conclusion: In this study, Data mining and dynamic network analyses were integrated to examine
the gene regulatory network in the inflammatory response system. Compared with previous
methodologies reported in the literatures, the proposed gene network perturbation method has
shown a great improvement in analyzing the systemic inflammation.
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Background
Recently, the employment of microarray technology has
rapidly produced vast catalogs of gene expression activi-
ties. The immense data highlights the need for a system-
atic tool to identify and analyze the underlying gene
regulatory networks [1,2]. Several computational meth-
ods for the inference of transcriptional regulatory net-
works from experimental microarray data in
Saccharomyces cerevisiae have been published [3,4]. The
genome-wide transcriptional responses of inflammation
are usually focused on the known functional interactions
of the master switch proteins, such as Rel or NF-κB pro-
teins [5-7]. The identification of NF-κB as a key player in
the pathogenesis of inflammation suggests that NF-κB-
targeted therapeutics might be effective in treating dis-
eases like rheumatoid arthritis (RA), which is a well-
known disease where inflammatory response is causing
the primary damage [8]. However, inflammation is usu-
ally a life-preserving response, as reflected by the
increased risk of grave infections in people with genetic
deficiencies in key components of the inflammatory sign-
aling pathways [9].

Although inflammation is a hallmark of many human dis-
eases [10,25], few studies have evaluated the genome-
wide responses induced by systemic inflammation in
human. DNA microarray has allowed the semi-quantita-
tive measurement of gene expression programming in
great depth and on a broad scale. However, it is a chal-
lenge to overcome the difficulties of recognizing and eval-
uating relevant biological processes from vast quantities
of experimental data. Recently, systems biology has
gained much attention due to emerging experimental and
computation methods [1,2]. Systems biology is the coor-
dinated study of biological systems by (1) investigating
the components of networks and their interactions, (2)
applying experimental high-throughput and whole-
genome techniques, and (3) integrating computational
methods with experimental efforts [11]. Therefore, it is
more appealing to adapt a systems biology approach to
study the mechanism of inflammation via high-through-
put transcriptomic studies of human disease. Such sys-
tematic approach can provide insights into the regulation
of immune cell activities, tolerance of innate immune sys-
tem, and the susceptibility of infection in human. Based
on a structured network-based approach and a statistical
likelihood method, a network-based analysis of systemic
inflammation in human has been given to evaluate
genome-wide transcriptional responses in the context of
known functional relationships among proteins, small
molecules, and phenotypes [10,25]. The genome-wide
interaction network is probed to identify functional mod-
ules that are perturbed in response to endotoxin exposure.
A dynamic Bayesian network approach has also been

developed to predict the gene regulatory networks from
time course expression data [12].

Gene expression is transcriptionally controlled by induci-
ble transcription factors. The transcription factor NF-κB in
particularly is pivotal in the regulation of inflammation.
For example, unstimulated macrophage is kept under an
inactivated condition, its NF-κB is retained in the cyto-
plasm through interaction with inhibitory proteins
known as IκB. Cell stimulation by bacterial endotoxin will
trigger a signaling pathway which results in the degrada-
tion of IκB, leading to nuclear translocation of NF-κB and
activation of the transcription of various proinflammatory
cytokines [13] (IL1A, IL1B, TNFA, IL6, IL8,...etc). Many
crosstalks among the signaling pathways are recognized. It
is now known that the biological functions of IL1A and
TNFA overlap and complement with each others [4,14].
Thus, blocking only one mediator may not effectively
reduce the overall inflammatory responses. Both IL1B and
TNFA produce effects at an early stage of inflammation
and the use of their inhibitory reagents at the later stage
may not be able to reverse the most damaging events ini-
tiated by them. As a result, IL1B and TNFA may not repre-
sent the best targets for intervention in systemic
inflammatory response. In another study [15], TNFA and
IL1 were shown to have positive feedback loops to TNFR
and IL1R, respectively. On the other hand, the NF-κB also
initiate the transcription of an inhibitory protein (A20)
which can inactivate NF-κB by suppressive phosphoryla-
tion in IKK (.(.([16]. The other important receptors in the
immune system, TLR family members (TLR2 and TLR4),
which recognize pathogens by means of conserved struc-
tural features of the microbes such as LPS for Gram-nega-
tive bacteria, would involve in activating the MyD88/
IRAK signaling cascade, which bifurcates and leads to NF-
kB and c-Jun/ATF2/TCF activation [17].

Because microarray data contain vast cataloged patterns of
dynamic expression of the activated genes, we need sys-
tematic tools to identify the interaction architecture and
the dynamics of the underlying gene networks. Indeed,
the system identification problem of the underlying
dynamic gene networks falls naturally into the category of
reverse engineering [12]; a complex genetic network
underlies a mass set of gene expression data, and the task
is to infer the connectivity of gene circuit through
dynamic gene regulatory model [11]. Therefore, to under-
stand complex gene networks requires the integration of
microarray data and dynamic modeling by a systematic
approach. The systematic approach has to include compu-
tational dynamic modeling coupled with microarray data,
data mining, dynamic view of rapid responses and net-
work structural view arising from high-throughput analy-
sis of the interacting species [18]. To achieve this, a
dynamic Bayesian network (DBN) method has been
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developed to predict gene regulatory networks from time
series data [12]. However, this study has not combined
with other network algorithms and knowledge-based
databases. It carries two fundamental problems which
greatly reduce the effectiveness of the DBN approach. The
first problem is the relatively low accuracy of prediction
inherently, and the second is the excessive computation
time.

