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Abstract
Backgound: The genetic mechanisms of prostate tumorigenesis remain poorly understood, but
with the advent of gene expression array capabilities, we can now produce a large amount of data
that can be used to explore the molecular and genetic mechanisms of prostate tumorigenesis.

Methods: We conducted a meta-analysis of gene expression data from 18 gene array datasets
targeting transition from normal to localized prostate cancer and from localized to metastatic
prostate cancer. We functionally annotated the top 500 differentially expressed genes and
identified several candidate pathways associated with prostate tumorigeneses.

Results: We found the top differentially expressed genes to be clustered in pathways involving
integrin-based cell adhesion: integrin signaling, the actin cytoskeleton, cell death, and cell motility
pathways. We also found integrins themselves to be downregulated in the transition from normal
prostate tissue to primary localized prostate cancer. Based on the results of this study, we
developed a collagen hypothesis of prostate tumorigenesis. According to this hypothesis, the
initiating event in prostate tumorigenesis is the age-related decrease in the expression of collagen
genes and other genes encoding integrin ligands. This concomitant depletion of integrin ligands
leads to the accumulation of ligandless integrin and activation of integrin-associated cell death. To
escape integrin-associated death, cells suppress the expression of integrins, which in turn alters the
actin cytoskeleton, elevates cell motility and proliferation, and disorganizes prostate histology,
contributing to the histologic progression of prostate cancer and its increased metastasizing
potential.

Conclusion: The results of this study suggest that prostate tumor progression is associated with
the suppression of integrin-based cell adhesion. Suppression of integrin expression driven by
integrin-mediated cell death leads to increased cell proliferation and motility and increased tumor
malignancy.
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Background
Global profiling of gene expression by microarray tech-
nology is an effective tool for studying molecular mecha-
nisms underlying different aspects of carcinogenesis.
Unfortunately, the results of the profiling of gene expres-
sion are often inconsistent. The discrepancy can be due
either to inherent molecular heterogeneity of tumors or to
technical artifacts. Meta-analysis was proposed as an
approach for identifying a core gene-expression signature
reproducible across multiple studies. Several methods of
meta-analysis have been suggested [1-5]. One of the
recent developments is Bayesian cell mixture modeling,
which is applicable to gene as well as protein expression
microarrays [3,6-8]. Implementation of these and other
methods of meta-analysis identified gene-expression sig-
natures associated with different aspects of tumorigenesis,
including prostate tumorigenesis [6,9-13].

The molecular mechanisms of prostate tumorigenesis
remain poorly understood [14]. Androgen receptor sign-
aling is critical to prostate cancer development as andro-
gen receptors regulate the proliferation of prostate
epithelial cells through several cyclin-dependent kinases
[15,16]. Because of the central role of androgen stimula-
tion in prostate tumorigenesis, androgen ablation
remains the primary therapy for patients with metastatic
disease, yet more effective treatments are desperately
needed. There is evidence that other genes can also con-
tribute to prostate tumorigenesis [17-21].

Recent studies have suggested that cell adhesion plays a
role in the initiation and progression of prostate cancer.
Integrins are cell-surface receptors that interact with extra-
cellular matrix and mediate various intracellular signals.
They define cellular shape and motility and also regulate
the cell cycle [22-25]. A recent article by Goel et al. [26]
provides a review of the expression of integrins in prostate
cancer progression with reference to specific integrins.
Integrins have been shown to be largely downregulated in
prostate cancer development, although some integrins
have been found to be upregulated in prostate cancer
[22,26,27]. The observed variation in integrin expression
may reflect a genetic heterogeneity of prostate tumors: dif-
ferent tumors may exploit different sets of genes to mod-
ulate the same functions. On the basis of this working
hypothesis, we focused largely on the analysis of func-
tions rather than the analysis of individual genes. The
benefit of an analysis at the functional rather than gene
level is that the results of such analysis can be more con-
sistent across studies because different tumors may sup-
press or activate the same function through different
genes, making prostate tumors heterogeneous at the gene
expression level and much more homogeneous at the
pathway level.

