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Abstract

genes.

among up-regulated genes.

Background: Abberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional
silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone
silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The
cytosine analog 5-aza-2'-deoxycytidine (decitabine) induces genomic hypomethylation by inhibiting DNA
methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced

Methods: It is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By
applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter
regions that define susceptibility to the drug’s action. Our experimental data, derived from melanoma cell strains,
consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide
data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing.

Results: We show that the combination of promoter CpG content and methylation level informs the ability of
decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate
CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated
promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high
CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented

Conclusions: Clinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of
up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor
biology. As a first step toward an eventual translational application, we build a classifier to predict gene up-
regulation based on promoter methylation and CpG content, which achieves a performance of 0.77 AUC.

Background

Epigenetic abnormalities, including global losses and
local gains in methylation, have been observed in many
types of cancer, including melanoma [1-3]. It is thought
that, while global hypomethylation may induce genomic
instability early in cellular transformation, localized
hypermethylation may promote tumorigenesis through
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silencing of tumor suppressor genes [4,5]. Some geno-
mic loci are more susceptible to such hypermethylation
than others, and significant progress has been made in
predicting which CpG islands will be subject to methyla-
tion on the basis of sequence motifs [6,7].

A well-established relationship exists between promo-
ter methylation and transcriptional repression [8-10].
There are two popular models for this phenomenon, the
first positing that the methyl groups directly block the
binding of transcription factors [11] and the second
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citing the role of methyl-binding proteins that recruit
transcriptional repressors to the methylated sites [12,13].
Recently, Koga et al. used MeDIP combined with pro-
moter tiling microarrays to evaluate genome-wide
methylation levels and transcriptional regulation in a set
of melanoma cell strains [14]. Their analysis confirmed
that, for promoters containing a minimum number of
CpG dinucleotides, increased methylation caused
decreased expression.

Recognition of the importance of epigenetic silencing
in tumor biology has led to exploration of the therapeu-
tic potential of demethylating agents, such as the DNA
methyltransferase inhibitor 5-aza-2’-deoxycytidine (deci-
tabine). The drug received FDA approval for the treat-
ment of myelodysplastic syndrome in 2004 and is
currently the subject of clinical trials exploring its utility
in treating a variety of solid tumors. The ability of these
agents to up-regulate the expression of aberrantly sup-
pressed genes has been demonstrated in several studies,
resulting in lists of individual candidate targets for
demethylation-induced up-regulation [15-18]. Similar
studies have employed RNAi for DNMT knockdown
toward the same end [19]. While these efforts are pro-
viding valuable insight into the specific genes and gene
pathways that may be targetable through epigenetic
manipulation, it is still unclear why decitabine causes
some silenced loci to become up-regulated, while others
remain inactive. We therefore embarked on systematic,
genome-wide studies exploring molecular characteristics
of decitabine-responsive genes.

Using microarray analysis of both gene expression and
promoter methylation, we sought to identify promoter
characteristics that predict the likelihood of response to
decitabine treatment. We began by stratifying the pro-
moter regions on the basis of CpG content and pre-dec-
itabine methylation level. We then tested for enrichment
of up-regulated genes in each of the resulting promoter
categories (i.e., different CpG content and methylation
level combinations). Using logistic regression and ten-
fold cross-validation, we trained and tested a classifier
that predicts the likelihood of decitabine-induced up-
regulation on the basis of promoter category.

Results

Decitabine-induced up-regulation varies by promoter
methylation level and CpG content

Using the melanoma methylation dataset from Koga et
al. [14], combined with gene expression measurements
on the same cell strains (Table 1), treated and untreated
with decitabine [20], we were able to systematically
investigate differential gene expression, as well as the
relationship to basal methylation level and CpG content,
in response to relatively low doses of the drug.
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Table 1 Melanoma cell strains.