Since the identification of a perturbed biological networks
under the effect of bacterial endotoxin is an important
topic in basic and clinical research, it is imperative to con-
duct systematic analysis based on the expression profiles
of microarray data. An approach of combining genome-
wide expression analysis with a clustering method has
been introduced to identify functional networks using a
GRAM (Genetic Regulatory Modules) algorithm to pro-
vide biological insights into gene regulatory networks
[19]. Because the clustering algorithms are employed to
identify sets of co-expressed and potentially co-regulated
genes from gene expression data, it is more suitable to
find a gene module as a set of co-expressed genes to which
the same set of transcription factors will bind to their pro-
moter regions. Therefore, it is not suitable to construct the
transcriptional regulatory networks as a dynamic model.
It is hence essential to provide a new way to identify the
perturbed biological networks. To achieve this, systems
biology and computational biology methods will need to
be employed to describe the biological functions from a
dynamic systems perspective [20,21].

In our present study, a systems biology approach is pro-
posed to achieve a gradual refinement of inflammatory
regulatory network. In our study, we first construct a
rough gene regulatory network of inflammation by infor-
mation extracted from the Ensembl database http://
www.ensembl.org/index.html and JASPAR http://jas
par.genereg.net/ algorithms. We then build a dynamic reg-
ulatory model according to the rough gene network with
consideration of time-delay between regulatory gene and
target gene to describe the gene regulatory network. Based
on the dynamic regulatory model and microarray data in
[10,25], a maximum likelihood method is used to iden-
tify the regulatory parameters of upstream regulatory
genes for each target gene. Finally, we prune away the
insignificant regulatory genes by AIC model order detec-
tion method in system identification [22] to refine the
gene regulatory network of inflammatory response to bac-
terial endotoxin. By comparing with normal gene regula-
tory networks, we obtain the perturbed gene network to
analyze the effect of inflammatory stimulus on the
immune system. The hubs and "weak ties" are also dis-
cussed for the robust inflammatory gene network. Our
study is also based on databases mining to construct a
rough inflammatory regulatory network.

Results
Construction of Rough Gene Regulatory Network of 
Inflammation
The construction procedure for a gene regulatory network
of inflammatory system can be divided into 7 steps in our
approach (see Figure 1). The rough gene regulatory net-
work of inflammation is set up from step 1 to step 5, and
the refinement is then performed from step 5 to step 7.
The step numbers are marked alongside the blocks in the
flow chart.

Step 1
We first select 49 genes (see Table 1) that are associated
with the inflammatory responses based on data mining in
the published literature [10,25]. Next, we cross-reference
the findings reported in other literatures [5-9], and select
the candidate genes that we are interested in with bio-
functions like cell-cell signaling (IL17C etc.), leukocyte
migration (SCYE1 etc.) or detection of abiotic stimulus
(TACR1 etc.) as candidates. (The annotations of different
biological processes from Gene Ontology database for these
49 genes are shown in the supplemental material [see
Additional file 1].) In order to distill the essence from the
complicated global inflammatory gene network, we
choose not to classify its function modules like Calvano et
al have done in their study [10]. Instead, we only select 49
significant genes as a core in the inflammatory network, it
becomes much easier to identify the permutations
between normal and inflammatory conditions. It can also
enable us to give biological function interpretations and
to perform literature validations, especially on the NF-kB
sub-network.

Our goal is to select the candidate regulators (i.e. TFs) of
49 target genes in inflammatory response to construct the
rough gene regulatory network of inflammation by link-
ing these target genes to their regulators.

Step 2
We explore the Ensembl database http://
www.ensembl.org/index.html to retrieve the promoter
sequences of 49 target genes and then conduct sequence
similarity analysis to identity candidate regulators of these
target genes in JASPAR http://asp.ii.uib.no:8090/cgi-bin/
jaspar2005/jaspar_db.pl, which is a high-quality tran-
scription factor database. In this stage, we hypothesize
that if some TFs are selected by the predictions of JASPAR
using our criterions, the genes generating the respective
TFs at the protein level could be considered as candidate
regulators to the target genes.

After this step, we obtain a set of candidate regulators
from the JASPAR analysis [see Additional file 2, column
(A)]. However, there are still many false positive errors in
our hits because the outcome has listed all possible regu-
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The flow chart for constructing the gene regulatory network of inflammationFigure 1
The flow chart for constructing the gene regulatory network of inflammation. The left-hand-side path selects target 
genes and their potential regulatory genes, and the right-hand-side path generates a threshold of Cross correlation between 
each target gene and its upstream regulator to select possible regulatory genes from the left-hand-side path to construct a 
rough gene regulatory network of inflammatory response. Then the rough gene regulatory network is pruned by dynamic 
model and parsimonious Akaike Information Criterion to achieve a refined gene regulatory network of inflammation.
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lators in conditions beyond inflammatory response.
Some pruning methods based on microarray data of
inflammatory response are necessary.

The pruning procedure is described after step 5.

Step 3
We screen and select potential regulators from the JASPAR
hits by Cross correlation threshold of gene expression data
[23], which is based on the assumption that there are pos-
sible correlations between target gene and their upstream
regulators, with or without time delays. We compute the
cross correlations between the target genes and their own
regulatory genes separately, and the cross correlation val-
ues is then used to identify the candidate regulators
according to the assumption that the regulatory genes and
target genes have a positively (or negatively) correlated
temporal relationship if the target gene's expression pro-
file is positively (or negatively) correlated with the regula-
tory genes profile, with or without time lags.