First, we identified genes that were differentially expressed
at different stages of prostate tumorigenesis and then
applied bioinformatics tools to identify the functions
associated with such genes and, therefore, with tumor
progression. Integrin signaling emerged as the top bio-
logic function modulated in prostate tumorigenesis.
Based on the results of our analysis, we propose the "col-
lagen hypothesis" of prostate tumorigenesis, suggesting
that the disruption of integrin-based cell adhesion to the
extracellular matrix is a driving force for the development
of prostate cancer.

Methods
Datasets
For the list of the datasets used in this study, please see
Additional file 1. Gene expression datasets were retrieved
from the Oncomine 3.0 database, accessed in May 2008
[28]. We used 18 datasets in total: 11 datasets for the tran-
sition from normal prostate (NP) to nonmetastatic pros-
tate cancer (nMPC) and 7 for the transition from localized
(nMPC) to metastatic prostate cancer (MPC). To analyze
the genes involved in prostate cancer initiation – transi-
tion from normal to prostate intraepithelial neoplasia
(PIN) – we used data from a study by Tomlins et al. [29].
Individual P values detected in each study were used to
compute global P values using meta-analysis.

Data quality control
Combining the results of multiple independent studies
allows more robust statistical conclusions than does the
analysis of a single dataset. However, including a flawed
study in such a meta-analysis could lead to a bias; there-
fore, the quality of the data must be carefully considered
before including a given dataset in the analysis. To ensure
reproducibility of the data, we assessed the overlap of sig-
nificant genes in independent datasets, our rationale
being that studies targeting the same phenotype should be
expected to detect an overlapping set of differentially
expressed genes. We therefore excluded studies wherein
the overlap in up/up- or down/down-regulated genes was
lower than would be expected in such pairwise compari-
sons.

We assessed the overlap between significant genes (signif-
icant genes were defined by the liberal P value of 0.05)
that were up- or downregulated in two studies. The results
of the analysis were presented using the 2 × 2 data format.
For each cell in the 2 × 2 table, we computed the expected
number of genes. If N1,2 were the number of genes ana-
lyzed in both study 1 and study 2, Pu1 and Pu2 would be
the proportion of genes upregulated in studies 1 and 2,
correspondingly. Thus, the expected number of genes
upregulated in both studies could be computed as a prod-
uct of the corresponding proportions and the total
number of genes analyzed in both studies. For example,
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the expected number of genes upregulated in both studies
Eu/u may be computed as Eu/u = Pu1Pu2N1,2. A typical exam-
ple is shown in Table 1. The observed number of genes
consistently (in terms of direction, up or down) differen-
tially expressed (up/up or down/down) was much higher
than the expected number (χ2 = 6,581.2, df = 1, P value
extremely low – essentially zero for this statistic). Gene
expression data from two independent studies [30] and
[31] were used in this analysis. The observed numbers of
genes not consistent in their expression (up/down and
down/up) were similar to that expected (χ2 = 2.1, df = 1, P
= 0.15), suggesting that genes upregulated in one study
but downregulated in another were likely to be false pos-
itives.

If the ratio of the observed to the expected number of
genes were to be close to 1 for all cells in a 2 × 2 table, it
would suggest that at least one study was severely flawed
and should be excluded from analysis. In a comparison of
just two studies, it would be impossible to say which one
should be excluded. However, if all but one among mul-
tiple (i.e., six) datasets showed a considerable overlap, we
could conclude that the inconsistent study should be
excluded. On the basis of this approach, we excluded two
studies from the original list of datasets.

False-discovery rate
We computed the expected number of significant genes
based on the strict null hypothesis, which assumes that all
findings are technical or statistical artifacts and that a ran-
dom set of genes is detected as significant in each individ-
ual study. The excess of the observed over the expected
number of genes would then be due to the presence of
true statistical positives. The proportion of true positives
among all significant genes can be computed as Pt = (Nobs
- Nexp)/Nobs. We estimated Pt across different numbers of
independent studies used in meta-analysis. We found that
combining six or more independent studies in a meta-
analysis provided statistically robust detection of true pos-
itives. Figure 1 shows the dependence of the proportion of
true positives on the number of studies used in meta-anal-

ysis, with the combination of four independent studies
reducing the probability of false positives to lower than
0.05. If six studies were included, the probability of false
positives would be lower than 0.01.

