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Abstract

Background: Genomic copy number alteration (CNA) that are recurrent across multiple samples
often harbor critical genes that can drive either the initiation or the progression of cancer disease.
Up to now, most researchers investigating recurrent CNAs consider separately the marginal
frequencies for copy gain or loss and select the areas of interest based on arbitrary cut-off
thresholds of these frequencies. In practice, these analyses ignore the interdependencies between
the propensity of being deleted or amplified for a clone. In this context, a joint analysis of the copy
number changes across tumor samples may bring new insights about patterns of recurrent CNAs.

Methods: We propose to identify patterns of recurrent CNAs across tumor samples from high-
resolution comparative genomic hybridization microarrays. Clustering is achieved by modeling the
copy number state (loss, no-change, gain) as a multinomial distribution with probabilities
parameterized through a latent class model leading to nine patterns of recurrent CNAs. This model
gives us a powerful tool to identify clones with contrasting propensity of being deleted or amplified
across tumor samples. We applied this model to a homogeneous series of 65 lung
adenocarcinomas.

Results: Our latent class model analysis identified interesting patterns of chromosomal
aberrations. Our results showed that about thirty percent of the genomic clones were classified
either as "exclusively" deleted or amplified recurrent CNAs and could be considered as non
random chromosomal events. Most of the known oncogenes or tumor suppressor genes
associated with lung adenocarcinoma were located within these areas. We also describe genomic
areas of potential interest and show that an increase of the frequency of amplification in these
particular areas is significantly associated with poorer survival.

Conclusion: Analyzing jointly deletions and amplifications through our latent class model analysis
allows highlighting specific genomic areas with exclusively amplified or deleted recurrent CNAs
which are good candidate for harboring oncogenes or tumor suppressor genes.

Page 1 of 11

(page number not for citation purposes)


http://www.biomedcentral.com/1755-8794/2/43
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19594952
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Medical Genomics 2009, 2:43

Background

Chromosomal instability plays an important role in car-
cinogenesis with numerical and structural genomic altera-
tion leading to selective growth advantages [1]. In recent
years, high-resolution array comparative genomic hybrid-
ization (aCGH) has replaced conventional metaphase
CGH as the standard protocol for identifying segmental
copy number alteration across the whole genome. The
classical strategy of aCGH technique is to co-hybridize
genomic DNA from a cancer sample (labelled with one
fluorochrome) with genomic DNA from a normal refer-
ence sample (labelled with a different fluorochrome) to
the aCGH targets. These targets correspond to chosen
genomic clones or non-overlapping oligonucleotides of
different lengths that are spotted or directly synthesized
onto the solid support. In practice, the distribution and
length of the spotted array elements determine the detec-
tion sensitivity to various alteration sizes with some recent
platforms being able to detect alteration sizes less that
100-kb [2].

In clinical cancer research, large collections of tumor sam-
ples are currently being analyzed using aCGH experi-
ments. After assessing regions with copy gains or losses
within each individual sample, the main challenge is to
identify genomic areas where amplifications or deletions
are recurrent across tumor samples and hypothesized to
harbour oncogenes or tumor suppressor genes of interest.
More precisely, the challenge is to distinguish between
"bystander" and "driver" chromosomal aberrations, these
latter changes conferring biological properties to the
tumor that allow it to proliferate.

In order to identify these functionally and potentially clin-
ically important chromosomal changes, classical
approaches focus on loss and gain as separate cases and
select aberrations that are deemed significant using ad-
hoc frequency thresholds or permutation-based method
[3-5]. A shortcoming of these methods is that they analyze
copy loss and copy gain as separate events without consid-
ering jointly the chromosomal propensity for deletions
and amplifications. However, genomic areas harboring
either oncogenes or tumor suppressor genes should
jointly exhibit high frequency amplification together with
a low frequency deletion, and vice versa, respectively.
Thus, the ability to identify these "driver" chromosomal
aberrations should be improved by modeling jointly the
occurrence of deletions and amplifications across the
tumor samples.