Step 4
A careful choice of proper threshold for correlation to dis-
criminate the "by chance" associations is indeed impor-
tant. In order to decide on a threshold of significant
correlations between transcription regulators and target
genes for selection of candidate transcription regulatory
genes, we randomly choose 2000 genes from 22577 genes
and computed their correlations by the Pearson Correlation
in equation (3), as ranked in Figure 2. According to the
ranking in Figure 2, we select the 30% (i.e. 0.46451 in
cross correlation value) as our threshold. A lower thresh-
old may recruit some "by chance" regulator genes, while a
higher threshold may result in the increase of false-nega-
tive genes. However, we lave learned from our own expe-
rience that high correlated genes may be associated due to
the fact that they are co-regulated by the same regulatory
genes/transcription factors. In other word, those genes
that are co-regulated by a common set of genes but do not
regulate each other always arise with high correlation. On
the other hand, time delay in signaling pathways may

Table 1: Total 49 genes selected from published literatures

Gene Name Description Gene Name Description

ABCF1 ATP-binding cassette, sub-family F (GCN20), 
member 1

IL22 interleukin 22

ADORA2A Adenosine A2a receptor IL6 interleukin 6
ADORA3 Adenosine A3 receptor IL8 interleukin 8
ALOX5 Arachidonate 5-lipoxygenase IRAK Interleukin-1 receptor-associated kinase 1
AMBP Alpha-1-microglobulin/bikunin precursor ITGB2 integrin, beta 2

ANXA1 Annexin A1 KNG kininogen
AOAH Acyloxyacyl hydrolase (neutrophil) MAPK10 mitogen-activated protein kinase 10
BLNK B-cell linker NFATC3 Nuclear factor of activated T-cells, cytoplasmic, 

calcineurin-dependent 3
CCL18 Chemokine 

(C-C motif) ligand 18 (pulmonary and activation-
regulated)

NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in 
B-cells 1 (p105)

CCR7 Chemokine (C-C motif) receptor 7 NFKBIA nuclear factor of kappa light polypeptide gene enhancer in 
B-cells inhibitor, alpha

CEBPD CCAAT/enhancer binding protein (C/EBP), delta NFRKB Nuclear factor related to kappa B binding protein
CXCL14 Chemokine (C-X-C motif) ligand 14 NR3C1 Nuclear receptor subfamily 3, group C, member 1 

(glucocorticoid receptor)
CXCL2 chemokine (C-X-C motif) ligand 2 PLA2G4B Phospholipase A2, group IVB (cytosolic)
CYBB Cytochrome b-245, beta polypeptide 

(chronic granulomatous disease)
PLAA phospholipase A2-activating protein

FOS V-fos FBJ murine osteosarcoma viral oncogene 
homolog

REG3A pancreatitis-associated protein

GPR132 G protein-coupled receptor 132 SCCE kallikrein 7 (chymotryptic, stratum corneum)
HDAC4 Histone deacetylase 4 SCYE1 Small inducible cytokine subfamily E, member 1 

(endothelial monocyte-activating)
HDAC5 Histone deacetylase 5 TACR1 Tachykinin receptor 1

HDAC7A Histone deacetylase 7A TICAM2 Toll-like receptor adaptor molecule 2
HDAC9 Histone deacetylase 9 TLR4 toll-like receptor 4
HPSE heparanase TLR7 toll-like receptor 7
IL17 interleukin 17C TNFA tumor necrosis factor
IL1A interleukin 1a TNFR Tumor necrosis factor receptor superfamily member 1A 

precursor
IL1B interleukin 1b TOLLIP Toll interacting protein
IL1R Interleukin-1 receptor type I precursor
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mask the genes with co-regulatory association with low
correlation. Because the correlation is only the first dis-
crimination parameter used in our gradual refinement of
the inflammatory regulatory network, we do not want to
miss all possible candidate regulatory genes at such early
stage. The aim in the first stage of our algorithm is to
delete those "impossible" regulatory associations that are
truly-false. Therefore, we can not adapt a high threshold of
correlation for discrimination. Furthermore, by using the
permutation steps for data randomization, the probability
density function of parameter estimation shows the
parameter estimations of regulatory genes by our thresh-
old of correlation has a P value less than 0.001. So the
genes selected by the proposed threshold (0.46451) are
the significant candidates for regulatory genes.

Step 5
Here we make the first selection from the candidate regu-
lators in Step 3. This implies that if the cross correlation
between a candidate regulator and the target gene is more
than 0.46451, it will be considered as a candidate regula-
tor for the target gene. After selecting potential regulators
by cross correlation threshold, these target genes and their
candidate regulators are integrated to construct a prelimi-

nary gene regulatory network of inflammatory response.
Results of the first selection are listed in the supplemental
material [see Additional file 2, column (B)].

Pruning the Preliminary Gene Regulatory Network via a 
Dynamic Model
By this point we have constructed a preliminary network
via the first five selection steps using statistical inferences.
However, we have yet to consider the dynamic property of
this network. To include the dynamic parameters, we
apply the Akaike Information Criterion (AIC), to help us
make a more comprehensive selection. The AIC algorithm
is denoted as Step 7 in Figure 1. A dynamic regulatory
model is proposed to parsimoniously describe the gene
regulatory genetic network of inflammation. It should be
mentioned that the time delays from the regulators to
their target genes, which have been detected by Cross cor-
relation prediction algorithm via correlation, are considered
in the dynamic regulatory model to mimic the delay phe-
nomenon due to the transduction relay of the metabolic
and signal pathways in the real transcriptional regulatory
process. Details of the pruning are presented in the fol-
lowing paragraph and in the Material and Methods sec-
tion.

Distribution of a threshold for selecting candidate regulators by Cross correlation methodFigure 2
Distribution of a threshold for selecting candidate regulators by Cross correlation method. 2000 genes are ran-
domly chosen from 22577 genes to compute their correlation and then these correlations are ranked. A threshold 0.3 is spec-
ified to select possible candidate regulators from those based on DNA sequence similarity in JASPAR database.
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In this study, based on the possible interactions in a pre-
liminary gene regulatory network of inflammation
[10,24,25] obtained from the previous sections, a
dynamic regulatory model for the transcription of an
interested target gene of systemic inflammation is devel-
oped. This model describes how the upstream regulatory
genes control their target genes to produce the output
expression of mRNA through transcriptional regulatory
network. From the rough gene network through database-
predicted information, we construct a dynamic regulatory
model for each target gene of systemic inflammation in
humans. Then, according to the microarray data of genetic
expression, we identify the number of connections in the
dynamic regulatory model of rough gene network in the
inflammatory system. Based on the degree of interaction
in the regulatory network, we prune the preliminary gene
regulatory network of inflammation one target gene at a
time via Akaike Information Criteria (AIC). The pruning
procedures to obtain a refined gene regulatory network
(see Figure 1) are given in the following steps.