Note that our approach for the assessment of the propor-
tion of true positives is different from the estimate of false
discovery rate (FDR) that is based on the Bonferroni cor-
rection and computed as a product of the type one error
and the total number of tests [32]. The FDR approach
takes into account the possibility that false significant
findings could result from multiple testing, whereas an
inflation of statistics resulting from technical artifacts or
poor study design would be treated as a true signal. Our
approach was more conservative, allowing for the exclu-
sion of false positives resulting from technical artifacts
and flaws in study design.

Meta-analysis
We used an extension of Stouffer's method [33] to esti-
mate the overall significance based on the significance of
the individual tests. This approach is based on estimating
the standard normal deviation Z and is similar to the
approach recently proposed by Ochsner et al. [1]. Selec-
tion of the method of meta-analysis for our study was dic-
tated by the available data: for the majority of the datasets,
the raw gene-expression data were not available, while t
tests and corresponding P values were easily accessible for
individual probes.

Individual probability P is first converted into a Z score
and the Z scores summed up across studies. This sum is
divided by the square root of the number of tests (k). The
k was the number of datasets where the specific gene was
assessed: maximum 11 for the NP>nMPC and 7 for the
nMPC>MPC transition. The sum of normal deviates is
itself a normal deviate and can be backtransformed into
an overall P; the probability level associated with the sum
of Z yields an overall level of significance. The complete

procedure takes the following steps: (1) Pi → Zi; (2) Z(over-

all) = ΣZi/ ; (3) Z(overall) → P(overall). The advantage of this

method lies in the increased power of the overall compar-
ison. If, for example, several tests consistently favored the
research question but failed to reach the level of signifi-
cance due to small sample size, the overall test would
more easily become significant because of the pooled
sample size being much larger than its components.

For each gene, we computed the overall global P values
based on individual P values from independent studies.
We then ranked all genes according to the P value from
smallest to largest. We used the top-ranked genes to ana-

kTable 1: Observed and expected (in parentheses) numbers of 
significant genes (P ≤ 0.05) with the same or opposite direction 
(up/down) of differences in gene expression in studies [30] and 
[31]*

Data from [31]

DOWN UP

Data from [30] DOWN 905 (165) 116 (106)

UP 76 (86) 454 (50)

* Both studies compared gene expression in NP vs. that in primary 
nMPC tumors.
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lyze their clustering by pathway, molecular, and cellular
functions.

Functional annotation
For functional annotation, we applied Ingenuity Path-
ways Analysis (Ingenuity Systems, http://www.ingenu
ity.com/) and the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) [34]. We analyzed the
data at three levels: that of (i) gene, (ii) pathway, and (iii)
biologic function. Ingenuity and DAVID use similar
approaches for functional annotation of candidate genes,
looking at the distribution of the top-ranked genes by
pathways and/or gene ontology categories, testing the null
hypothesis that genes are randomly distributed across
pathways and biologic functions. P values characterize the
statistical evidence for the clustering of the genes by path-
ways or functional categories; the lower the P value, the
stronger the statistical evidence that the top-ranking genes
belong to a specific pathway or functional category. In this
study, we used the classification of pathways according to
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[35]. The KEGG provides a collection of manually drawn
pathway maps representing current knowledge about the
molecular interactions for metabolism, processing of
genetic and environmental information, cellular proc-
esses, and human diseases [36].

To decide how many top-ranked genes to include in func-
tional annotation analysis, we analyzed the dependence
of the number of significant pathways and functional cat-
egories on the number of top genes (see section "How
many genes to use for an assessment of functional cluster-
ing" in Additional file 2 for details of the analysis). On the
basis of the results of the analysis, we decided to use the
top 500 genes for functional annotation.

Results
Functional annotation at the gene level
Because we analyzed many genes, it is possible that some
significant findings could be the result of multiple testing.
Figure 2 shows the distribution of P values for the genes
tested in the transition phases from NP to nMPC (NP-
nMPC) and from nMPC to MPC (nMPC-MPC). For both
transitions, a significant excess of low P values was
observed, suggesting the presence of true positives.

Functional annotation at the pathway level
The NP-nMPC transition
The top 500 genes, accounting for about 2% of all known
genes in the human genome, identified by meta-analysis
of the gene expression data were used for functional anno-
tation. The list of the 500 most significant genes in the
NP-nMPC transition is shown in Additional file 3. There
were approximately equal numbers of up- and downregu-
lated genes: 231 and 269 genes, respectively.