To achieve this, we propose a novel strategy to identify
patterns of recurrent copy number alteration (CNA) based
on a latent class model framework. Here, a pattern is con-
sidered to be a model-based representation of a clone's
propensity for exhibiting chromosomal aberrations (dele-

http://www.biomedcentral.com/1755-8794/2/43

tion and amplification) in a specific disease entity. Based
on these patterns, we highlight genomic areas having the
highest frequency for amplification together with the low-
est frequency for deletion (so called exclusively amplified
CNA) and vice versa (so called exclusively deleted CNA). A
case study that investigated CNAs in a homogeneous
series of sixty-five early stage lung adenocarcinomas using
32K BAC arrays is analyzed to demonstrate the interest of
this approach. In particular, we identified regions exhibit-
ing a high rate of amplification together with a low rate of
deletion that are likely to confer a selective advantage and
probably harbor one or several oncogenes. We also ana-
lyse the potential impact of an accumulation of such chro-
mosomal aberrations on patients' outcomes.

Methods

Data and preprocessing

The dataset considered in this study is based on a homo-
geneous series of 65 patients with stage IB lung adenocar-
cinomas (excluding large cell carcinomas) who
underwent surgery (AP-HP, France). This study was
approved by the Hétel-Dieu hospital ethic committee.
DNA was extracted from frozen sections using the
Nucleon DNA extraction kit (BACC2, Amersham Bio-
sciences, Buckinghamshire, UK), according to the manu-
facturer's procedures. For each tumor, two micrograms of
tumor and reference genomic DNAs were directly labeled
with Cy3-dCTP or Cy5-dCTP respectively and hybridized
onto aCGH containing 32,000 DOP-PCR amplified over-
lapping BAC genomic clones (average size of 200 kb) pro-
viding tiling coverage of the human genome.
Hybridizations were performed using a MAUI hybridiza-
tion station, and after washing, the slides were scanned on
a GenePix 4000B scanner. For this analysis, we only con-
sidered BAC genomic clones mapping to automosomal
chromosomes. The aCGH signal intensities were normal-
ized using a two-channel microarray normalization pro-
cedure. For each sample, inferences about the copy
number status of each BAC clone were obtained using the
CGHmix classification procedure [6]. In practice, we com-
pute the posterior probabilities of a clone belonging to
either one of the three defined genomic states (loss,
modal/unaltered and gain copy state) from a spatial mix-
ture model framework. Then, we assigned each clone to
one of two modified copy-number allocation states (loss
or gain copy state) if its corresponding posterior probabil-
ity was above a defined threshold value, otherwise the
clone was assigned to the modal/unaltered copy state.
This latter threshold value was selected to obtain the same
false discovery rate of 5% for each sample. Here, a false
discovery corresponded to a clone incorrectly defined as
amplified or deleted by our allocation rule.
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Model
Let Y;=N7;N}YNM=n-NP-N? denote the 3-
dimensional random variable which records the number

of deletions NP, amplifications N and modal copy

NM=n-NP - N observed for genomic clone i (i = 1,
..., I) over the sample set of tumors with size n. Let L;be an

unobserved (latent) categorical allocation variable taking
the values 1, ..., K with probabilities w,, ..., wy, respec-

tively. Here, L; indicates the index of the class to which

genomic clone i belongs. These classes are a convenient
representation for describing CNA patterns in term of
their propensity for amplification and deletion. The class
variable is not observed and hence said to be latent. As
seen below, we consider a latent class model with three
levels (low, medium, high)for both amplification (j =
1,2,3) and deletion (j* = 1,2,3) leading to nine latent
classes (K =9).

For a genomic clone i belonging to class k& = (j, j*), we
assume that Y; follows a multinomial distribution (here a

trinomial distribution) with conditional response proba-

bilities for loss copy state (deletion) ka , gain copy state
(amplification) p;;\ and modal copy state p,[z\'1 parameter-
D D D

ized with the latent class parameters A0y i

(deletion) and (1]-/:1;06]12;01]-/13 (amplification) such as:

Pi(s) = (e ) /1L + explaf) + exp(e )]

P::( = exp(a) /[1+ exp(a?) +exp(a )]
pijz\i(j,j*) =1/[1+exp(a ) +exp(a])]

Given these probabilities, we define the conditional distri-
bution of Y;as:

(Yi|Li :k:(j,j*))mTrinomial(p;?;P;{‘;P;f\A =1—P;l¢) —P;:A?”)
Or equivalently

Table I: Labeling of the nine latent classes
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n!