Step 6
According to the rough gene network, the transcriptional
regulation of a target gene in inflammatory system is
dynamically modeled in the following multi-input/sin-
gle-output stochastic process.

where y(t) represents mRNA expression level of a target
gene at time t, and parameter a indicates the effect of the
present state y(t) on the next state y(t + 1); xi(t - τi), i = 1,...,
L, denotes the regulation functions of L upstream tran-
scription factors in the rough gene network; and bi, i = 1,...,
L denotes their corresponding kinetic coefficients (or reg-
ulation abilities). In addition, τi denotes the expression
delay from regulatory gene i to the target gene, which was
detected via identifying the model by the fact that at the
delay τi regulatory gene i has the highest correlation with
the target gene. The value of τi will be iteratively detected
from 0 to 2 hours (4 time points) by a minimum loss
function based on AIC in the final pruning step (AIC). It
can be ensured that the τi value we detect has the best
model fitting, although it has a large amount of computa-
tions. k in equation (1) represents the basal molecular
level to denote the regulation of unknown factors. ε (t)
denotes a stochastic noise due to model uncertainty and
fluctuation of the mRNA microarray in the target gene.
The binding transcriptional regulatory functions xi(t) of
TFs on their motif binding sites are described by the fol-
lowing sigmoid functions of mRNA expression profiles of
their corresponding regulatory genes, respectively [26]

i.e., the sigmoid functions in equations (2) denote the
thresholds of bindings of TFs on motif binding sites for
the transcriptional regulation in equation (1).

Step 7
By combining the maximum likelihood parameter esti-
mation method with the most parsimonious model order
detection using the Akaike Information Criterion (AIC)
(see Materials and Methods), we could prune the rough
gene network to generate a more refined gene network
through the most parsimonious gene transcription regula-
tory model in equation (1) i.e., the insignificant interac-
tions (or small bi) could be deleted by AIC. With the
upstream regulatory genes as target genes, we can then
trace back their upstream regulatory genes by a similar
construction procedure. Iteratively, we could construct the
whole gene regulatory network of systemic inflammation
in the innate immune system. The results of selection are
listed [see Additional file 2, column (C)].

Construction of inflammatory gene network in immune 
system
Based on the 49 target genes (see Table 1) and their candi-
date regulators [see Additional file 2, Column (C)], we
construct a rough gene regulatory network of the human
inflammatory system. Then, according to the rough gene
regulatory network, we set up the dynamic model for the
rough gene regulatory network to prune it once more to
set up a refined gene regulatory network by a system iden-
tification scheme and parsimonious AIC method via
microarray data. At this point, we can construct two more
refined gene regulatory networks for both the inflamma-
tory/activated and the normal/resting conditions by the
same construction flow chart shown in Figure 1, and draw
two gene regulatory networks by the Osprey tool [27] (See
Figure 3 and 4). In Figure 3, there are 94 nodes with 336
edges for the inflammatory/activated gene network and in
Figure 4, there are 66 nodes with 264 edges for the nor-
mal/resting gene network.

By comparing the inflammatory network with the normal
network, we obtain the differential/perturbed gene regula-
tory network (see Figure 5 and 6). While some interac-
tions can be found in both the normal and the
inflammatory (LPS-treated) networks, we extracted the
unique connections which only existed in one specific
network but not in another. We showed the similarities
and the differences in the gene regulatory network of an
inflamed system between the normal and inflammatory
cells [see Additional file 3]. This significant finding helps
to better understand the effect of inflammatory stimulus
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on the innate immune system. As noted, the perturbed
inflammatory gene regulatory network in the immune
system between normal and LPS-stress cells is the focus of
this study.

We further lay out the perturbed inflammatory gene regu-
latory network to locate the significance differential con-
nection of the key components. We can observe many
differences in normal and inflammatory conditions from
the perturbed gene network. In Figure 5, the gene network
contains 64 nodes with 131 edges found only in normal
condition but not in inflammatory condition, and there
are 4 hubs (FOXD1, SPIB, YY1 and TLR4) which appear to
be highly connected. In Figure 6, the gene network con-
tains 70 nodes with 159 edges for gene network found
only in inflammatory condition but not in normal condi-
tion, and there are clearly 3 hubs (FOXL1, TFAP2A and
SOX9) within this perturbed network. It is noteworthy
that these highly connected hubs have been mentioned in

several previous studies. For example, TFAP2A is inacti-
vated [28] and SOX9 is inhibitive [29] in response to
inflammation as shown in Figure 6. And FOXL1 is dra-
matically induced during hepatic stellate cell activation
[30] and preliminary experimental data indicates that
FoxL1 is involved in the regulation of the adhesion mole-
cule ICAM-1, an important mediator of neutrophil
recruitment in liver injury. The current investigation is
focused on delineating the mechanism by which FOXL1
regulates inflammatory signaling in the liver.

We summarize the connection degree (i.e. the number of
connections) of each node of Figure 6 in the supplemental
material [see Additional file 4] and compile a list of regu-
lators with connection degree � 8 (see Table 2) to identify
perturbed hub proteins that induce differences between
inflammatory and normal conditions. These proteins are
possible target regulators for drug discovery investigation
(such as anti-inflammatory drugs [31-33]). Finally, we

The inflammatory transcriptional gene network in immune system with LPSFigure 3
The inflammatory transcriptional gene network in immune system with LPS. The inflammatory gene network with 
LPS containing.
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summarize the gene connectivity of 6 regulators (FOXL,
TFAP2A, SOX9, GATA2, AML1 and NR3C1) with high
degree of connectivity in Table 2, which are confirmed
and in agreement with previous research findings [28-35].