Melanoma cell line Gender/age Stage/site

YURIF M/53 IV/soft-tissue metastasis, right thigh
WW165 F/62 Primary melanoma, 2.25 mm
YUGENS F/44 IV/brain metastasis
YUSIT1 Mm/67 Metastatic melanoma
YULAC F/66 IV/soft-tissue metastasis, neck
YUSAC M/57 IV/soft-tissue metastasis, left neck
YUMAC M/68 IV, soft-tissue metastasis, right thigh

Stratifying promoters by methylation level and CpG
content, we first assessed the effects of decitabine on
absolute expression level as a function of un-treated
level. Figure 1A shows the un-treated vs treated expres-
sion levels for promoters with low levels of methylation
(top row) vs. those that are highly methylated (bottom
row) across a range of promoter CpG contents (increas-
ing from left to right). For each promoter category we
use the non-parametric Wilcoxon signed-rank test to
assess the likelihood that expression levels are lower
before treatment than after. Figure 1B shows the -log10
of the p-values resulting from this test, demonstrating
that the most significant up-regulation occurs in highly
methylated genes with lower CpG content. As methyla-
tion level decreases, the likelihood of significant up-reg-
ulation occurs at progressively higher CpG content.

Defining decitabine-responsiveness

Defining the effect of decitabine on transcription in
terms of the fold-change in expression before and after
treatment (as is often done for differential expression)
might be misleading, resulting in a biased definition of
up-regulated genes. Genes with low basal expression
require a lesser absolute increase to meet a 2-fold up-
regulation threshold after treatment than do genes with
high basal expression. Also, genes with very low basal
expression might show a two-fold increase in response
to decitabine but still have biologically insignificant
amounts of gene expression. Furthermore, it is
important to note that the set of genes with low basal
expression values are significantly enriched for low
CpG-content promoters, whereas genes with high CpG-
content promoters generally have greater baseline
expression levels [21]. An up-regulation threshold that
favors genes with low starting expression would there-
fore bias the set of decitabine-responsive genes to
include a greater proportion of low CpG-content pro-
moters. Given that our initial observation suggests that
promoter CpG content is an important factor in decita-
bine-responsiveness, we were particularly interested in
addressing this bias. To do so, in addition to a 2-fold
increase in expression, we require a minimum delta
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Figure 1 Decitabine effect as related to promoter methylation level and CpG content. Panel A. Genes are stratified by promoter CpG
content (increasing from left to right) and methylation level (low methylation in top row, high methylation in bottom row). Plotting post-
treatment expression level as a function of basal levels demonstrates the distribution of promoters in each bin (orange dots) in the context of all
promoters (blue dots). Panel B. Summary of -log p-value from Wilcoxon signed-rank test assessing the likelihood that basal expression < post-
treatment expression. The dotted line corresponds to -log10 of 0.05. The promoter category with the most significant trend toward up-regulated

progressively more CpG dense promoters.

genes has highly methylated promoters with intermediate CpG content. As methylation level decreases, up-regulation is apparent in

expression of 5,000 units in order to consider a gene
up-regulated. Additional file 1 contains the list of refseq
IDs for each promoter bin, as well as an indication of
which are up-regulated.

Figure 2A shows delta expression vs. basal expres-
sion, again stratified by promoter methylation level
and CpG content. Genes to the left of the diagonal
and above the horizontal line are those that meet the
criteria of up-regulation. In total, 2,265 genes from all
genes pooled from 7 cell strains met the criteria for