Analysis of the distribution of genes by pathways defined
by the KEGG revealed clustering of the differentially
expressed genes in focal adhesion pathway. We found that
21 genes fell into focal adhesion pathways: RAP1A,
PRKCA, COL6A1, IGF1, ITGA3, PARVA, CAV2, PIK3R1,
FLNA, MYL9, FLNC, PPP1R12A, THBS4, PRKCB1, CAV1,
ACTN1, COL4A6, MET, ITGA2, VCL, and MYLK. A sche-
matic of the focal adhesion pathway can be found in
Additional file 4. Interestingly, all genes except THBS4
were downregulated. The difference between the observed
and the expected (based on the overall proportion of
downregulated genes) number of downregulated genes in
this group was significant (χ2 = 14.5, df = 1; P < 0.0001).

Functional annotation of the top genes by Ingenuity pro-
duced similar results (Table 2, see additional file 5 for the
list of the genes in each pathway). The actin cytoskeletal
signaling pathway was one of the top pathways enriched
by the differentially expressed genes. Cell-adhesion path-
ways, namely tight junction and integrin signaling, were
also significant.

The nMPC-MPC transition
Additional file 6 shows the top 500 genes differentially
expressed in the transition from nMPC to MPC. Func-
tional annotation using the KEGG database identified
focal adhesion as a top pathway enriched by the differen-
tially expressed genes. We found 17 focal adhesion genes
differentially expressed in nMPC vs. MPC: ILK, RAP1A,
PARVB, AKT3, JUN, FLNA, GRB2, MYL9, FLNC, THBS2,
PPP1R12A, THBS4, FYN, COL4A6, VCL, MYLK, and
PPP1CB. The majority (13 of 17) were downregulated.
Nine of the 17 genes – COL4A6, FLNA, FLNC, MYL9,
MYLK, PPP1R12A, RAP1A, THBS4, and VCL – were also
differentially expressed in the NP-nMPC transition. All of

Dependence of the percentage of true discoveries on the number of studies in meta-analysisFigure 1
Dependence of the percentage of true discoveries on 
the number of studies in meta-analysis. The percentage 
is equal or higher than 95% when 4 or more independent 
studies were included in meta analysis.
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them except THSB4 were downregulated in both transi-
tions, suggesting similar modulation of the pathway.

Functional annotation by Ingenuity identified 17 signifi-
cant canonical pathways enriched by the genes differen-
tially expressed between nMPC and MPC (Table 3, see
additional file 7 for the list of the genes in each pathway).
The top five canonical pathways included those of tight
junction, IGF-1, integrin, and ERK/MAPK signaling, as
well as that of regulation of actin-based cell motility by
Rho. Genes involved in the cell adhesion, tight junction
signaling, and integrin signaling pathways again showed
clear tendencies to be downregulated. For the tight junc-
tion signaling, 13 of 14 genes were downregulated and,
for integrin signaling, 11 of 14 genes were downregulated.

Combined analysis of genes involved in NP-nMPC and nMPC-MPC 
transitions
The considerable overlap between pathways involved in
the NP-nMPC and nMPC-MPC transitions suggests that
the same pathways might be involved in both transitions.
Therefore, we conducted a pooled meta-analysis of NP-
nMPC and nMPC-MPC transitions. The more benign phe-
notype always was used as the reference: NP for NP-nMPC
and nMPC for nMPC-MPC.

Table 4 provides a list of significant canonical pathways
identified in the combined analysis (see additional file 8
for the list of the genes in each pathway). The top canon-
ical pathways were integrin, actin cytoskeleton, tight junc-
tion, and chemokine signaling.