It has been shown that the robust gene network can form
a scale-free network, i.e. genes prefer to form links with
other genes that already has highest number of links
[36,37]. Scale-free gene networks could tolerate random
removal of nodes but are vulnerable to loss of highly
interactive hubs [36,37]. This may result in the lethal out-
come in a system's behavior when highly connected hubs
are targeted. In the inflammatory gene network shown in
Fig. 3(A), genes such as NF-kB, TNF-α, RELA, etc. can be
considered as highly connected hubs of the signaling
transduction. If they are inactivated by mutation or dis-
ease, the inflammatory gene network will lead to eventual
collapse of the system. In order to overcome this lethal

outcome, "weak linkage" architectures are evolved by
nature selection to improve the robustness of gene regula-
tory networks. We argue such versatile mechanisms
underlie the essential regulatory process of robust gene
network. As a result, some connections can easily be
removed and some connections can easily be added in the
gene regulatory network. Such concept is also known as
"weak ties" in network theory [37]. "Weak ties" structures
in biological networks enable remove of old processes
and addition of new processes to the existing core process-
ing to improve the information exchanges and signal
transductions using common versatile mechanisms that
operate on diverse inputs to various stimuli [36]. As a con-
sequence, "weak ties" can improve network's robustness
against external stimuli. Obviously, the connections of the
perturbed gene network in Fig. 4(a) are presented only in
the normal condition. The perturbed gene network in Fig.
4(b) can hence be considered as additional connections

The inflammatory transcriptional gene network in immune system without LPSFigure 4
The inflammatory transcriptional gene network in immune system without LPS. The inflammatory gene network 
in normal condition.
Page 9 of 22
(page number not for citation purposes)



BMC Medical Genomics 2008, 1:46 http://www.biomedcentral.com/1755-8794/1/46
in the inflammatory gene network. In response to bacterial
endotoxin, the connections in Fig. 4(a) are removed and
the connections in Fig. 4(b) are added. Apparently, this
agrees with the concept of the so-called "strength of weak
ties" in network theory, where the most important interac-
tions and information exchanges sometimes occur via
nodes from otherwise unrelated networks. This implies
that non-hubs may play a pivotal role in the gene regula-
tion [36,37]. Similarly, the "weak ties" architecture in NF-
kB gene network in inflammatory condition is shown in
the removal and addition of connections of gene network
in Fig. 6(a) and Fig. 6(b).

In summary, the regulators of target genes are first selected
by JASPAR, then truncated by the threshold of Cross corre-
lation and finally pruned by AIC via microarray data and
a dynamic model. We combine several algorithms and
tools to improve the performance of the gene network
construction of the target inflammatory system. All the

data sources are independently produced by various
research groups and the results are verified with more
independent studies published previously. It is clear that
the top-down procedures can predict the target genes and
their candidate regulatory transcription factors well. More
biological insight into the perturbed inflammatory net-
work is given in the Discussion section below and details
of the proposed gene regulatory network construction
algorithm are shown in Material and Methods.

Discussion
The NF-κB pathway, which is an important modular
inflammatory system, is illustrated as a trimmed down
gene regulatory network depicted in Figure 7 and 8. This
concise network includes important proinflammatory
cytokine genes: IL1A, IL1B, IL1R, IL6, TNFA, IL17, IL8 and
the receptor genes IL1R, TLR4 and TNFR, all of which have
well-known roles in the NF-κB signaling pathway. This
concise network can help us to monitor the performance

The perturbed transcriptional gene networkFigure 5
The perturbed transcriptional gene network. Gene network only in normal condition but not inflammatory condition.
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of inflammatory responses under diverse conditions. By
the proposed method shown in this study, we can predict
the dynamic profiles of those cytokines. As expected, our
results are comparable to the findings published in previ-
ous studies [8,24] discussed in the following paragraphs.
Our in silico findings confirm the wet-bench observation
that many characterized genes in the common inflamma-

tion response are regulated by the transcription factor NF-
κB [6].

On the other hand, the perturbed gene network of these
proinflammatory genes in NF-κB signaling pathway is
shown in Figure 9 and 10. The perturbation in Figure 9 is
more complicated than the perturbation shown in Figure
10 because in normal condition these genes have to fulfill
other biochemical tasks other than inflammation. Our
analysis also reveals that the important genes (IL1A, IL1B,
IL1R, IL6, TNFA, IL17, IL8, IL1R, TLR4 and TNFR)
detected by our algorithms are vital for the inflammatory
response because they are more connected during inflam-
mation than in normal conditions. In inflamed condi-
tions, they appear to work in accordance with each other
to enhance their effects on the inflammatory responses.
For example, there is strong evidences to support that NF-
κB1 and RELA have to regulate the proinflammatory

The perturbed transcriptional gene networkFigure 6
The perturbed transcriptional gene network. Gene network only in inflammatory condition but not in normal condition.

Table 2: Gene Connectivity only in inflammatory condition but 
not in normal condition

Regulator Connectivity Reference

FOXL1 23 [17]
TFAP2A 19 [28]
SOX9 16 [29]
GATA2 12 [31,33]
AML1 11 [34]
NR3C1 8 [32,35]
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genes collectively when they are in inflammatory
responses [7].

In recent studies [8,24], cytokine and chemokine net-
works have been shown to play a pivotal role in inflam-
mation because they are involved either directly or
indirectly in the innate and adaptive immune responses.