D NP A N M n-NP-N#
T P IR

Pr(Y; |L; =k) =

Thus, we have implicitly assumed that any dependence of
copy number anomalies between clones is captured by the
latent class structure. It follows that the marginal cumula-
tive distribution function of Y; comes from a mixture
model:

K
F(Y) = ) wy Pr(Y; | L = k)
k=1
where the quantities w;, Pr (L; = k) are the mixing propor-

K

tions or weights with 0 <w;, <1 and Z wy, =1. For iden-
k=1

tifiability, we impose that « ]-Azl <a ]-A;z <aj; and

D D D
Ot].*:l < aj*:z < OC].*:3 .

We summarize the labelling of the nine latent classes in
Table 1 and retain the double indexing k = (j, j*)when
needed for ease of understanding.

Inference
For each latent class k = (j, j*), our purpose is to estimate

the parameters o/

j and o ]D together with the posterior

probability of belonging to one of the K classes for each
genomic clone i. We consider a Bayesian framework,

where o ]A, a ]D and wj, are given prior distributions. Here,

the prior distributions specify that these quantities are all

A

drawn independently, with Normal (a; and « ]D ) and

Dirichlet priors (w,). In practice, a ]A and o ]D are given

independent normal prior distributions with large vari-
ance. The parameter § of the symmetric prior Dirichlet dis-
tribution was set to 0.5 (Jeffreys' prior), instead of the
usual value of 1 that corresponds to uniform weights, in
order to be less informative.

Low Medium High
Low k= I;(aj - |A;ai* =P k= 2;(oci - |A;oci* =,P) k= 3;(0ci - |A;oci* =3P)
Medium k= 4(0y - 0= | P) k = 5;(0 = 550 = 5P) k = 6;(0y; = 04 = 3P)
High k=7;(0= 3A;(xi* =P k= 8o = 3A;oci* -,P) k=90 = 3A;ocl»* -3P)
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Inference for parameters of interest was undertaken by
sampling from their joint posterior distributions using
Monte Carlo Markov chain (MCMC) samplers imple-
mented in the WinBUGS software [7]. All results pre-
sented correspond to 5,000 sweeps of MCMC algorithms
following a burn-in period of 1,000 (period for achieving
stability of the algorithm). Summary statistics for quanti-

ties of interest, such as a ]A and a ]D were calculated from
the full output of the MCMC algorithm. Furthermore, the
samples provided information on quantities of prime
interest, the vector of the posterior probabilities for each
genomic clone i of belonging to class k: p; = {pr(L; =k |
data); k=1, ..., 9} These posterior probabilities are directly
estimated as empirical averages from the output of the
algorithm. Using these estimates, a probabilistic cluster-
ing of the data can be achieved. To be specific, we chose to
apply the Bayes classification rule and assigned each clone
to the class to which it had the highest probability of
belonging. We stress that the classes capture chromo-
somal aberration patterns.

In this work, we compared seven different latent class
models with various levels of amplification and deletion

40 % 60 %

20 %

20 % 0%

40 %

60 %
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(corresponding to 2, 3 and 4 levels of copy gain and copy
loss). For each model, we computed the Deviance Infor-
mation Criterion (DIC) as introduced by Spiegelhalter et
al. [8] and extended for mixture models as proposed by
Richardson [9]. Models with small DIC provide a better fit
than those with high DIC criteria. Thus the number of
latent levels can be adapted to the particular cancer inves-
tigated and the observed chromosomal patterns in the
sample.

Results

Chromosomal pattern analysis

In our dataset, several competing models were tenable
ranging from six to nine components. We heuristically
chose to favor the nine-component model which leads to
a good fit and allow a sufficient number of components
for describing finely the different levels of genomic aber-
rations across the whole dataset.