The downregulation of integrins and integrin ligands
We found that several adhesion pathways, including focal
adhesion, integrin signaling, and tight junction signaling,
were significantly associated with prostate tumorigenesis.
Therefore, we decided to look at the expression of cell
adhesion genes in more detail. We stratified cell adhesion
genes into five categories: cadherins, immunoglobulin-
like adhesion genes (ICAMs), integrins, selectins, and
tight junction genes. We found that integrins tended to be
downregulated in prostate nMPC compared with NP (see
Additional file 9). Of 24 integrins and the proteins
directly binding them, 20 genes, or 83%, were downregu-
lated, and only four were upregulated, compared with the
expected 46% based on the overall analysis of significant
genes at P < 0.05 (χ2 = 11.4, df = 1, P = 0.0003). The excess
of downregulated integrins was even more striking when
only integrins themselves were considered: all except
ITGAX were downregulated. Other types of cell adhesion
genes (cadherins, ICAMs, selectins, and tight junction
genes) also exhibited predominant (although less pro-
found) downregulation (see Additional file 9).

Integrin ligands also showed a tendency to be downregu-
lated. In the NP-nMPC transition, 30 of 38 differentially
expressed integrin ligands were downregulated (Addi-
tional file 10). In the nMPC-MPC transition, the number
of downregulated integrin ligands was similar to the
number of upregulated integrin ligands: 32 and 28,
respectively. The major sources of integrin ligands in pros-
tate tissue are fibroblasts, although some investigators
suggest that epithelial cells can also produce integrin lig-
ands [37]. We tried to distinguish between the two sources
of integrin ligands by separately analyzing grossly dis-
sected and laser-capture microdissected tumor cells. We
found no collagen, fibrinogen, or laminin genes among
the top 500 genes in the two studies that analyzed gene
expression in individually dissected tumor cells [29,38].
In the studies that assessed gene expression in a mixture of
tumor cells and fibroblasts, we found three differentially
expressed collagen genes: COL15A1, COL4A6, and
COL4A5. All three were significantly downregulated; the
corresponding P values were 7.8E-12, 7.0E-11, and 1.1E-
9. These results suggest that differences in expression of
extracellular matrix proteins are likely due to differences
in gene expression in fibroblasts.

Early-stage prostate tumorigenesis: NP vs. prostatic 
intraepithelial neoplasia (PIN)
We also looked specifically at the expression of integrins
at the initial stage of prostate tumorigenesis – the transi-
tion from NP to PIN – using gene expression data from
Tomlins et al. [29]. Ten of 22 integrins analyzed in the
study were differentially expressed between NP and PIN.
Seven integrins (ITGA3, ITGA4, ITGA8, ITGB4, ITGA2,

The distributions of the P values for the transitions from nor-mal prostate to primary nonmetastatic prostate cancer (NP – nMPC) and primary nonmetastatic to metastatic prostate cancer (nMPC – MPC)Figure 2
The distributions of the P values for the transitions 
from normal prostate to primary nonmetastatic 
prostate cancer (NP – nMPC) and primary nonmeta-
static to metastatic prostate cancer (nMPC – MPC).
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ITGAM, and ITGB3BP) were downregulated, with P values
of 8.2E-5, 0.005, 0.008, 0.01, 0.03, 0.03, and 0.04, respec-
tively. Four genes (ITGAV, ITGB5, ITGAL, and ITGB3BP)
were upregulated in PIN compared with NP, with P values
of 0.001, 0.0006, 0.009, and 0.02, respectively. When we
looked at the expression of integrin ligands, we found that
21 genes (COL5A3, COL6A1, LAMB2, COL11A2,
COL17A1, FN1, LAMA3, COL7A1, COL3A1, COL6A3,
COL4A2, LAMB1, COL23A1, COL13A1, COL1A2,
COL16A1, COL20A1, COL9A1, LAMA2, COL4A5, and
COL15A1) were differentially expressed between NP and
PIN. All ligands except LAMB1 were downregulated, sug-
gesting that suppression of integrin ligands plays a role in
the initiation of prostate cancer.

Additionally, we compared the expression of 69 cell-adhe-
sion molecules: cadherins, integrins, selectins, ICAMs,
and the genes involved in the formation of tight junctions
between stromal and epithelial cells. We used the data
from the study conducted by Tomlins et al. [29]. The list
of the cell-adhesion genes was based on the genes from
two cell-adhesion databases [39,40]. Of 69 cell-adhesion
genes, 63 did not show a difference in the gene expression

level between stromal and epithelial cells. Of six differen-
tially expressed genes, three – CDH1, ITGB5, and TJP3 –
were downregulated and three – ICAM1, ITGA8, and
ITGB5 – were upregulated in the stroma relative to the
level in the epithelium.