up-regulation. Again, we observe that certain CpG
content/methylation bins are enriched for induced
genes. On a gross scale, promoters with low levels of
methylation (top row), have peak numbers of up-regu-
lated genes in the more CpG-dense promoter bins.
Whereas, for highly methylated promoters, more up-
regulation is observed in the intermediate CpG content
bins. Figure 2B summarizes the percent of up-regu-
lated genes by bin, again demonstrating that the great-
est subset of induced genes lies within the highly
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Figure 2 Defining decitabine-response by fold-change expression and delta expression. Panel A. Genes are stratified by promoter CpG
content (increasing from left to right) and methylation level (low methylation in top row, high methylation in bottom row). Delta expression is
plotted as a function of basal expression level. Upregulated genes are defined as those with >= 2-fold expression increase (left of diagonal line)
and delta expression >= 5,000 (above horizontal line). Panel B. Percent of upregulated genes per CpG and methylation bin, with maximal up-
regulation observed at high methylation and intermediate CpG content. Stars and circles indicate promoter categories with statistically
significant enrichment or depletion in the number of up-regulated genes, respectively.
J

methylated promoters with intermediate CpG content.
As methylation level decreases, the peak amount of
up-regulation occurs in progressivley more CpG-dense
promoter categories.

We next employed the hypergeometric distribution to
test, for each promoter category, whether the number of
up-regulated genes is significantly different than would
be expected by chance. Those promoter categories sig-
nificantly enriched or depleted in up-regulated genes are
denoted in figure 2B with a star or a circle, respectively,
and the pattern confirms our previously observed trend.

We also investigated whether gene upregulation is
explained by factors other than promoter methylation
and CpG density. Using the GSEA method over gene
expression measurements in the YUMAC strain, we
tested for Gene Ontology (GO), KEGG pathway and
motif gene set enrichments among the upregulated
genes. Our results show that none of the gene sets were
enriched at the FDR level of 0.05, indicating that gene
upregulation is not dominated by activation of a particu-
lar cellular process, or regulation by a transcription
factor.
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Decitabine-responsive MCF-7 genes

To investigate whether the observed trend was present
in an independent cell line, we obtained publicly avail-
able data. These included expression data in response to
decitabine for the MCF-7 breast cancer cell line from
the BROAD connectivity map database [22], and promo-
ter methylation data for the MCF-7 cell line [23]. We
analyzed those genes with at least a 2-fold increase in
expression following treatment, identifying 18 genes for
which we could also obtain methylation data (see Addi-
tional file 1). Among these, three of the promoters were
highly methylated, five showed intermediate levels of
methylation, and ten had low methylation levels. All
three of the decitabine-responsive genes with highly
methylated promoters had low to intermediate CpG
content. For intermediately methylated promoters, the
range of CpG content shifted toward greater density.
Furthermore, extremely CpG dense promoters were up-
regulated only when accompanied by low basal methyla-
tion levels. Figure 3 summarizes these findings, all of
which are consistent with our observations in melanoma
cell strains.

While this independent dataset is limited in size, the
overall trend is consistent with our findings and we
found no evidence to contradict our hypothesis. Impor-
tantly, the MCF-7 cell lines were treated with a low
dose decitabine (100 nM) that is comparable to the 200
nM used in the melanoma experiments. One caveat to
the comparison is that the decitabine-response data for
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the MCEF-7 cell line is in the form of fold-change follow-
ing treatment; we can therefore not account for poten-
tial bias introduced by basal expression levels (discussed
above).

Predicting decitabine response

To test whether the observed trend in promoter charac-
teristics could be used to build a rudimentary classifier,
we trained a logistic regression model to predict indivi-
dual gene reponse on the basis of promoter methylation
and CpG density. As the clinical goal is to induce
expression of silenced tumor supressor genes, we began
by taking the subset of genes with low basal expression.
Using the YUMAC cell strain, which displayed the
greatest absolute number of decitabine-responsive genes,
we trained and tested the model using methylation and
CpG content across the promoter, from 2,200 basepairs
upstream to 500 basepairs downstream of the transcrip-
tion start site. Figure 4 shows the average of the receiver
operating curves, including error bars for 2 x standard
error, using ten-fold cross-validation.

We found that the combination of promoter methyla-
tion and CpG content across the entire promoter has an
area under the ROC (AUC) of 77%. The predictive
power is superior compared to either methylation status
or CpG content alone (AUC 72% and 63%, respectively).