Figure 1 displays the frequencies of amplification (red)
and deletion (blue) 0f 29,691 BACs located on autosomal
chromosomes over the 65 lung adenocarcinomas accord-
ing to the chromosomal order from 1 pter to 22 qter.
These results are consistent with previous reports investi-
gating losses and gains in lung adenocarcinomas [10-12],

Chromosomes

Figure |

Frequencies of chromosomal aberrations. The frequencies of amplification (red) and deletion (blue) over the 65 lung
adenocarcinomas are plotted and ordered, according to the chromosomal order (x-axis) from | pter to 22 gter.
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supporting a complex mesh of copy number alterations in
lung carcinogenesis.

Probabilistic clustering of the BACs obtained from our
latent class model analysis is shown in Figure 2. We
observed a mixture of broad and focal contiguous
genomic areas with the same patterns of CNAs.

Tables 2 displays for the nine classes the joint estimated
average probabilities for amplification and deletion,
respectively. Probability for amplification ranges from
3.0% to 29.7% whereas for deletion it ranges from 5.4%
to 34.5%. Note that arbitrary probability cut-offs were not
imposed to define the classes, rather the observed propen-
sities were flexibly clustered through the latent class
model. Table 3 summarizes the number of clones allo-
cated in each class (and corresponding percentage) apply-
ing the Bayes classification rule. The class with the highest
levels for deletion and amplification (k = 9) is empty. The
class with medium rate of deletion and low rate of ampli-
fication (k = 2) regrouped the highest number of clones
(9,509).

Some interesting patterns emerge from Tables 2, 3 and
Figure 2. From a biological point of view, four sets of

Class

e ecmes o e @
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genomic clones have patterns that are particularly worth
highlighting.

The first set is composed of clones from class k = 1, that
exhibit simultaneously very low deletion and amplifica-
tion rates. This group may be interpreted as "refractory”
clones with aberration rate below chromosomal back-
ground (corresponding to random chromosomal aberra-
tions as defined below). As seen from our results, this set
is small gathering only 5.3% of the total number of
clones. The second set is composed of clones from classes
k =2, 4 and 5 with medium values of either deletion or
amplification rates that can be considered as chromo-
somal background rate of aberrations. This set gathers
about two-third of the total number of clones and may be
interpreted as regrouping clones with random chromo-
somal aberrations.

The third and most interesting set is composed of approx-
imately 9,000 clones from classes k = 3 and k = 7 with very
high rate for either deletion or amplification associated
with refractory status (below the chromosomal back-
ground rate of aberration) for the converse copy state. We
refer to the clones in class k = 7 as "exclusively amplified"
recurrent CNAs and those in class k = 3 as "exclusively

= oms soemm oo

o s emmeccemees e omcammm e wece

180 190 200 21 22

Chromosomes

Figure 2

Chromosomal aberration patterns. The allocation of the 29,691 BC clones (in one of the nine classes) obtained from our
latent class model analysis and considering a Bayes classification rule. Exclusively amplified recurrent CNAs are in class k = 7
(red) whereas exclusively deleted recurrent CNAs are in class k = 3 (blue).
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Table 2: Joint estimated average probabilities of amplification/
deletion for the nine classes

Low Medium High
Low 4.3%; 7.3% 3.7%; 18.6% 3.0%; 34.5%
Medium 13.6%; 6.7% 12.1%; 17.0% 9.9%; 32.0%
High 29.7%; 5.4% 27.0%; 14.1% 22.8%; 27.4%

The two percentages given in each cell represent the frequency of
amplification and deletion, respectively

deleted" recurrent CNAs. It can be hypothesized that these
"exclusive” behaviors reflect a selective advantage for
tumor growth for one state (e.g. amplification) associated
with a selective disadvantage of the converse state (e.g.
deletion). Thus, it is likely that this set contains "driver"
clones, harboring functionally important changes giving
selective advantage to tumor cells.

The last set is composed of clones belonging to class k = 6
and k = 8 that exhibit a complex pattern with high and
medium values for both amplification and deletion.
These classes may be interpreted as regrouping genomic
regions that contain multiple genes that contribute to can-
cer, some of which being selected for copy gain and other
for copy loss. In particular, we identified genomic clones
located within cytogenetic band 1623 that are classified
in class k = 6 and harbor both the tumor suppressor gene
WWOX and the oncogene MAF.

