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Abstract
Background: The controversy surrounding the non-uniqueness of predictive gene lists (PGL) of small
selected subsets of genes from very large potential candidates as available in DNA microarray experiments
is now widely acknowledged [1]. Many of these studies have focused on constructing discriminative semi-
parametric models and as such are also subject to the issue of random correlations of sparse model
selection in high dimensional spaces. In this work we outline a different approach based around an
unsupervised patient-specific nonlinear topographic projection in predictive gene lists.

Methods: We construct nonlinear topographic projection maps based on inter-patient gene-list relative
dissimilarities. The Neuroscale, the Stochastic Neighbor Embedding(SNE) and the Locally Linear
Embedding(LLE) techniques have been used to construct two-dimensional projective visualisation plots of
70 dimensional PGLs per patient, classifiers are also constructed to identify the prognosis indicator of each
patient using the resulting projections from those visualisation techniques and investigate whether a-
posteriori two prognosis groups are separable on the evidence of the gene lists.

A literature-proposed predictive gene list for breast cancer is benchmarked against a separate gene list
using the above methods. Generalisation ability is investigated by using the mapping capability of
Neuroscale to visualise the follow-up study, but based on the projections derived from the original dataset.

Results: The results indicate that small subsets of patient-specific PGLs have insufficient prognostic
dissimilarity to permit a distinction between two prognosis patients. Uncertainty and diversity across
multiple gene expressions prevents unambiguous or even confident patient grouping. Comparative
projections across different PGLs provide similar results.

Conclusion: The random correlation effect to an arbitrary outcome induced by small subset selection
from very high dimensional interrelated gene expression profiles leads to an outcome with associated
uncertainty. This continuum and uncertainty precludes any attempts at constructing discriminative
classifiers.

However a patient's gene expression profile could possibly be used in treatment planning, based on
knowledge of other patients' responses.

We conclude that many of the patients involved in such medical studies are intrinsically unclassifiable on the 
basis of provided PGL evidence. This additional category of 'unclassifiable' should be accommodated within 
medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.
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Background
Metastasis is crucial in determining the life expectancy of
breast cancer patients. Numerous studies have focused on
searching for methods to predict the predilection of can-
cer patients to metastasize. Traditional methods fail to
correctly predict the outcome of patients who reach
metastasis leading to unnecessary clinical adjuvant ther-
apy, such as chemotherapy. Gene profiling based, for
example, on DNA microarray technology, has the poten-
tial to be a more reliable method allowing better predic-
tion of patient cancer outcome. However, using lists of
many thousands of genes is uninformative and not useful
in providing insight for the specialist, nor for discovering
the role of specific genes. Feature selection methods have
been applied to filter the number of genes which are cor-
related with outcome to produce a much smaller (typi-
cally of the order of a few tens) and more informative
'predictive gene list' (PGL), ideally consisting of the key
genes which control the behaviour of the cancer.

Despite the obvious benefits of producing an informative
and small PGL, the difficulty is how to perform the feature
selection in the absence of good quality functional mod-
els of the individual gene pathways. The alternative is to
use data-driven data-mining approaches and seek correla-
tions between response and outcome to rank potential
genes. To rank the genes requires an appropriate metric.
Although feature selection and feature extraction are often
unsupervised methods, in the literature in this domain it
is more common to be based on a supervised approach
based on a specific choice of a nonparametric model link-
ing the gene expressions to the outcomes. For example,
using a classification model to infer likely outcome condi-
tioned on expression values allows saliency of individual
genes to be obtained, relevant to the classified outcome,
e.g. good or poor prognosis patients. This saliency is of
course dependent on the chosen model, the pre-specified
outcomes, and the specific data used to construct the non-
parametric classifier model. It is usually assumed that the
data used to construct the classifier is representative of the
problem so that results obtained are not highly sensitive
on the specific choice of data. However, a different choice
of model, or different choice of outcome would modify
the saliency even if the chosen model was correct. In addi-
tion, in problems of such large input dimensionality
(5000 or more on microarray chips), and relative sparsity
of patient examples (a few hundred is typical), it is statis-
tically plausible to select small subsets which are randomly
correlated with any given desired outcome, irrespective of
any biological functionality of the gene expression itself.
This aspect has already been discussed in [1,2] for exam-
ple. Therefore the question arises as to whether a specific
PGL can be obtained based on clinical datasets, given
these concerns over reliability of pattern processing tech-
niques.

Almost all nonlinear studies so far have examined super-
vised approaches to patient discrimination. A major prob-
lem with dealing with such high dimensional data is the
lack of reliable approaches to investigate and compare
patient-specific gene expression profiles separate to the
construction of supervised models. We wish to explore an
alternative analysis approach, based on unsupervised, non-
linear, topographic (structure-preserving) projection and
visualisation methods.

This paper explores several recent nonlinear visualisation
models applied to the data introspection of the van't Veer
breast cancer study [3]. The approach can be used to a-pos-
teriori explore whether there exists likely discriminability
between patient groups of good and poor prognosis for
example. For comparison with the preferred PGL selected
by the van't Veer study, we also select a PGL based on
cross-patient consistency rather than correlation with out-
come and examine its performance also by these data
introspection methods.

Reviews
We briefly overview some relevant recent works which
have explored different classification, discrimination and
clustering techniques to represent the separation between
two groups of prognosis signature patients. The studies of
van't Veer's group [3,4] have suggested that a PGL of 70
specifically selected genes has proven accurate in out-of-
sample patient prognosis of metastasis.

However, other studies have concluded that the likeli-
hood there exists a 'best' small-size predictive gene list
which can be used to reliably improve the ability of
patient-specific prognosis using automated pattern
processing techniques is unlikely. In very recent work [5],
analysing supervised machine learning approaches across
several public domain data sets, it was found that many
gene sets are capable of predicting molecular phenotypes
accurately. Hence it is not surprising that expression pro-
files identified using different training datasets selected
from a larger cohort, should show little agreement. It was
also demonstrated that predicting relapse directly from
microarray data using supervised machine learning
approaches was not viable.