It has been shown that Interleukin-1 alpha (IL1A) and
Interleukin-1 beta (IL1B) act via their receptor (IL1R) to
induce gene expressions which in term mediate a feed-
back protein synthesis involved in the later wave of
inflammatory responses [15,24]. This is in agreement
with the dynamic profiles of the proinflammatory genes
and their receptors (IL1A, IL1B, IL1R, IL6, TNFA, IL17

The important proinflammatory gene network induced or activated by NF-κB in immune system with LPSFigure 7
The important proinflammatory gene network induced or activated by NF-κB in immune system with LPS. 
The important proinflammatory gene network in inflammatory condition.
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TLR4, TNFR and IL8) which are simulated by our dynamic
regulatory model (Shown in Figure 11). The accuracy of
the curve fitting data has well demonstrated the predic-
tion power of the proposed method. Without a doubt, the
performance of the proposed method is very satisfactory.
In Figure 11, the Interleukin-1alpha (IL1A) and Inter-
leukin-1 beta (IL1B) have a peak expression at 2~3 hours

post stimulation, and then gradually decays because of
the removal of bacterial endotoxin. Interestingly, its
receptor (IL-1R) has a peak expression at 6~7 hours post
stimulation, while IL-1A expression has reached another
peak in about 8~9 hours. This concerted changes in
cytokine and receptor may be explained by the following
mechanism in which IL-1A has a positive feedback loop in

The important proinflammatory gene network induced or activated by NF-κB in immune system without LPSFigure 8
The important proinflammatory gene network induced or activated by NF-κB in immune system without LPS. 
The important proinflammatory gene network in normal condition.
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NF-κB signaling pathway through IL-1R when the affected
signaling network suffers inflammatory stress [15]. The
same situations occur as well in TNF-α and its designated
receptor TNFR. The TLR4, which is in a growing TLR fam-
ily structurally characterized by a cytoplasmic Toll/inter-
leukin-1R (TIR) domain and by extracellular leucine-rich
repeats [17], has the same dynamic fluctuation as seen on

IL1R or TNFR. The other genes like IL8, IL6, IL17 and their
own receptors are all exhibiting similar behavior in our
analyses (data not shown).

For Step 7, the identification of time delay and the esti-
mated parameters are shown in the supplemental mate-
rial [see Additional file 5 and 6]. Although we consider the

The important proinflammatory perturbed NF-κB gene networkFigure 9
The important proinflammatory perturbed NF-κB gene network. Gene network only in normal condition but not 
inflammatory condition.
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effect of time lag τi in our model, it is plausible that not all
regulators have delay times on their transcription regula-
tions. It seems that the regulation in inflammation may
act so swiftly that parameter τi can not be detected (i.e.,
less than one time unit of microarray data or one half
hour). However, there are several time lag regulations in
IL8 and its regulators, such as SOX9, MEF2A, NFIL3,

ELK1, FOXF1, FOXD1, GATA2, FOXI1, REL and RELA. It
is because IL8 has a more complicated regulatory mecha-
nism through other pathways with considerable delay.
The dynamic model assumes that the expression profile of
a target gene results from the kinetic activity of one or
more specific regulators, which bind to the downstream
target gene's promoter site and initiate the transcription of

The important proinflammatory perturbed NF-κB gene networkFigure 10
The important proinflammatory perturbed NF-κB gene network. Gene network only in inflammatory condition but 
not in normal condition.
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The curve fittings of dynamic regulatory model of proinflammatory gene and its regulatorsFigure 11
The curve fittings of dynamic regulatory model of proinflammatory gene and its regulators. The 'o' is the data 
from microarray in 24 hours and the solid line is the curve fitting by the proposed dynamic model in equation (1). The error 
bars for standard deviations have been marked. We denoted the curve fittings of 9 target genes and their upstream regulators 
respectively, and the regulatory parameters for each dynamic model are presented [see Additional file 5 and 6]
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that target gene to exert its effect on the inflammation net-
work. In other words, it is possible to generate the target
gene expression profile via the gene expression profiles of
the upstream transcription factors using the dynamic reg-
ulatory model and its kinetic parameters in equation (1).
The continuous gene expression profiles in Figure 11 [also
see Additional file 5] are generated by the identified
dynamic model for all target genes and their correspond-
ing regulators, which can fit the microarray data reasona-
bly well. Dynamic modeling of biological systems
including genetic networks and cell regulatory networks
has been applied in functional analyses for a long time.
However, very few of the other modeling has included the
time delay parameter which is comprehensively factored
into our stochastic dynamic model. The findings shown in
this study successfully demonstrate that we can efficiently
refine the gene regulatory network of systemic inflamma-
tion in human via microarray data, and to mimic the sig-
naling transduction delay in the transcriptional regulatory
process.

Combining the cross correlation selection algorithm and
the Akaike Information Criterion, we created a novel
dynamic modeling algorithm to trim down the tangled
regulatory genetic network of human inflammatory sys-
tem without loss of biological meaning. The algorithm
presented here can models all combinations of the target
genes/regulators and produces the best predictions on
gene expression by the dynamic regulatory model. Instead
of attempting to model the whole complicated regulatory
processes with the high risk of incorrect prediction, our
dynamic model focuses only on a concise set of target
genes with a more reliable outcome. Iteratively, we could
eventually construct the whole gene regulatory network of
systemic inflammation in response to bacterial endotoxin
by our dynamic model through microarray data.