Modeling jointly the occurrence of amplifications and
deletions across the tumor samples allows us to identify
such patterns. To assess the biological relevance of the pat-
terns found, we examined whether known lung cancer
genes were classified as "exclusively amplified" or "exclu-
sively deleted" recurrent CNAs. We found that, with
exception of PTEN, all the oncogenes and tumor suppres-
sor genes known to be associated with quantitative
genomic changes in lung adenocarcinoma [10-12] were
classified as "exclusively amplified" (k = 7) or "exclusively
deleted" (k = 3) recurrent CNAs (Table 4). It is worth not-

Table 3: Number (proportion) of genomic clones for the nine
classes applying the Bayes classification rule (assign each clone to
the class to which it had the highest probability of belonging)

Low Medium High
Low 1,567 (5.3%) 9,509 (32.0%) 4,481 (15.1%)
Medium 3,426 (11.5%) 4,497 (15.2%) 1,283 (4.3%)
High 4,854 (16.3%) 74 (0.2%) 0 (0.0%)

http://www.biomedcentral.com/1755-8794/2/43

ing that PIK3CA gene (3q26.3 locus), described as specif-
ically amplified in another histological subtype
(squamous lung carcinomas) [9], was not found within
an "exclusively" recurrent CNA emphasizing the histolog-
ical homogeneity of our series and the specificity of the
"exclusively" amplified or deleted classes.

In Figure 3, we look in greater detail at three selected chro-
mosomes (Chromosome 2, 11 and 14) harboring
genomic areas classified as "exclusively amplified" recur-
rent CNAs.

In chromosome 2, we identified a focal area located
within the 2p23 locus which harbors the ALK oncogene
(anaplastic lymphoma receptor tyrosine kinase). This
gene which is known to play a role in lymphomas has
been recently shown to be activated in lung cancer either
by gene fusion with EML4 or amplification [13,14].

In chromosome 11, we identified a short area located
within the locus 11q13.2 which harbors the well-known
oncogene CCNDL1. In a validation analysis, we analyzed
protein expression by immunohistochemistry and found
that CCND1 amplification was significantly related with
gene over-expression (data not shown). We also identified
a second small genomic area with "exclusively amplified"
recurrent CNAs located within the locus 11q13.4-13.5.
This area contains several candidate genes including the
Neu3 gene (Human plasma membrane-associated siali-
dase) which is upregulated in several human cancers and
is known to interact with EGFR. Except for these loci, most
of the chromosome harbors clones from class k = 2 with
medium values of deletion rates and low level of amplifi-
cation that can be considered with random chromosomal
aberrations.

In chromosome 14, we identified the recently described
focal area of amplification located within the 14q13.3
locus which harbors the NKX2-1 gene [11]. This gene
encodes for the well known TTF1 (Thyroid transcription
factor), a protein which is expressed in normal lung and
thyroid tissues and in their related adenocarcinomas.
Showing NKX2-1 gene located within an "exclusively
amplified" recurrent CNAs favors the hypothesis that
TTF1 gene product may have a functional role in lung car-
cinogenesis instead of just being a marker of primary lung
origin.

We then compare our results to those obtained from pre-
viously used methods that consider arbitrary thresholding
rules (frequency cutoffs of 20%, 25% and 30%) or permu-
tation-based approaches. As seen in Table 4, an arbitrary
threshold of 20% leads to the selection of the known
oncogenes/tumor suppressor genes whereas the widely
used 25% threshold will discard interesting genes such as
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Table 4: Oncogenes and tumor suppressor genes known to be associated with genomic changes in lung adenocarcinoma