In other work [6], it was shown that the specific example
of the van't Veer PGL selection of 70 genes was no more
effective at prognosis than the Nottingham Prognostic
Indicator (NPI) or a suitably trained artificial neural net-
work using traditional non-genomic biomarkers. This is
not surprising from a systems biology perspective, where
we would regard cancer as the result of complex interac-
tions between genetic, biological and environmental
influences.
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In [1], they also found that the top 70 most correlated
genes in the van't Veer study can vary significantly
depending on the specific training set of patients used.
Different randomly selected 70 gene PGL's were selected
and shown to have similar prediction ability. They sug-
gested that there is no unique set of genes that can be
assumed to be the best or the only set of genes for progno-
sis accuracy of breast cancer. A follow-up study [2] also
suggested a similar conclusion, that we can not create a
definitive classifier from a small subset of genes based on
the small patient datasets available. Generally, large
patient sample sizes are needed to produce viable and
robust prediction outcomes of cancer prognosis.

Projective Visualisation
Projective data visualisation is an approach for introspec-
tion of large dimensional datasets by extracting useful
information and representing it in a more meaningful
way that can be more easily interpreted prior to deciding
upon subsequent analysis such as constructing classifiers
[7]. The approach is very useful for interpreting data by
simply observing two or three dimensional projective
maps of the original dataspace, where relative positioning
of data points reflects some form of structural similarities
in the original dataspace. This allows the easy recognition
of anomalous data points, outliers, implicit clustering and
relative dissimilarity.

In microarray data, the combination of large dimension-
ality, noise, and sparse patient samples makes it almost
impossible to explore and extract useful information con-
tained in the data. Dimensionality reduction techniques
are required for visualising microarray data. The dendro-
gram is one of the traditional approaches to perform
microarray data clustering. However it usually produces a
suboptimal local clustering solution and is not effective as
a spatial visualisation tool to reflect relative dissimilari-
ties. Many other algorithms for reduced dimensionality
representation have previously been used to visualise
microarray data. For instance, the Self Organising Map
(SOM) has been used to investigate yeast [8] and human
cancers [9] and [10], the latter in combination with the k-
means algorithm. Analogously, Principal Component
Analysis (PCA) has been used to investigate yeast [11] and
to identify tissue-specific expression of human genes [12].
However, both SOM and PCA have significant drawbacks.
PCA is a variance-preserving linear projection, and this lim-
itation does not lead to a topographic representation [13].
On the other hand, the SOM lacks a sound theoretical
underpinning (for example, there is no cost function to
optimise, and training parameters must be chosen arbi-
trarily).

We therefore seek principled approaches to unsupervised
data introspection which are nonlinear (since microarray

data distributions are unlikely to be distributed on a linear
manifold in high dimensional spaces). In this paper we
will explore the Neuroscale model [14,15], Local Linear
Embeddings (LLE) [16] and Stochastic Neighbor Embed-
dings (SNE) [17].

Methods
The van't Veer Data set
We re-visit the well-known study of van't Veer et.al. [3] in
which we focus on 78 sporadic lymph-node negative
patients. Of these 78 patients, 34 developed distant
metastases within 5 years and 44 remained free of cancer
in that period. These are regarded as poor and good-prog-
nosis groups respectively. The interest is whether the
information in a gene expression profile alone could be
used to perform a patient-specific prognosis separation
between those two groups of patients. We will primarily
use structure-preserving projective visualisation tech-
niques to investigate this possibility. In the van't Veer
study, from an initial set of 24481 human genes synthe-
sised by inkjet microarray technology, about 5000 genes
were found to be significantly expressed. They ranked
genes by the magnitude of the correlation coefficient and
eventually reduced the number of genes to 70, the
number of genes which maximised a specific classification
model. The centroid-based classifier they constructed
could allocate 83% of the patients into the correct progno-
sis groups with 5 poor prognosis and 8 good-prognosis
patients misclassified into the opposite categories.

An alternative PGL
To illustrate the lack of uniqueness of capability of the
van't Veer gene list, which we denote List A in this paper,
we compare results on a different gene list, denoted List B,
selected on the basis of cross-patient consistency rather
than maximising classification accuracy on a specific clas-
sification model. Let xi denote the gene expression vector
for patient i of the van't Veer PGL. xG, where G = {1, 2,...,
44} represents a set of expression values across all good
prognosis patients, and xP, where P = {45, 46,..., 78} rep-
resents the set of all poor prognosis patients.

The variance of individual gene expression values across
each patient group is estimated by

where L = {G, P} and the average is taken across all

patients. Assume  is the rank order of the variance of

gene j for each patient group. The unique top T ranked
genes from each group are extracted,

σ L i L i L
2 2= 〈 − 〉 ∈( ) ,x x

R j
L
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The number of T genes is chosen so that List B has a total
number of genes equal to 70, the same as List A. Specifi-
cally, in this case the 35 lowest non-overlapped variance
genes from each patient group were extracted.

List B = {LG ∪ LP} - {LG ∩ LP}.

This selection criterion emphasises consistency of gene
expression across patients, rather than explicitly seeking
discrimination (see table 25 for list of genes). Examining
the details of the two 70-gene subsets, we observe that
there are only five genes in common between the van't
Veer study and this alternative gene list. If List A has supe-
rior prognostic value, its projective visualisation and dis-
crimination properties should be better than those of List
B, since List A was chosen explicitly to maximise discrim-
ination.

The validation data set of van de Vijver [4]
A follow-up study by the same group was performed
which followed the progression of another set of patients
to verify the original study. This follow-up data set con-
tains 295 patients with 106 poor-prognosis and 189
good-prognosis patients. The poor-prognosis patients are
categorised into 3 sub-categories.

Patients with metastasis but who did not die as a direct
result of the metastasis, patients who died without devel-
oping metastasis and the patients who developed metas-
tasis and eventually died. Within these 295 patients, 61 of
them are present in the previous study. Those patients will
be removed in this paper to ensure we can examine gener-
alisation on a separate set of 234 different patients, 159 of
whom are categorised as good-prognosis.

Topographic Visualisation
Topographic mappings are mechanisms that map the data
in a high dimensional space into a low dimensional space
in such a way that preserves the structure of the data. This
structure of the data usually means the relative distances
between points in the high dimensional space, where a
suitable distance function is used to reflect the prior
knowledge of the domain. In other words, the points that
are close together in a high dimensional space should also
stay together in a lower dimensional projection space, and
data that lie far apart in a high dimensional feature space
should remain significantly separated in the lower dimen-
sional projection space.