Overlap between NP-nMPC and nMPC-MPC transitions 
at the gene, pathway, and function levels
We found that 77 or 15% of the top 500 genes involved in
the NP-nMPC and nMPC-MPC transitions were the same.
This overlap was much stronger than would be expected
purely by chance. Indeed, 17,859 genes were assessed in
both the NP-nMPC and nMPC-MPC analyses, making the
proportion of the top 500 (500/17859) to be 0.03. The
probability that the same gene would be found among the
top 500 in both studies would thus be 0.03*0.03 = 0.0009
(about 0.1%), or 0.5 genes compared with the 77 found
in our analysis.

At the pathway level, 10 of 18 pathways, or 56%, were the
same in the NP-nMPC and nMPC-MPC transitions. Over-
lap at the functional level was even stronger: 18 of 21, or
86%, of functional categories significant in the transition
from NP to primary nMPC were also significant for the
transition from nMPC to MPC.

Correlation between gene expression and Gleason score
We looked at the correlation between gene expression and
Gleason score by using data from four studies [41-44]. We
found that expression of ITGA5 and ITGAL were signifi-
cantly negatively correlated with Gleason score, with cor-
responding P values of 0.003 and 0.02. We also
considered the correlation of the expression of integrin

Table 2: Canonical pathways significant in the transition from 
normal prostate to localized prostate cancer (functional 
annotation by Ingenuity)*

Pathway -Log (P)

Calcium signaling 4.62
NRF2-mediated oxidative stress response 4.05
Actin cytoskeleton signaling 3.31
Tight junction signaling 3.19
Synaptic long term potentiation 3.05
Hepatic fibrosis/hepatic stellate cell activation 2.99
Integrin signaling 2.58
EGF signaling 2.45
GM-CSF signaling 2.38
Regulation of actin-based motility by Rho 2.12
Wnt/beta-catenin signaling 2.04
PDGF signaling 2.04
Xenobiotic metabolism signaling 1.98
Chemokine signaling 1.94
Arginine and proline metabolism 1.94
Cell cycle: G1/S checkpoint regulation 1.86
ERK/MAPK signaling 1.79
cAMP-mediated signaling 1.77
VEGF signaling 1.65
Leukocyte extravasation signaling 1.61
Neuregulin signaling 1.60
Nitric oxide signaling in the cardiovascular system 1.54
Glutathione metabolism 1.54
LPS/IL-1 mediated inhibition of RXR function 1.52
Purine metabolism 1.41
Fatty acid biosynthesis 1.34
Aryl hydrocarbon receptor signaling 1.34
Glucocorticoid receptor signaling 1.34

*Lists of the significant genes in each pathway are shown in Additional 
file 5.

Table 3: Canonical pathways significant in nonmetastatic 
prostate cancer to metastatic prostate cancer transition 
identified by Ingenuity*

Pathway -Log(P)

Tight junction signaling 3.37
IGF-1 signaling 2.68
Integrin signaling 2.33
ERK/MAPK signaling 2.32
Regulation of actin-based motility by Rho 2.22
Hepatic fibrosis/hepatic stellate cell activation 2.14
Cardiac beta2-adrenergic signaling 1.92
EGF signaling 1.86
Actin cytoskeleton signaling 1.84
PPARα/RXRα activation 1.72
IL-4 signaling 1.71
Nitric oxide signaling in the cardiovascular system 1.62
Hypoxia signaling in the cardiovascular system 1.62
Antigen presentation pathway 1.51
Glucocorticoid receptor signaling 1.46
Glycolysis/gluconeogenesis 1.40
TGF-beta signaling 1.36

*Lists of the significant genes in each pathway are shown in Additional 
file 7.
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ligands (that are largely components of the extracellular
matrix) with the Gleason score. We found that the expres-
sion levels of seven integrin ligands (COL4A6, COL13A1,
FGB, COL19A1, COL18A1, COL14A1, and COL11A2)
were negatively correlated with the Gleason score, suggest-
ing that the suppression of integrins and/or their ligands
is associated with more advanced tumor grade.