Gene CNA class Cytoband Deletion (%) Amplification (%)
FHIT k=3 (D) 3pl4.2 523 1.5
LIMDI k=3 (D) 3p21.3 344 1.5
hTERT k=7 (A) 5pl15.33 6.2 55.4
SKP2 k=7 (A) 5pl3 1.5 385
EGFR-| k=7 (A) 7pll.2 1.5 24.6
c-MET k=7 (A) 7q31 77 23.1
c-MYC k=7 (A) 8q24.12-13 4.6 36.9
CDKN2A k=3 (D) 9p21 29.2 6.2
PTEN k=2 (D) 10q23.3 18.5 5.2
CCNDI k=7 (A) I1ql3 6.2 21.5
RB k=3 (D) 13q14.2 43.1 1.5
NKX2-1 k=7 (A) 14q13.3 3.1 21.5
WWOX k=3 (D) 16q23.3-24.1 338 6.2
P53 k=3 (D) 17pl13.1 36.9 4.6
E2F k=7 (A) 20ql 1.2 3.1 23.1

EGFR-1, c-MET, CCND1, NKX2-1 and E2F. However, the
20% threshold selects a high proportion of the genome
(50.5% of the total number of clones) whereas our
method selects only 31.4% (9,335 clones) which is com-
parable to the 25% thresholds (33.6% of the total number
of clones).

We also analyzed our data using the method proposed by
Klijn et al. [4] that has been previously shown to outper-
form the one proposed by Diskin et al. [3]. The Klijn et al.
method (called KC-SMART) is implemented in the R/Bio-
conductor package [15] and the null hypothesis is
obtained by shuffling the non-discretized data (log-ratio
data) over the entire genome. Considering a false discov-
ery rate level of 5% seems inappropriate since it leads to
select too many genomic areas (>80%). For a family wise
error rate of 5% (with a 4 Mb kernel width), we selected
3,663 (12.3%) recurrent deletions and 2,524 (8.5%)
recurrent amplification. Forty nine percent of these recur-
rent amplifications are classified by our approach as
"exclusively amplified" recurrent CNAs, the others
belonging to classes with medium amplification rate. We

observe that the KC-SMART selection of amplified areas
ignores important genomic areas that we classified as
"exclusively amplified" such as those harboring MET
gene. Moreover, no genomic area belonging to class 8 was
selected even when considering various kernel widths.
This is not surprising since null hypotheses for detecting
marginally amplification or deletion are highly depend-
ent on the definition of the "complementary" state (e.g.
for deletion the "complementary" state corresponds to
modal or gain copy). For the 3,663 selected recurrent dele-
tions by KC-SMART, 34.7% and 30.7% are classified by
our approach in class 3 and 2 respectively whereas the
other clones belong to classes with medium deletion rate.
This selection does not recognize some genomic regions
that we classified as "exclusively deleted" such as those
harboring WWOX tumor suppressor gene. As could be
expected, this procedure selects a subset of amplified
(respectively deleted) clones that have a variety of dele-
tion (respectively amplification) rates, whereas our mod-
eling approach is aimed at refining this characterization,
by focusing on highlighting clones with contrasting pat-
terns of amplification and deletion.
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Chromosomal patterns for chromosome 2, 11, 14. The frequencies of amplification and deletion over the 65 lung aden-
ocarcinomas detailed for chromosomes 2, | | and 14 (3a, 3b, 3c). Group allocation of BAC clones for chromosome 2, |1 and
14 (3d, 3e, 3f). with locations of known oncogenes and tumor-supressor genes (ALK, CCND I, NKX2-1).

Relationship between chromosomal patterns and clinical
outcome

Finally, we analyzed the impact of chromosomal aberra-
tions on relapse-free survival (gain and loss considered
separately since they have distinct impact on the disease)
calculated from the date of the patients' surgery until
either disease related death, disease recurrence or last fol-
low-up examination. More specifically, we investigated
whether chromosomal pattern information obtained by
our latent class model could be useful for distinguishing
genomic regions prone to non-random chromosomal
event (signal) and with potential impact on clinical out-
come from those prone to random chromosomal event
(noise).

In practice and for copy gain, we calculate for each patient
two different scores that measure the proportion of copy
gains over the selected genomic regions. The first score is
computed over the 4,4854 genomic clones prone to non-
random chromosomal event that belong to "exclusively
amplified regions" (class k = 7 as defined previously). The
second score is computed over 17,432 genomic clones
prone to random chromosomal event (classes k=2, k=4
and k = 5).