Both the large quantity of genes and multiple samples of
microarray data make it difficult to represent the entire
data set and to identify the interesting genes easily. To
make understanding easier, a representation is needed to
compress all the information in a lower dimensional
space. Moreover, each individual patient can be visualised
as to whether that patient has expression values closer to
the those patients in different prognosis groups. Topo-
graphic projection maps do not assume the existence of
clusters, boundaries or classes and so are not subject to the
same criticisms as supervised approaches for data mining.

In this paper, three reliable topographic techniques are
used for embedding the van't Veer data set: NeuroScale
[14], Locally Linear Embedding (LLE)and Stochastic
Neighbor Embedding (SNE) [17].

NeuroScale

In a Neuroscale [14] topographic map the distribution
and trained relative positions of the points in the projec-
tion space are determined to reflect the relative dissimilar-
ity between data measurements (gene expression values)
in the high-dimensional space, and hence generalises the
established Sammon map concept. N measurement vec-

L j R T

L j R T

G j
G

P j
P

=

=

{ | }

{ | }

Table 25: The alternative gene list

AA553619.RC AB023216 AB032954 AF065241 AL050065
Contig11065.RC Contig14706.RC Contig14882.RC Contig15031.RC Contig31839.RC
Contig34302.RC Contig35229.RC Contig37063.RC Contig37262 Contig39090.RC
Contig42162.RC Contig46.RC Contig46223.RC Contig49818.RC Contig51800
Contig55189.RC Contig55377.RC Contig56457.RC Contig753.RC Contig760.RC
Contig8930.RC Contig8950.RC NM.000272 NM.000286 NM.000320

NM.000419 NM.000540 NM.000849 NM.001879 NM.002624
NM.003686 NM.003778 NM.003858 NM.004087 NM.004273
NM.004336 NM.004456 NM.004701 NM.004791 NM.005008
NM.005087 NM.005744 NM.006260 NM.006547 NM.007359
NM.012177 NM.012261 NM.012310 NM.012406 NM.014093
NM.014264 NM.014321 NM.014404 NM.014547 NM.014675
NM.014968 NM.015434 NM.017926 NM.018089 NM.018098
NM.018313 NM.018488 NM.020123 NM.020386 NM.021033
Page 4 of 23
(page number not for citation purposes)



BMC Medical Genomics 2008, 1:8 http://www.biomedcentral.com/1755-8794/1/8
tors xi in �p are transformed using a Radial Basis Function

(RBF) [18,19] network to a corresponding set of feature
(visualisation) vectors yi in �q. An RBF comprises a single

hidden layer of h neurons which represents a set of basis
functions, each of which has a centre located at some
point in the input space. Generally, q << p as dimension
reduction is desired, and typically q = 2 for visualisation.
The RBF is a semi-parametric kernel model such that yi =

W Φ (ri), where the set of weights W can be optimised

from a training data set. Thin plate spline functions Φ (r)

= r2 log(r), where  = ||xi - c|| will be used in this exper-

iment. In the Radial Basis Function network trained tradi-
tionally for regression problems, the desired output of the
network or the target values are already identified through
a supervised learning problem. However, in order to use
an RBF in the topographic reduction problem, which does
not have predefined targets but only considers the dis-
tance-preserving nature of the target values, the traditional
supervised Radial Basis Function network needs to be
modified by using relative supervision where it is only the
relative distances between pattern pairs which are impor-
tant [15]. The quality of the projection is measured by the
Sammon stress metric (n.b. we are using a reduced form
here, neglecting a denominator often employed):

where dij = ||yi - yj|| and  = ||xi - xj|| represent the inter-

point distances in projection space and data space respec-
tively. The aim of the training process is to set the param-
eters of the RBF weight matrix to minimise the stress
metric and hence capture the the functional relationship
between the original data distribution and the projected
images. The NeuroScale model is used to visualise and
interrogate our data set, considered as subsets of an array
of 78 × 70 patterns. Once the functional mapping has
been obtained using NeuroScale, the model can be reused
without reconstructing the projection over the extended
data by just passing the new data points, xnew through the

transformation function. ynew = f (xnew, W).

The number and location of the centres needs to be deter-
mined. However choices of centres are robust to the out-
come [20] since an implicit smoothing regularisation is
used as part of the optimisation process. As a normal prac-
tice, the number of centres is chosen to be the same as the

number of training data points, so that each data point
can be used as a centre of the RBF functions. In this exper-
iment the Netlab toolbox [7] is used to help construct the
NeuroScale projections.

LLE
Locally Linear Embedding (LLE) [16] aims to preserve the
local neighbourhood area around a point so that nearby
points in high dimensional space remain nearby and sim-
ilarly co-located with respect to one another in the low
dimensional space by preserving the neighbouring dis-
tance linearly. Provided there is sufficient data, we expect
each data point and its neighbours to lie on or close to a
locally linear patch of the manifold. In the simplest for-
mulation of LLE, the method will preserve weights for
each data point to the surrounding K nearest neighbours
per data point, as measured by Euclidean distance from a
point of interest. The optimal weights for each data point
to the surrounding K nearest neighbours are given by:

where  is a covariance matrix within the neighbour-

hood of xi and ηj is the neighbour of the data point xi.

Each high dimensional point xi is mapped to a low dimen-
sional point yi in low dimensional space, representing glo-
bal internal coordinates on the manifold. This is done by
choosing d-dimensional coordinates yi to minimise the
cost function in low dimensional space:

where Wij is fixed from the high dimensional space. This
algorithm has only one free parameter: the number of
neighbours per data point, K. The higher the value of K,
the more similar to the NeuroScale method this method
will be. This K practically, is very hard to find to suit the
given data set.

Furthermore, it is hard to find an appropriate value of K
which performs well across different choices of data sets.
It is typically much smaller than the number of data
points. In the experiments here we will show results using
K = 5, 20. Furthermore, LLE has a further disadvantage
over NeuroScale in that the NeuroScale model can pro-
duce a transformation function which can be used for
generalisation. Any new patient gene vector can be pro-
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jected down by using this existing function without rec-
omputing a full new projection, which can be very
computational expensive. In addition, the result using
LLE is sensitive to the choice of neighbours, K while Neu-
roScale gives quite consistent results [20].