Discussion
Microarray technology allows the simultaneous assess-
ment of all (or most) of the genes in the human genome,
making it the prime method for this genome-wide study
of gene expression. Numerous studies of this sort have
been conducted, providing a basis for a meta-analysis of
gene expression data [29,45,46]. Unfortunately, microar-
ray-based analysis of gene expression is sensitive to
numerous technical and statistical biases, making the
results of any individual analysis unreliable. A meta-anal-
ysis may generate a more robust and reproducible list of
the genes differently expressed during prostate tumorigen-
esis. Several meta-analyses of prostate tumorigenesis have
been undertaken. To our best knowledge, the first study
was conducted by Ghosh et al. [47]. The meta-analysis
combined the results of four independent studies. The
authors identified several metabolic pathways, including
purin metabolism and oxidative phosphorylation. A
meta-analysis of seven microarray datasets was used to
evaluate the role of the TGF-beta pathway in prostate tum-
origenesis [48]. In another meta-analysis, datasets from a
mouse model were used to assess the role of integrin
alpha7 in prostate cancer progression [49]. The results of

that study suggest that integrin alpha7 plays a role in
metastasizing and cancer free survival. Finally, a recent
meta-analysis of four independent datasets profiling the
gene expression in normal prostate versus tumor demon-
strated involvement of the Wnt and p53 signaling path-
ways in prostate tumorigenesis [50]. In our analysis, TGF-
beta, Wnt, and p53 signaling were also among the top
pathways associated with prostate tumor progression.

In this study, we found cell adhesion, death, proliferation,
and motility to be the top functions having differential
expression in both NP-nMPC and nMPC-MPC transi-
tions. All these functions are mechanistically connected
with each other. Integrin-based cell adhesion provides
direct mechanical links between extracellular matrix and
actin cytoskeleton [51,52]. Deregulation of actin cytoskel-
etons caused by weakened cell adhesion directly modu-
lates cell motility, proliferation, and death, providing a
molecular basis for the histologic changes in prostate
tumorigenesis.

We found that prostate tumor progression is associated
with suppressed expression of integrins. Published evi-
dence also supports the involvement of integrins in pros-
tate tumorigenesis. A recent paper by Goel et al. [26]
provides an excellent review of studies on the role of
integrins in prostate cancer development. Consistent with
our results, most of the integrins were reported to be
downregulated in prostate cancer in that article, as shown
by both immunohistochemistry and assessments of gene
expression on the mRNA level (see [26] Table 1, and
[53,54]). Moreover, transfection-mediated expression of
β1 integrin, which is downregulated in prostate cancer,
induces cell adhesion to laminin and prevents tumor
growth [55]. Further, it was demonstrated that induced
expression of ITGA7 suppresses growth of prostate tumors
in mice [56].

Weakening of integrin-mediated cell adhesion to the
extracellular matrix may initiate and drive prostate tumor-
igenesis. Recent studies by others have demonstrated that
binding integrins to integrin ligands is crucial for cell sur-
vival in vivo [57-60]. The presence of integrins not bound
to ligands induces apoptosis through caspase 8-integrin-
mediated cell death [59,60]. Cells can escape integrin-
mediated death if they suppress the expression of ligand-
less integrins [59]. Suppression of caspase 8 apoptotic sig-
naling coupled with activation of several prosurvival
pathways was suggested as a possible mechanism of over-
coming integrin-mediated cell death [58,59].

These data, in combination with the results of our study,
provide a basis for the collagen hypothesis of prostate
tumorigenesis. We believe that the primary event in pros-
tate tumorigenesis is decreased expression of collagen
genes, a normal physiologic process associated with aging

Table 4: Canonical pathways identified in the combined analysis 
of genes differentially expressed between the transitions from 
normal prostate to primary nonmetastatic prostate cancer and 
from primary nonmetastatic to metastatic prostate cancer*

Pathway -Log(P)

Integrin signaling 4.42
Hepatic fibrosis/hepatic stellate cell activation 3.50
Actin cytoskeleton signaling 3.27
Tight junction signaling 3.16
Chemokine signaling 3.10
Calcium signaling 2.60
IGF-1 signaling 2.54
Aryl hydrocarbon receptor signaling 2.10
Regulation of actin-based motility by Rho 2.10
Nitric oxide signaling in the cardiovascular system 2.05
Beta-alanine metabolism 2.03
Wnt/β-catenin signaling 1.63
VEGF signaling 1.63
p53 signaling 1.48
NRF2-mediated oxidative stress response 1.43
Arginine and proline metabolism 1.42
Cardiac β-adrenergic signaling 1.38
cAMP-mediated signaling 1.38
Cell cycle: G2/M DNA damage checkpoint regulation 1.33