Essential problem with application of the multivariate
procedures to the microarray gene expression data as
expressed in recent publications is associated with repro-
ducibility of the complex constructions resulting from
such analyses. In order to confirm the reproducibility of
the proposed method, we use our algorithm to rebuild the
gene regulatory network via the microarray data pub-
lished in reference [38]. In [38], they found there are 19
genes with significant inflammatory responses. In this sit-
uation, we reconstruct the inflammatory gene network
based on these 19 genes. After comparing the recon-
structed inflammatory gene regulatory network with the
one in the text, we found some similarities and differ-
ences. The same highly connected hubs are GATA2, AML1
(RUNX1) and YY1. There are more than 5 connections for
these hubs in both perturbed inflammatory networks.
However, for the lack of some specific gene expression
data in reference [38], we were unable to verify a part of

highly interactive genes in the text (i.e. FOXL1, TFAP2A
and SOX9). Interestingly, we also found there are some
hubs only present in the reconstructed network but not in
the text like GATA3 and FPR, which would be involved in
host defense against bacterial infection and in the clear-
ance of damaged cells [39]. The reason why these 19 can-
didate genes still discovered new hubs is because some of
19 candidate genes are not included in the previous 49
genes. For different experimental conditions, research
topics and technology platforms, the data pool from dif-
ferent literature may be different. Therefore, the candi-
dates of target genes we chose here differed from the text,
so the computational results would not be identical [see
Additional file 7].

In this study, we use multi-input/single-output regulatory
model to dynamically describe our gene regulatory system
(i.e. multiple regulators and one target gene) that can
mimic the real gene regulation in response to inflamma-
tion. The simulation can figure out the regulatory rela-
tionship and time lag value between upstream regulator
and downstream target genes using time-series microarray
data. In the research of Zou et al. [12], they used the con-
cept of time delay just in a static state analysis of gene net-
work, without applying it to dynamic modeling to mimic
the bona fide gene regulatory behavior. Furthermore, the
apparent shortcoming of the static state analysis is the
limitation on a single-input single-output system (i.e. one
regulator and one target gene). Such single-input single-
output system is rarely existed in actual gene regulation.

While significant improvement in network construction
has been achieved by our method, there are still two draw-
backs in this study. First, although we present a multi-
input/single-output system, it still can not represent the
actual biological conditions because they are multi-input/
multi-output systems in most situations. This means
when using AIC to trim the initial tangled gene regulatory
network, we should prune down all data simultaneously
rather than separately. However, such approach will
increase the computational complexity in the combinato-
rial way and thus become computationally infeasible. The
second drawback of all published algorithms for inference
of transcriptional regulatory networks in inflammation,
including this study, is that the candidate regulators are
selected from the pool of potential regulators typically
defined by computational prediction, either by sequence
similarity analysis, or by other genome annotation meth-
ods. If a true regulator is not included in the pool, it will
inevitably escape identification by the modeling
approach. This type of error will likely become a very sig-
nificant problem in a poorly characterized genome of a
model organism.
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Conclusion
Our dynamic modeling represents a new approach to the
study of gene regulatory network in inflammatory
response. It is based on databases mining to construct an
inflammatory regulatory network. It is also a systems biol-
ogy approach because we process the complex regulatory
network of numerous genes and regulators from various
data sources at the same time. The trimmed down algo-
rithm presented here can also be extended for global gene
regulatory network analysis other than the inflammatory
system in the future. From the curve fitting data generated
by the proposed method, it can be seen that the perform-
ance is very satisfactory. By comparing with normal gene
regulatory networks, we obtain the perturbed gene net-
work to analyze the effect of inflammatory stimulus on
the immune system. The hubs and "weak ties" are also dis-
cussed for the robust inflammatory gene network. The
proposed gene regulatory network is also confirmed by
published evidence in the literatures. In our future
research, we will investigate the dynamic networks in a
host-pathogen interaction on an animal model organism.
We will also consider extending the algorithm to the iden-
tification and analysis of cross-talking transcriptional reg-
ulatory networks.

Materials and methods
Dataset selection
We used previous microarray data [10,25] as our mRNA
expression profiles. Gene expression in whole blood leu-
kocytes was determined at 0, 2, 4, 6, 9 and 24 hours after
the intravenous administration of bacterial endotoxin to
four healthy human subjects. In those experiments, four
additional subjects were studied under identical condi-
tions but without endotoxin administration. The infusion
of endotoxin activates innate immune responses and
presents physiological responses of brief duration. It
should be noted that there is an initial proinflammatory
phase and a subsequent counter-regulatory phase, with
resolution of virtually all clinical perturbation within 24
hours.

Construction of Rough Gene Networks of Systemic 
Inflammation

Cross correlation is developed to identify target genes that
are regulated by a common set TFs. The cross correlation
uses continuous gene expression with the assumption that
the regulatory genes and target genes have a level of posi-
tively (negatively) temporal correlation relationship if the
target gene's expression profile is positively (negatively)
correlated with the regulatory gene's profile, possibly with
time lags. The next procedure is to specify the threshold
for the correlation between target genes and their regula-
tors. In this study, there are 22,577 gene expression time
profiles [10,25]. We choose 2000 gene expression profiles

randomly and computed their correlations with different
time lags or lead to evaluate a threshold for significant
correlations for possible regulators of target genes, which
are useful for selecting candidate regulators from those via

JASPAR. Let  = (u1,..., uN) be the expression profile of

gene u and  = (v1,..., vN) be another expression profile of

gene v. N is the time points of expression profile. Com-

pute the correlation between  and  with the lag or lead
of h time points as follows:

Here M is the maximal time lead or lag between each two
genes. Because we initially do not know which are the tar-
get genes and which are the regulator genes. Since each
time-interval in h is a half-hour, we allow 2 hours lead and
lag and compute the correlation between a gene and a TF
with all possible time lags or leads that are less than 2
hours for regulatory response.