To investigate the impact of more localized measures
of methylation, we next repeated the above analysis for
each of six bins at varying distances from the

observations are in accord with the melanoma data.
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Figure 3 Promoter methylation and CpG content of decitabine-responsive genes in MCF-7 cell line. Of eighteen decitabine-induced
genes from the MCF-7 breast cancer cell line, three are highly methylated, five have intermediate methylation levels, and ten have low levels of
methylation. Highly methylated, decitabine-responsive genes have lower promoter CpG content. With increasing levels of methylation, CpG
content of responsive genes increases. For extremely CpG-dense promoters, only those with low methylation levels are up-regulated. These
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Figure 4 Predicting decitabine-responsive genes using logistic regression. Receiver operating curve for predicting decitabine response on
the basis of promoter CpG content and methylation level. Models were trained and tested on the YUMAC cell line using ten-fold cross-
validation. The plot shows the mean across ten runs, with 2*standard error bars. The area under the curve (AUC) is 77%, compared to 72% and
63%, respectively, for models built on promoter methylation status or CpG content alone.
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transcription start site (Table 2). The classifier perfor-
mance was uniform across the bins, and was lower than
using the cumulative methylation and CpG density.

To further strengthen confidence in the model, we
performed 500 permutations of the class label, training
and testing the model with ten-fold cross-validation
each time. The mean AUC for these 500 permutations
was 50.4%, as would be expected of a model with no
predictive power. This analysis provides further evidence
that the trend observed in promoter characteristics of
up-regulated genes was not due to chance alone.

Table 2 Performance of predictive models of up-
regulation.

Distance from TSS AUC (%)
-2200 to +500 77.0
-2200 to -1500 68.7
-1500 to -1000 68.2

-1000 to -500 709

-500 to -200 70.3
-200 to +100 69.1
+100 to +500 714

AUC by promoter location after 10-fold cross-validation.
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Discussion and Conclusion

The ability to re-activate genes that have been epigeneti-
cally silenced in cancer could prove a powerful adjunct
to existing chemotherapeutics, yet not all methylated
genes undergo up-regulation following demethylating
treatment. We detect patterns of promoter characteris-
tics that influence susceptibility to decitabine treatment
in a group of melanoma cell strains.

Promoters with a high degree of methylation and an
intermediate CpG content appear most susceptible to
decitabine-induced up-regulation. For these highly
methylated promoters, as the CpG content increases,
the efficacy of the drug appears to decrease. We con-
clude that, in CpG-dense promoters with high levels of
methylation, the large absolute number of methyl
groups overwhelms the ability of the drug to demethy-
late sufficiently to allow increased expression.

In contrast, for genes with low levels of methylation,
the drug’s effects become more pronounced as CpG
content increases. We theorize that, in promoters that
are sufficiently CpG-dense, those with lesser levels of
methylation might still contain an absolute number of
methyl groups large enough to constitute a viable target
for demethylation-induced expression. Silent promoters
that are CpG-sparse and have low levels of methylation
are likely repressed by regulatory mechanisms that are
not responsive to demethylation.

In addition to examining promoter CpG content and
methylation level, we have performed initial analyses
(data not shown) to suggest that the presence of DNase
hypersensitivity sites, reflecting an open chromatin state,
also plays a role in determining a promoter’s susceptibil-
ity to demethylation-induced up-regulation of expres-
sion. Further studies using chromatin structure data, as
well as more refined analysis of promoter sequence fea-
tures, will likely improve upon the classifier’s predictive
power.

In summary, we identified a trend in promoter charac-
teristics that correlates with the likelihood of response
to decitabine in a set of melanoma cell strains, and used
this trend to build a computational classifier to predict
response to treatment. Further study using higher reso-
lution assessment of methylation, as well as integration
with genome-wide promoter architecture data (such as
DNase hypersensitivity and histone modification) is
needed to decipher in more detail the regulatory forces
causing gene silencing and the likelihood of up-regulat-
ing key tumor supressor genes using drugs that target
DNA methylation.