The median value of the scores measured over genomic
clones from class k = 7 was of 28.8% [first quartile = 16.1,
third quartile = 42.4] whereas it was of 23.6% [first quar-
tile = 11.7, third quartile = 34.2] for genomic clones from
classes k = 2, k=4 and k = 5. The results from the Cox pro-
portional hazard regression model, considering each
score as a continuous variable, showed that an increasing
proportion of copy gains within "exclusively amplified
regions” (class k = 7) was associated with a statistical sig-
nificant high risk of relapse (p < 0.05). In contrast, the
proportion of amplifications in regions prone to random
chromosomal event was not significantly predictive of
outcome. In Figure 4, we plotted the Kaplan-Meier curves
when dichotomizing into high score (above the third
quartile) versus low score (below the third quartile) com-
puted over the "exclusively amplified regions" (chi-square
statistic = 7.4, p = 0.006).

The same analysis was conducted for copy loss. We found
no statistically significant difference for the score com-
puted over "exclusively deleted regions" (class k = 3).

Discussion
In contrast to leukemia, lymphoma and sarcoma where a
specific cytogenetic abnormality is usually present, epithe-
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Figure 4

Relapse-free survival from high and low-risk groups according to the proportion of chromosomal amplifica-
tions. RFS curves for the 65 lung adenocarcinomas considering high and low-risk groups. High-risk group are those with a high
proportion of amplification (above the third quartile, plain line) whereas low-risk group are those with low proportion of
amplification (above the third quartile, dash line). These proportions are computed over genomic clones prone to non-random
chromosomal event that belong to "exclusively amplified regions" (class 7 as defined in our model).

lial malignant tumors such as lung adenocarcinomas are
often characterized by aneuploidy (complex and multiple
chromosome aberrations) which may reflect an alterna-
tive form of genetic instability called chromosomal insta-
bility [16]. Chromosomal instability leads to numerical
and structural abnormalities that are observed at the gross
chromosomal level rather than the nucleotide level. Bal-
anced translocations are rare and the observed chromo-
somal instability leads to imbalanced aberrations in most
cases (gain or loss of genetic material). Genomic gains
lead to over-expression of oncogenes whereas genomic
losses lead to under-expression of tumor-suppressor
genes, both resulting in a selective advantage of the cancer
cell. The sequential acquisition of genetic alterations
occur in individual cell within a population and leads to
a wave of clonal expansion due to the relative growth
advantage that the new alteration confers to the cell.

When analyzing aCGH experiments on multiple samples
of patients, the challenge is to distinguish CNAs that are
likely to represent non-random chromosomal events and

are thought to involve the critical genes (drivers) from
those which are randomly altered during pathogenesis.
Given the vast amount of data obtained from high resolu-
tion aCGH, biostatistical modeling is required for the dis-
covery of novel regions with propensity for non-random
chromosomal events.

In this work, we consider a latent class model-based
approach for capturing chromosomal aberration patterns
taking into account the interdependencies among propen-
sity of alterations. The primary data processed by our
model are the number of deletions and amplifications in
each sample that are obtained from a pre-processing of
the aCGH signals. A number of algorithms are available to
do this. Here, we chose to use CGHmix [6] to label the
clones as it has the benefit of taking into account spatial
dependencies along the chromosome. Our latent class
model is applicable to any preprocessing of the data, of
course its output will depend on the initial classification
data for each clone in each patient.
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In our dataset, we favor the nine-component model but
several competing models are tenable ranging from six to
nine components. In practice, we think that finding the
"best" fit to the data is not the main interest but rather to
obtain a good balance between a reasonable fit and suffi-
cient flexibility for describing finely the different levels of
genomic aberrations across the whole dataset. This is why
we propose the nine-component model as a prime candi-
date to be estimated if the samples are sufficiently inform-
ative.