Stochastic Neighbor Embedding
Stochastic Neighbor Embedding [17] also uses a pairwise
similarity but measures similarity using a probabilistic
distance approach to preserve the neighbourhood iden-
tity. A Gaussian distribution is centred on each object
point in the high dimensional space and a probability
density is defined over all the potential neighbours of that
point. This approach permits a 1-to-many mapping of
high dimensional points to projection space.

The high dimensional related probability for each point,
i, and each potential neighbour, j, is computed using the
asymmetric probability, pij, that i would pick j as its neigh-
bour.

The dissimilarities, dij can be based on standard Euclidean
distances and scaled by a smoothing factor σi which is
empirically determined:

The low dimensional images yi of the points are used to
define a probabilistic density in the mapping space, as:

The aim of this SNE method is to match the above two dis-
tributions as close as possible. The Kullback-Leibler diver-
gence, which is a measure of dissimilarity between two
probabilities is used here as a cost function. This can be
achieved by manipulating the coordinates yi to minimise
the cost:

The SNE model can be extended for multiple projections
of a single object by using a mixture of densities, which
produces a probabilistic density in the mapping space:

The number of clusters in the mixture also needs to be
determined empirically. Each data point xi can be pro-

jected to many locations of the mixtures  or . How-

ever, for the experiments in this paper, only one
projection per data will be used. The main advantage of
SNE is its probabilistic approach but the results of the SNE

are strongly dependent on the chosen σ. If the chosen σ is
too large, the projecting data is likely to collapse to a sin-

gle point. The suggested σ is σ = log(K), where K is the
number of neighbours used to define a local cluster. To be
consistent with the LLE method, which used K = 5, 20, we

therefore choose σ = log(5), log(20) in the experiments in
this paper as representative examples.

Classifier
Purely for comparison to previous works in this area, we
additionally superimpose the results from a discrimina-
tive classifier on the projective maps. Classifiers are cre-
ated to determine the performance of the discrimination
patients into good or poor prognosis from each topo-
graphic projection images by trying to compare the per-
formance using different techniques and gene lists. The
classifiers are built on the two dimensional input of the
visualisation space using a separate RBF nonlinear classi-
fier. The output, instead of crisply divided the results into
good or poor prognosis patients produces an analogue
value indicating the likelihood of good prognosis typi-
cally varying from 0 to 1. The classifier uses 2 coordinate
input values and produces 2 output values indicating
good and poor prognosis likelihood respectively and is
trained using the original 78 patients only as a training
set. Specifically, the desired target value is T = {T1, T2}
where T ∈ {[1, 0], [0, 1]} represents good and poor prog-
nosis patients respectively. The two dimensional output
of the RBF network is: yi = W Φ (xi) where the basis func-
tions constituting Φ are selected using cross validation.

The outputs of the RBF network are then transformed
using the softmax function, giving a vector prognosis indi-

cator for each patient . One of the two

scales outputs which represents the good prognosis class
is used as an indicator and contours of the indicator val-
ues are superimposed on the projection map space to
show the likelihood of the good prognosis indicators.
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Patients with predicted prognosis values in the range 0.3
→ 0.7 are considered as ambiguously classified. Remov-
ing these 'low-confidence' patients from measures of clas-
sification performance figures are likely to improve
classification rates since the low confidence patients fall in
the overlap between the good and poor prognosis groups
as will be seen in the latter results.

Results
In this section we apply three different projective embed-
dings which are described in Methods, applied to the two
PGLs of 70 genes per patient: List A, the van't Veer choice
of genes, and List B, an alternative choice of genes chosen
for consistency, as described in Methods.

NeuroScale Projection
Figure 1 is the result from a 2-dimensional NeuroScale
projection using List A and Figure 2 is the result using List
B. The group of poor-prognosis and good-prognosis
patients are labelled differently, with black diamonds and

grey circles respectively. The results similarly show some
separation between the two groups of patients with a few
patients wrongly mapped into the opposite class. This
projection is using each patient data point as a separate
centre in the RBF model internal to NeuroScale. However,
to emphasize, no class information is used to construct
the projection map. The different symbols are simply to
allow easier identification of the two patient groups. This
projection appears to support the previous result of van't
Veer et. al. that List A appears to have some discriminatory
capability, although it is evident from these figures that
any discrimination is on a graded and overlapping scale
rather than providing separable distributions.

Figures 1 and 2, also show the classification model con-
tour lines superimposed on the projection map of Neuro-
Scale. The prognosis indicators vary on the level of overlap
between two prognosis groups. The areas where there is
large overlap between the two patient groups reflects
ambiguity of any likely class membership. Therefore, we

The NeuroScale results using List AFigure 1
The NeuroScale results using List A. NeuroScale map of gene List A. Note the approximate separation of the centroid 
between poor (diamonds) and good (circles) prognosis groups. Specific individual patients are highlighted with arrows.
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regard these patients as low confidence samples as far as
determining class information and we regard them as
'unclassifiable'.

Table 1 shows the classification result of the NeuroScale
projection using List A with 0.5 prognosis indicator as a
threshold boundary between good and poor prognosis
signatures of all patients. The overall classification rate is
83.33%, while if only high confidence patients are used
for consideration the classification result increases to
100% accuracy, the result shown in Table 2. However,
there are only 30 patients that fall in the high confidence

regions, less than one half of all patients. Similarly the
results using List B, shown in Tables 3 and 4 gave the same
classification rate as using the list A but with 4 fewer high
confidence patients. The results of the projection maps
and the classifications support the previous propositions
in the literature regarding the lack of uniqueness of a sin-
gle PGL.

Locally Linear Embedding
The Locally Linear Embedding results using two different
gene sets are projected down and shown in Figures 3 and

Table 2: The misclassification matrix from the NeuroScale 
projection using List A with only high confidence patients. The 
classification is performed using only 30 high confidence patients 
whose indicators are either above 0.7 or below 0.3. The 
classification rate is 100%.

Predict Good Predict Poor

Actual Good 10 0
Actual Poor 0 20

Table 1: The misclassification matrix from the NeuroScale 
projection using List A. The classification is performed using the 
original 78 patients with 0.5 prognosis indicator as a threshold 
boundary. The classification rate is 83.33%.