Finally, we select the maximum correlation between two
genes with different time delays or time leads as their cor-
relation and rank them in Figure 2 for all regulatory genes.
We can obtain the distribution of correlation based on
their ranks. Then, we can decide a threshold for a possible
regulatory relationship between regulators and their target
genes (see Figure 2). In this study, a correlation larger than
30% (or 0.46451) is selected as a threshold for possible
regulators, which is used to truncate all impossible regula-
tors from the pool of regulators suggested by JASPR via
DNA sequence similarity analysis. Then, we link the
remainder regulators selected by cross correlation thresh-
old with their target genes to construct a rough gene regu-
latory network. After the rough gene regulatory network of
inflammation system is constructed by integrating target
genes with their regulators selected by cross correlation,
the rough gene regulatory network is modeled by dynamic
equation in (1) for further pruning. Therefore, the kinetic
parameters of regulatory dynamic model are identified by
the maximum likelihood parameter estimation via micro-
array data. After parameter identification, the insignificant
interaction coefficients of dynamic model are pruned by
the most parsimonious Akaike Information Criterion
(AIC) to refine the gene regulatory network in the inflam-
matory condition. The possible regulators selected by JAS-
PAR algorithm are pruned two times in our method, once
by correlation threshold via Cross correlation and again
by AIC via dynamic model and microarray data. The
details are described below.
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Constructing a dynamic model for gene regulatory 
network via microarray data
After constructing the stochastic dynamic equation in
equation (1) to model the regulation of a target gene, we
use the method of maximum likelihood to estimate the
kinetic parameters of dynamic model. Equation (1) can
be written in the following form.

where ϕ[t] denotes the regression vector which can be
obtained from microarray data, and θ ∈ Rp denotes the
parameter vector of dimension p in regression equation
(4).

After applying the cubic spline method to interpolate the
microarray data, we can obtain as many data points as we
want. Then it is easy to obtain values of {y [t + l] xi [t + l]}
for l ∈ {1, 2,�, m and i ∈ {1 2 � L, where m is the number
of expression time points of a target gene, and L is the
number of TFs binding to the target gene in the rough
gene network. By further computation of equation (4) at
different time points we can obtain the following vector
form equation by data point interpolation.

For simplicity, it can be represented as follows.

Y = Φ·θ + e

In equation (6), the random noise ε[tk] is regarded as a
random variables of white Gaussian noise with zero mean
and unknown variance σ2, i.e., E{e} = 0, and Σe = E{eeT}
= σ2I, where I is an identity matrix. In this study, a maxi-
mum likelihood parameter estimation method is used to
estimate θ and σ2 by the regression data obtained from the
microarray data of regulatory genes and the target gene
[34]. Under the assumption of the Gaussian noise vector
e with m - 1 elements, its probability density function is
given as follows.

From equation (7), we can obtain the likelihood function

Equation (8) can be considered as a function of parame-
ters θ and σ2. In order to simplify the computation, it is
practical to take the logarithm of equation (8), which
yields the following log-likelihood function:

where y [t + k] and ϕ[t + k] are the k-th elements of Y and
Φ in (6), respectively.

By the maximum likelihood parameter estimation
method, we expect the log-likelihood function to have the

maximum at θ =  and θ2 = . The necessary conditions

for the maximum likelihood estimates  and  are as
follows [22],

The estimated parameters  and  are shown below,

where Y and Φ can be obtained from the microarray data
of regulatory genes and the target gene. After obtaining the

estimated parameter , the dynamic equation of the tar-
get gene in the estimated transcriptional regulatory net-
work can be expressed as follows

where ,  and  are obtained from (11) and the vari-

ance of is obtained from (12).

Iteratively, one target gene at a time, we can construct the
overall dynamic equations of transcriptional regulatory
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network of inflammation, which are interconnected

through the regulations  of TFs.

Since some interaction coefficients  of the gene regula-

tory network in (13) are insignificant, they should be
pruned off by the parsimonious AIC criterion. This is dis-
cussed in the next section.

Pruning the Gene Regulatory Network
First, in this study, we use the JASPAR database to identify
plausible binding motifs of their TFs roughly and select
candidate regulators from the pool of DNA sequence sim-
ilarity analysis. A rough gene regulatory network of
inflammation is constructed by linking target genes and
their regulators with a cross correlation threshold larger
than 30% (see Figure 2). Then we use the maximum like-
lihood estimation method to estimate the parameters of
the dynamic model for a preliminary gene regulatory net-
work of the inflammatory system.

Although the maximum likelihood estimation method
can help us quantify the regulatory abilities of all the pos-
sible interactive candidates of regulators on target genes,
we still do not know exactly how significantly the regula-
tory ability can be regarded as a true regulator. In order to
determine whether a regulator is significant or not, a sta-
tistical approach based on model validation is proposed
for evaluating the significance of our model parameters to
prune the preliminary gene network. In this study, a statis-
tical approach called the Akaike Information Criterion
(AIC) is employed to validate the model order (or the
number of model parameters) to determine the signifi-
cance of our dynamic model parameters [22].

The Akaike Information Criterion (AIC), which attempts
to include both the estimated residual variance and the
model complexity in one statistic, decreases as the resid-

ual variance  decreases and increases as the number p
of parameters increases. As the expected residual variance
decreases with increasing p for nonadequate model com-
plexities, there should be a minimum around the correct
number p of network parameters. For a transcriptional
regulatory model with p regulatory parameters to fit with
data from N samples, the Akaike Information Criterion
(AIC) can be written as follows [22],

where  denotes the estimated expression profile of the

target gene, i.e.  = ϕ· .

This is a tradeoff between residual variance and model
order. The minimization of equation (14) will achieve the
true model order (i.e. the number of regulators of the tar-
get gene) of the gene regulatory system [22].

After the statistical selection of p parameters by minimiz-
ing the Akaike Information Criterion (AIC), we can easily
determine whether the regulatory TFs candidate is a signif-
icant or just a false positive and then construct a refined
gene regulatory network model for inflammation. Finally,
evidence from previous studies is an important validation
to support our refined gene regulatory network.
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