*Lists of the genes for each pathway are shown in Additional file 8.
Page 7 of 11
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:48 http://www.biomedcentral.com/1755-8794/2/48
[61]. Age-associated depletion of collagens leads to the
accumulation of ligandless integrins and induction of
integrin-associated cell death, as noted. Integrin-associ-
ated death is a driving force behind prostate tumorigene-
sis, as cells attempt to escape this by suppression of
integrin expression. Suppression of integrins, in turn, ele-
vates malignant potential by elevating cell motility and
proliferation and leads to disorganized prostate histologic
features.

Integrin-associated cell death may also provide a molecu-
lar mechanism underlying the prostatic atrophy fre-
quently observed in elderly men. It has been hypothesized
that some of these lesions can be precursors to prostate
tumor because they are frequently colocalized with carci-
noma, and their gene expression pattern resembles that of
tumor cells [62,63].

Several features of this collagen hypothesis make it unique
among hypotheses of prostate tumorigenesis [64]. First,
the initial impetus comes from the prostate cell environ-
ment rather than from the epithelial cells themselves. Sec-
ond, the environment changes are due not to random
mutations but rather to a normal physiologic process
associated with aging: depletion of collagens and other
integrin ligands. Somatic mutations or epigenetic changes
may play a role in integrin suppression, allowing cells to
escape integrin-associated death. The development of
prostate cancer is thus a physiologic response to the deple-
tion of integrin ligands associated with this aging process.
The collagen hypothesis provides hope that researchers
could prevent or slow the development of prostate cancer
by preventing age-associated collagen depletion. This
hypothesis also suggests that activation of integrin expres-
sion could reattach the cells to the extracellular matrix,
reversing their cancerous phenotype.

What is the place of integrin signaling pathways in the
framework of known genes affecting prostate cancer
development? We believe that age-associated suppression
of integrin-dependent cell adhesion provides a back-
ground for prostate cancer development by increasing the
effects of other genes involved in cancer development. It
has been demonstrated that cell adhesion can modulate
the effects of androgen signaling [65]. Several other genes
involved in prostate cancer development show strong
dependence on cell adhesion [66-70]. This suggests that
the suppression of extracellular matrix cell adhesion could
enhance the effect of other genetic modulators of prostate
cancer development.

A limitation of the approach used in our study is that
microarray-based assessment of gene expression does not
allow estimation of the expression of splice isoforms. It is
known that up to 70% of genes in the human genome are
alternatively spliced [71]. In some cases, alternatively

spliced integrins have been demonstrated to have distinct
functions and expression patterns [72]. The gene expres-
sion data used in this analysis provide an integrative
measure of gene expression; a more detailed assessment of
gene expression is needed for candidate genes. Another
limitation of our study is that the majority of the samples
was obtained by surgical dissection of tumor tissue and
therefore represent a mix of different cell types. For some
genes, drastic differences in the expression level between
cell types have been reported [73]. Differences in the
expression level between different cell types can contrib-
ute in the observed difference in gene expression at the tis-
sue level. To address this, we separately conducted
functional annotation of the top 500 genes identified in
the studies with samples obtained through laser capture
microdissection of tumor cells [29,46]. Although only
about one third of all known cell-adhesion genes were
analyzed in these studies, functional annotation identi-
fied cell adhesion and cytoskeleton as the top pathways,
suggesting their involvement in prostate carcinogenesis.

As a next step, we plan to analyze integrin signaling path-
way genes from independent clinically confirmed prostate
tumors at different stages of tumor progression. We also
plan to analyze stromal and tumor cells separately, which
will allow the estimation of the expression of integrins
and integrin ligands separately in tumor and the sur-
rounding stroma.

Conclusion
The results of this study suggest that prostate tumor pro-
gression is associated with the suppression of integrin-
based cell adhesion. Suppression of integrin expression
driven by integrin-mediated cell death leads to increased
cell proliferation and motility and increased tumor malig-
nancy.
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