Predict Good Predict Poor

Actual Good 27 7
Actual Poor 6 38

The NeuroScale results using List BFigure 2
The NeuroScale results using List B. NeuroScale map of gene List B. Note the approximate separation of the centroid 
between poor (diamonds) nd good (circles) prognosis groups. Specific individual patients are highlighted with arrows.
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4 using K = 5 and Figures 5 and 6 using K = 20 together
with the classification contour lines of the good prognosis
indicator. K is the number of neighbours used to construct
the mapping which has to be chosen empirically. With K
= 5, within a good prognosis cluster of both gene lists,
there are four obvious poor prognosis patients. Three of
them are common across both List projections. These four
patients remain in the wrong place even after the number
of neighbours increases. Between 13 and 16 poor progno-
sis patients are likely to be misclassified as good prognosis
patients in the 'boundary layer'.

The best representation seems to be K = 20 with List A giv-
ing slightly better separation with fewer patients misclas-
sified, with 7 good prognosis and 4 poor prognosis
patients likely to be misclassified, from inspection of the
figures without the classification results. However, some
regions can be classified better when the classifier are
trained on the particular data set. For example, few good
prognosis patients in Figure 5 are on the right of the pro-
jection while most of the good prognosis patients are sup-
posed to be on the left side. Those few patients create the

The LLE results with K = 5 using List AFigure 3
The LLE results with K = 5 using List A. Projection result of the LLE method using K = 5 List A, the van't Veer list: the 
comparison list. Selected specific patients identified by arrows.
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Table 3: The misclassification matrix from the NeuroScale 
projection using List B. The classification is performed using the 
original 78 patients with 0.5 prognosis indicator as a threshold 
boundary. The classification rate is 83.33%.

Predict Good Predict Poor

Actual Good 28 6
Actual Poor 7 37

Table 4: The misclassification matrix from the NeuroScale 
projection using List B with only high confidence patients. The 
classification is performed using only 26 high confidence patients 
whose indicators are either above 0.7 or below 0.3. The 
classification rate is 100%.

Predict Good Predict Poor

Actual Good 7 0
Actual Poor 0 19
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region where patients are likely to be good prognosis even
though this could be the result of these few outliers.

Both List projections have a separability of the modes of
the two groups even though some patients appear in the
wrong relative positions for their prognosis groups. Nev-
ertheless, the difficulty for LLE is choosing the appropriate
value for K. The result shows better separation of the train-
ing data with K = 20. For Figure 5, poor prognosis patients
P45, P55, P54 are isolated from the other patients. How-
ever, having these three patients correctly classified could
result in poor generalisation across new data. Other than
this, the LLE projections reflect some similarities to the
NeuroScale projections.

Similar to the NeuroScale classification results, the classi-
fication results of LLE are provided in misclassification

matrices showing results for all the patients and also using
only high confidence patients, with different choices for
the number of neighbours, K. Tables 5 and 6 show the
classification results of LLE with K = 5 using List A with
classification results on all patients and high confidence
patients respectively. Similarly for list B, the classification
results for K = 5 are shown in Tables 7 and 8. Visually, List
B gives a more distinct projection than List A with more
clusters of good prognosis patients separated without
overlap of many poor prognosis patients. The classifica-
tion results confirm this. When only high confidence
patients are retained, no patients are misclassified using
either gene list although the number of high confidence
patients using List B is more than using List A by 8
patients.

The LLE results with K = 5 using List BFigure 4
The LLE results with K = 5 using List B. Projection result of the LLE method using K = 5, List B: the comparison list. 
Selected specific patients identified by arrows.
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For K = 20, the classification results are shown in Tables 9
and 10 for list A and Tables 11 and 12 for list B. Contrary
to the K = 5 case, the results using List A with K = 20 gives
better classification performance. The classification rate is
quite high with 93.58% accuracy with larger numbers of
high confidence patients compared to the other methods,
but this could result from the overfitting of this particular
model. As can be seen in Figure 5, the gap of the contours
between 0.4 to 0.7 is quite narrow. Choosing the exact
boundary that determines the prognosis signature of each
patient is therefore critical. As a result, if patient values
contain uncertain information or noisy data, the resulting
classification outcome of such patients is likely to be effec-
tively random. Therefore the data of such uncertain
patients should not be taken into account in representing
performance results. We investigate generalisation of
these results later in the paper.

Stochastic Neighbor Embedding
The projection maps of Stochastic Neighbor Embedding
reflect different results of qualitative projections for σ =
log(5) shown in Figures 7 and 8, and σ = log(20) shown
in Figures 9 and 10. From these figures it can be seen that
the relative distributions of the patient projections are
quite different for differing choices of the value of σ and
this value is quite hard to determine. With σ = log(20),
patients from both gene groups are mostly overlapped.
The separation is not as good as in the previous two mod-
els.

Figures 7 and 8, show the classification contour lines
superimposed on the SNE projection maps using the two
different gene Lists with σ = log(5), and Figures 9 and 10
with σ = log(20).

The LLE results with K = 20 using List AFigure 5
The LLE results with K = 20 using List A. Projection result of the LLE method using K = 20, List A. Selected specific 
patients identified by arrows.
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Tables 13 and 14 show the classification results of the SNE
with σ = log(5) using List A, with classification results
shown on all patients and also those high confidence
selected patients respectively. For List B, the classification
results are shown in Tables 15 and 16. With σ = log(5),
List B gives better overall performance but when only high
confidence patients are being measured, no patients are
misclassified with almost the same number of high confi-

dence patients using both gene lists. Again, this supports
the proposition that equivalent performance can be
obtained on dissimilar gene lists.

For σ = log(20), the classification results are shown in
Tables 17 and 18 for list A, and Tables 19 and 20 for list
B. List A gives only slightly better performance to list B

The LLE results with K = 20 using List BFigure 6
The LLE results with K = 20 using List B. Projection result of the LLE method using K = 20, List B. Selected specific 
patients identified by arrows.
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Table 6: The misclassification matrix from the LLE projection 
using List A with K = 5 using only high confidence patients. The 
classification is performed using only 22 high confidence patients 
whose indicators are either above 0.7 or below 0.3. The 
classification rate is 100%.

Predict Good Predict Poor

Actual Good 7 0
Actual Poor 0 15

Table 5: The misclassification matrix from the LLE projection 
using List A with K = 5. The classification is performed using the 
original 78 patients with 0.5 prognosis indicator as a threshold 
boundary. The classification rate is 79.49%.