Considering the present series of stage IB lung adenocarci-
nomas, our results show that most of the oncogenes and
tumor-suppressor genes known to play a role in lung ade-
nocarcinomas are located within exclusively amplified
and deleted regions, respectively. This suggests that these
latter regions play a substantial functional role in the
selective advantage of tumor cells. It is worth noting that
this selective process seems to play an important role since
about one-third of the genome is classified as exclusively
amplified or deleted. Previous studies on various tumors
(breast, colorectal, esophageal, endometrioid carcino-
mas) have shown that an increasing number of chromo-
somal aberrations correlate with poor prognosis [17]. In
our study, we showed that accumulation of amplification
occurring within exclusively amplified genomic regions is
related with relapse-free survival whereas genomic clones
prone to random chromosomal aberrations blurred the
impact of copy gains on survival. This result emphasizes
that all copy gains may not be equivalently linked to the
disease process, and that a subset of clones associated with
contrasting patterns between gains and losses over tumor
samples could be a more relevant entity. Thus averaging
copy gains within a tumor may be too coarse a measure.

As seen from the data, the strong interdependencies
between copy loss and copy gain clearly justifies our joint
modeling as compared to simple marginal approach with
or without permutation procedures. In particular, our
approach avoids having to define an arbitrary cutoff for
the marginal frequency across the samples and shows that
this latter may depend on the chromosomal aberration
studied (loss/gain copy).

Constructing background distributions from marginal
approaches for deletion and amplification, as is com-
monly done rather than considering the joint distribution
(multinomial) could be misleading when these events are
not independents. As an example, when considering the
marginal rate of copy loss, the observed deletion rates for
the two distinct genomic areas that harbor HDAC4 gene
(histone deacetylase, chromosome 2q37) and PDZRN4
(PDZ domain containing zinc finger 4, chromosome
12q12) are the same (16.9%). However, the observed
marginal amplification rates are clearly different with

http://www.biomedcentral.com/1755-8794/2/43

30.5% and 7.7% for HDAC4 and PDZRN4 areas, respec-
tively, advocating the need to consider two different chro-
mosomal patterns for these genomic areas. In our model,
these two genomic areas are classified in two different
classes: HDACA4 area is listed in class k = 8 (complex pat-
tern with high level for both amplification and deletion)
whereas PDZRN4 area is listed in class k = 2 (background
aberration rate). In this case, analyzing marginal deletion
rates leads implicitly to define a hybrid state such as the
'non-deletion state' for the null hypothesis which is highly
depending on the copy gain state. Our strategy, which is a
modeling rather than a hypothesis testing approach, helps
to solve this problem by considering copy losses and gains
through our multinomial mixture model.

Our method is well suited for an explicit dissection of the
complex null hypothesis model. Here, it leads to distin-
guish between regions with medium levels of loss/gain
copy that can be considered as random chromosomal
events (background) and regions with refractory patterns.
In future studies, we think that investigating these latter
regions should be pursued more thoroughly since these
may harbor critical region of the genome that are highly
resistant to chromosomal instability. With such complex
null-hypothesis, computing adjusted p-value from resam-
pling-based method is not straightforward and crucially
depends on the null hypothesis model.

Our method leads to prioritize genomic areas prone to
non-random chromosomal aberrations but finding driver
genes require functional studies. In this setting, it is worth
to correlate copy number changes from exclusively ampli-
fied/deleted regions to gene expression changes in order
to prioritize those that are functionally involved in the
tumor process.

Conclusion

We proposed to identify patterns of chromosomal aberra-
tions across tumor samples from high-resolution compar-
ative genomic hybridization microarrays by modeling
copy number states as a multinomial distribution with
probabilities parametrized through a latent class model.
This model allows distinguishing genomic regions prone
to non-random chromosomal aberrations with potential
impact on clinical outcome from those prone to random
chromosomal aberrations. In a homogeneous series of
lung adenocarcinomas, we show that most of the known
oncogenes oOr tumor suppressor genes associated with this
tumor type are located within regions with exclusive pro-
pensity for either copy loss or copy gain. We also highlight
new genomic areas of potential interest and show that an
increase of the frequency of amplification in these partic-
ular genomic areas is significantly associated with poorer
survival. These results suggest that new insights on chro-
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mosomal changes may emerge from our modeling
approach.
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