Predict Good Predict Poor

Actual Good 27 7
Actual Poor 9 35
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which is 79.49% to 74.36%. Both of them gave perfect
classification rates when restricted to high confidence
patients although list B has more high confidence patients
(14 patients), compared to 10 patients in list A. Neverthe-
less, the number of retained high confidence patients in
this method is very low.

Discussion
Comparison across models
The three methods gave different visualisation outcomes.
LLE with K = 5 represents the data as a quasi 1-dimen-
sional representation while the other two models present
2-dimensional mappings. However on inspection, they
reveal some similarities. For both gene sets, poor progno-
sis patients whose gene feature vectors are significantly
placed in the wrong cluster are consistently misplaced
across models. For LLE, there are 4 poor prognosis
patients (in both gene sets) who are projected to the
wrong cluster. Recall that the feature sets used are almost
non-overlapping. These patients may be used to compare
between models. For List A, instead of P73 using LLE, P60
is having a low confidence and more likely to be misclas-
sified. Only NeuroScale places P54 far from the remaining
patients. We note that P54 is exceptional in that the
patient's gene list has several missing values (and for this
reason was eliminated from analysis in the paper by Ein-
Dor [1]). The NeuroScale model correctly identifies P54 as
an outlier patient requiring further investigation. Note
that a classification model built from this projection
would place P54 into a good or poor prognosis class
despite the missing information.

With K = 20 in LLE, three patients, P54, P55, P45, are sep-
arated from the remaining patients, instead of clustering
amongst the other good-prognosis patients as indicated

by the other projection models. With this number of
neighbours in LLE, the projection is giving better patient
group separability and giving correct classification results
despite being outliers.

However, for the SNE projective visualisation, P54 has a
surprisingly high confidence of being correctly classified
and does not reflect the problems of missing information.
Instead of patient P54, P59 is misclassified by the SNE
projection but with low confidence. On the other hand
the likely misclassified good prognosis patients are com-
mon using both LLE and NeuroScale but with some slight
difference to the SNE is that P12 does not significantly
project to the wrong cluster.

In addition, for List B, both LLE and NeuroScale give sim-
ilarly consistent results for projections of good and poor
prognosis patients into the incorrect groups as shown in
both visualisation and classification results. The differ-
ence using SNE is that SNE gives a better representation of
P46 but gives an incorrect projection to P51 instead. Sim-
ilarly, the significantly misclassified good prognosis
patients are the same using both LLE and NeuroScale but
it is very difficult to discriminate using Stochastic Neigh-
bor Embedding.

Both LLE and SNE show sensitivity of projections to
empirical choices of selectable parameters, but projec-
tions can be found some consistency of patient distribu-
tion across all three nonlinear topographic projection
methods. However, NeuroScale has an advantage over the
other two methods because of its principled basis on a
machine learning parameterised mapping that can be
reused in a generalisation experiment without the need to
retrain any models. We will test this feature shortly.

Table 10: The misclassification matrix from the LLE projection 
using List A with K = 20 using only high confidence patients. The 
classification is performed using 41 high confidence patients 
whose indicators are either above 0.7 or below 0.3. The 
classification rate is 100%.

Predict Good Piredict Poor

Actual Good 12 0
Actual Poor 0 29

Table 8: The misclassification matrix from the LLE projection 
using List A with K = 5 using only high confidence patients. The 
classification is performed using 29 high confidence patients 
whose indicators are either above 0.7 or below 0.3. Again a 
perfect classification rate is achieve.

Predict Good Predict Poor

Actual Good 8 0
Actual Poor 0 21

Table 7: The misclassification matrix from the LLE projection 
using List B with K = 5. The classification is performed using the 
original 78 patients with 0.5 prognosis indicator as a threshold 
boundary. The classification rate is 87.18%.

Predict Good Predict Poor

Actual Good 31 7
Actual Poor 3 37

Table 9: The misclassification matrix from the LLE projection 
using List A with K = 20. The classification is performed using the 
original 78 patients with 0.5 prognosis indicator as a threshold 
boundary. The classification rate is 93.58%.

Predict Good Predict Poor

Actual Good 33 1
Actual Poor 4 40
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Comparison of PGLs across patient groups
Both gene lists A and B produce similar projections, except
that P55 in List A is mostly projected to the wrong group
by all three models. However, with List B it is not as
unambiguous since this patient is projected into the inter-
face between the two prognosis groups. P45 appears as
one of the wrongly projected poor prognosis patients
instead of P55. Except for these two patients with different
results, both gene lists create similar projections, despite

the fact that both gene sets have very few genes in com-
mon. This supports the opposing view, that different gene
lists can be created from small sample patient groups
which randomly correlate with arbitrary outcome. The
classification results confirm the similarity using both
gene lists.

The SNE results with σ = log(5) using List AFigure 7
The SNE results with σ = log(5) using List A. The Stochastic Neighbor Embedding projections of List A with σ = log(5).
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Table 11: The misclassification matrix from the LLE projection 
using List B with K = 20. The classification is performed using the 
original 78 patients with 0.5 prognosis indicator as a threshold 
boundary. The classification rate is 84.62%.

Predict Good Predict Poor

Actual Good 28 7
Actual Poor 5 39

Table 12: The misclassification matrix from the LLE projection 
using List B with K = 20 using only high confidence patients. The 
classification is performed using 28 high confidence patients 
whose indicators are either above 0.7 or below 0.3. The 
classification rate is 100%.

Predict Good Predict Poor

Actual Good 12 0
Actual Poor 0 16
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From the observations, most patients have similar repre-
sentations in the projected mappings. Some patients are
better represented by one PGL or the other. Nevertheless
both gene lists produce an overlapping patient region in
which patients in this area cannot be separated into either
good or poor prognosis groups. The clinical prognosis of
these patients should be unclassifiable instead of being
assigned into any one prognosis group. This new patient
type can be crucial in the medical domain where the
advice to the clinician should be that no prediction can be
made on the available information and extra information
is needed in addition to the gene expression profile.

Generalisation results using the van de Vijver data set
In the earlier studies of van't Veer et. al., validation of the
original 70 PGL was made by obtaining good perform-
ance on an additional patient data set. In this section we
perform the same comparison, making use of the func-

tional mapping ability of NeuroScale applied to the
extended van de Vijver data.

NeuroScale has an advantage over some other topo-
graphic models in that new data can be projected through
a prior learned projection mapping. Once the functional
mapping has been obtained using NeuroScale, the model
can be reused without reconstructing the projection using
novel data. For additional comparison, this section will
also use a retrained LLE model (trained on the new full
data set) with K = 20 which performed well with the pre-
vious patient set, as a comparison to the generalised Neu-
roScale. For validation, the new patient set of van de Vijver
will be projected using the same networks for both gene
lists. In their study [4], they verified the viability of their
70 nominated genes as prognosis indicators of breast can-
cer by using the previous 78 patients as a training set and
testing on this new patient set. We will investigate this

The SNE results with σ = log(5) using List BFigure 8
The SNE results with σ = log(5) using List B. The Stochastic Neighbor Embedding projections of List B with σ = log(5).
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claim further by applying trained topographic visualisa-
tion to this new patient set using both PGL lists A and B,
and observe the consistency of the distribution between
the two groups of patients.

Figures 11 and 12 show the projections of those remain-
ing 234 patients, labelled into 4 different groups, which
are (1) good-prognosis patients (circles), (2) metastasis
patients (asterisks), (3) death (stars) and (4) both metas-
tasis and death (diamonds). Both PGL projective visuali-
sations seem to give similar projections on the new data.
For List A from Figure 1, good prognosis patients are likely
to be projected towards the top of the visualisation map
while the poor prognosis patients are at the bottom. The
projection of new data for List A in Figure 11 shows some
density of good-prognosis patients on the top of the visu-
alisation map, similar to Figure 1. However, many good-

prognosis patients are distributed across the visualisation
map. For List B, the patient gene vectors are quite dense in
Figure 12; however a number of good-prognosis patients
tend to be on the top left of the plot, similar to Figure 2.

The results using the two different gene lists are different.
Many poor prognosis patients are more clustered in the
middle while the good prognosis patients are likely to be
more widely distributed. This is especially true for List B.
Poor-prognosis patients of list B, visually, are more likely
to be separable than using List A. Some patients give dif-
ferent projections: P192 and P327 are at the right edge of
the visualisation projection using List A which give very
high confidence of being poor prognosis while List B
projects them down into the central regions which give
lower confidence of being poor prognosis patients. Alter-
natively many good-prognosis patients are projected to

The SNE results with σ = log(20) using List AFigure 9
The SNE results with σ = log(20) using List A. The Stochastic Neighbor Embedding projections of List A with σ = 
log(20).
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the central regions using List A but are scattered around
the edges using list B: for example P362, P248 which give
very high confidence of being good prognosis patients
while list A does not give such high confidence of P362
and in addition, misclassifies P248.

However, the overall separation between the two patient
groups can be seen to be significantly worse for this set of
generalisation patients when compared to the original
patient set used in the training phase. The classification
results of the RBF classifiers trained on the previous 78
patients can be reused with the new 234 patients in the
NeuroScale projection space because of its reusability.
Tables 21 and 22 show the classification results using List
A and Tables 23 and 24 show the classification results
using List B. It can be seen that the classification results
drop from the previous data set dramatically from around
80% to less than 60% for all patients.

Slight improvements in classification are made when only
the high confidence patients are retained, increasing per-
formance to slightly more than 60%.

For comparison, LLE was retrained on the full set of 234
patients and also projected down. The results are shown
in Figures 13 and 14 using K = 20. These new projections
of good or poor prognosis patient groupings have little
resemblance to the previous results obtained on the orig-
inal training set.

There is no separation between the two prognosis groups
using the LLE model, which shows the poor consistency
between the chosen K for the previous patient set and the
new patient set. The pre-trained network of the NeuroS-
cale, provides a more separable projection map. Neverthe-
less, both visualisation models create large sections of
overlap between the two patient groups.

The SNE results with σ = log(20) using List BFigure 10
The SNE results with σ = log(20) using List B. The Stochastic Neighbor Embedding projections of List B with σ = log(20).
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Table 16: The misclassification matrix from the SNE projection 
using List B with σ = log(5) using only high confidence patients. 
The classification is performed using 17 high confidence patients 
whose indicators are either above 0.7 or below 0.3. The 
classification rate is 100%.

Predict Good Predict Poor

Actual Good 8 0

Actual Poor 0 9

Table 14: The misclassification matrix from the SNE projection 
using List A with σ = log(5) using only high confidence patients. 
The classification is performed using 16 high confidence patients 
whose indicators are either above 0.7 or below 0.3. The 
classification rate is 100%.

Predict Good Predict Poor

Actual Good 4 0

Actual Poor 0 12

Table 13: The misclassification matrix from the SNE projection 
using List A with σ = log(5). The classification is performed using 
the original 78 patients with 0.5 prognosis indicator as a 
threshold boundary. The classification rate is 79.49%.

Predict Good Predict Poor

Actual Good 27 9

Actual Poor 7 35

Table 15: The misclassification matrix from the SNE projection 
using List B with σ = log(5). The classification is performed using 
the original 78 patients with 0.5 prognosis indicator as a 
threshold boundary. The classification rate is 80.77%.

Predict Good Predict Poor

Actual Good 25 6

Actual Poor 9 38

Table 17: The misclassification matrix from the SNE projection 
using List A with σ = log(20). The classification is performed 
using the original 78 patients with 0.5 prognosis indicator as a 
threshold boundary. The classification rate is 79.49%.

Predict Good Predict Poor

Actual Good 24 10

Actual Poor 6 38

Table 18: The misclassification matrix from the SNE projection 
using List A with σ = log(20) using only high confidence patients. 
The classification is performed using 10 high confidence patients 
whose indicators are either above 0.7 or below 0.3. The 
classification rate is 100%.

Predict Good Predict Poor

Actual Good 2 0

Actual Poor 0 8

Table 19: The misclassification matrix from the SNE projection 
using List B with σ = log(20). The classification is performed 
using the original 78 patients with 0.5 prognosis indicator as a 
threshold boundary. The classification rate is 74.36%.

Predict Good Predict Poor

Actual Good 25 11

Actual Poor 9 33

Table 20: The misclassification matrix from the SNE projection 
using List B with σ = log(20) using only high confidence patients. 
The classification is performed using 14 high confidence patients 
whose indicators are either above 0.7 or below 0.3. The 
classification rate is 100%.

Predict Good Predict Poor

Actual Good 2 0

Actual Poor 0 12
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For LLE, the classifiers trained from the previous data set
can not apply here since the new projections have to be
retrained completely using the new data set. Therefore, the
classifiers are not suitable for this model. Only the visual-
isation results are shown.

These results indicate that the selected 70 genes are not
representative of robust Predictive Gene Lists for progno-
sis on this problem domain for these patients. The 70
genes extracted from the original data set performs well
only on particular patients due to the random correlation
effect occurring because of the large dimensionality of the
original 25, 000 genes and the small patient sample size.
The two different lists of 70 genes perform equivalently in
the projection mapping showing the non-uniqueness of
the selected gene list. Only parts of the map may be used

to identify the good-prognosis patient cluster with any
degree of confidence. However, the broad overlap demon-
strated in this paper indicates that most patients should be
considered as unclassifiable based on these subset PGLs.

In the van de Vijver study, the generalisation performance
from the van't Veer data set is mentioned. However, the
publication only implemented a Kaplan-Meier analysis
which shows the random outcome of the patients pre-
dicted as poor prognosis signatures but with a good rate
of outcome of patients predicted as good prognosis
patients. However, this patient list also contains most of
the original 78 patients also, which obviously make the
classification rates higher than expected for a genuine gen-
eralisation performance test. Furthermore, a definite
threshold that divides the good and poor prognosis signa-

The van de Vijver NeuroScale projection map with List AFigure 11
The van de Vijver NeuroScale projection map with List A. The NeuroScale Visualisation projection of the new 234 
patients trained using the original 78 patients based on List A. Circles represent healthy patients who did not develop any fur-
ther sign of relapse, asterisks for patients who developed metastasis but did not die, diamonds for the patients who died with-
out developing metastasising cancer and stars for patients who developed metastasis and then died consequently.
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tures has been specified. Therefore, patients who are
intrinsically unclassifiable are also included in the classi-
fication results which is not to be advised.

Conclusion
We have proposed an alternative approach to investigate
patient-specific gene-based breast cancer prognosis by
providing a topographic projection mapping approach. A
comparison using different non-linear projection models
has been demonstrated using a single data set projected by
using two almost orthogonal lists of 70 genes as feature
vectors for each patient.

However, the separation between two prognosis groups
dropped dramatically when the visualisation is applied to
a new set of patients. We found that the gene list giving

reasonable separability of patient types in the preliminary
experiments does not separate patient groups of the later
study. In addition, the overlap between patient groups is
large and can lead to misleading prognoses, which indi-
cates that using a small number of patient samples to
identify gene markers generically yields unreliable results.

Furthermore, both gene lists give similar separability
results despite there being only a small overlap of genes
between the two feature vectors. However, there are some
specific patients whose results are notably distinct
between the two PGLs. It can be interpreted that there are
more important structures that are hidden across multiple
genes which could be related to the development of can-
cer metastasis. Using patients whose gene expression pro-
files are unsure of giving a definite class label is ill-

The van de Vijver NeuroScale projections with List BFigure 12
The van de Vijver NeuroScale projections with List B. The NeuroScale Visualisation projection of the new 234 patients 
trained using the 78 patients based on List B. Circles represent healthy patients who did not develop any further sign of 
relapse, asterisks for patients who developed metastasis but did not die, diamonds for the patients who died without develop-
ing metastasising cancer and stars for patients who developed metastasis and then died consequently.
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Table 22: The misclassification matrix from the NeuroScale 
projection on the new 234 patients using List A with only high 
confidence patients. The classification is performed using only 
the 78 high confidence from the new 234 patients whose 
indicators are either above 0.7 or below 0.3 using 70 gene set 
provided by List A. The overall classification rate improves to 
60.26%

Predict Good Predict Poor

Actual Good 24 28

Actual Poor 3 33

The van de Vijver LLE projections using List AFigure 13
The van de Vijver LLE projections using List A. The LLE Visualisation projection of the new 234 patients, excluding the 
previous 61 patients, trained on the van't Veer study of 78 patients using the 70 gene set of List A with K = 20.
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Table 21: The misclassification matrix from the NeuroScale 
projection on the new 234 patients using List A. The 
classification is performed using the new 234 patients with 0.5 
prognosis indicator as a threshold boundary 70 gene set provided 
by List A. The overall classification rate is 58.97%

Predict Good Predict Poor

Actual Good 56 77

Actual Poor 19 82
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The van de Vijver LLE projection using List BFigure 14
The van de Vijver LLE projection using List B. The LLE Visualisation projection of the new 234 patients, excluding the 
previous 61 patients, trained on the van't Veer study of 78 patients using the 70 gene set of List B with K = 20.
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Table 23: The misclassification matrix from the NeuroScale 
projection on the new 234 patients using List B. The 
classification is performed using the new 234 patients with 0.5 
prognosis indicator as a threshold boundary 70 gene set provided 
by List A. The overall classification rate is 56.40%

Predict Good Predict Poor

Actual Good 32 43

Actual Poor 59 100

Table 24: The misclassification matrix from the NeuroScale 
projection on the new 234 patients using List B with only high 
confidence patients. The classification is performed using only 
the 92 high confidence from the new 234 patients whose 
indicators are either above 0.7 or below 0.3 using 70 gene set 
provided by List A. The overall classification rate improves to 
67.40%

Predict Good Predict Poor

Actual Good 13 21

Actual Poor 9 49
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advised. These patients have intrinsic uncertainty attached
to their gene expression profiles and should not be used
in prospective studies without further investigation. An
overoptimistic impression of the results is likely to be
made if uncertainty issues in the data are ignored.

We conclude that patient-specific prognosis results cannot
be determined by looking at only gene expression, espe-
cially with only a small subset extracted from large num-
bers of genes from small patient samples. Many genes are
randomly correlated with the survival over a small popu-
lation sample. Although using gene expression profiles
can be one tool which helps toward indicating the out-
come of breast cancer, the predictive uncertainty given to
the prognosis results is high. In addition, methods should
not attempt to provide classification estimators in medical
decision support, especially for the group of 'unclassifia-
ble' patients, without indicating the extreme uncertainty
attached to each patient. More work is needed on quanti-
fying the patient-specific confidence in prognosis estima-
tors, regardless of the approach.
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