Methods
Methods for cell isolation, culture, drug treatment,
MeDIP, and methylation and expression-profiling were
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previously reported [14,20]. Briefly, methylated DNA
was enriched using the MeDIP approach followed by
hybridization to genomic promoter tiling arrays (Nim-
bleGen C426-00-01) containing 390,000 probes. Stan-
dard normalization methods for two-channel arrays
were applied, and relative methylation levels were deter-
mined using the MEDME bioconductor library [24].
Approximately 20-30 million cells were used for each
mRNA extraction. Cells were treated with low-dose (200
nM) decitabine for two days, followed by one day recov-
ery before total RNA extraction. Gene expression data
was derived from NimbleGen human whole genome
expression microarrays (array 2005_04-20_Human_60
mer_1lin2) containing 380,000 probes with an average of
11 probes per refseq, located throughout the gene.
Probe measurements were then averaged for each refseq.
The same chip was hybridizied with differentially
labeled, polyA-selected cDNA from decitabine-treated
and untreated cells, experiments were repeated with dye
swapping. Data was captured and processed by Nimble-
Gen Systems Iceland LLC. Normalization within arrays
was performed with Loess-based methods to correct for
biases due to labeling with different dyes on the two
microarray channels and to correct for spatial artifacts.
As such, M and A values were determined where M
describes the amount of differential expression (M =
log2(cy5/cy3)) and A associates M with the magnitude
of overall expression (A = (log2cy5+log2cy3)/2). Nor-
malization between arrays was performed via quantile-
based normalization. mRNA RefSeqs were mapped to
the genome and those with < 96% sequence identity, as
well as those that mapped to more than two genomic
loci, were discarded. Analysis of the data revealed upre-
gulation of 292 common genes across the cell lines after
Decitabine treatment, and the treatment effect on
demethylation was validated in selected strongly upregu-
lated genes, such as CDKN1A and TGFBIL

For our experiments on decitabine-induced gene upre-
gulation, we pooled information on gene promoter
methylation level, CpG density, as well as differential
gene expression from 7 cell strains. Data pooling yielded
measurements for 22,824 promoters per cell strain, for a
total of 159,768 data triplets (methylation, CpG density
and differential gene expression).

For each promoter, the sequence from 2,200 basepairs
upstream to 500 basepairs downstream of the transcrip-
tion start site (TSS) was analyzed for CpG content, and
five equal categories defined. Methylation levels for
these promoters were previously reported for each of six
bins spanning the same 2,700 basepairs around the TSS
[14]. In order to obtain a single methylation measure-
ment for each promoter, we used the sum of these six
values and divided the results into four categories such
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that each bin contains roughly the same number of pro-
moters (~40,000). Basal and decitabine-induced expres-
sion values represent the mean of two replicate
experiments for each promoter. Promoters that demon-
strate a two-fold increase in expression (post-treatment/
pre-treatment expression >= 2) as well as an absolute
expression increase of at least 5,000 units are labeled as
up-regulated.

For each combination of CpG content and methyla-
tion level, the non-parametric wilcoxon signed-rank test
was employed to compare post-decitabine to pre-decita-
bine expression levels. For this analysis we used the R
stats module wilcox.test function.

For each combination of CpG content and methyla-
tion level, the significance of the difference between the
observed number of up-regulated genes and the number
expected by chance alone (total number in the bin mul-
tiplied by the fraction of all genes that undergo up-regu-
lation) 1is calculated from the hypergeometric
distribution using the R stats module dhyper function
with the number up-regulated in the CpG/methylation
bin, total number of up-regulated promoters, total num-
ber not up-regulated, and number in the CpG/methyla-
tion bin.

We used the GSEA program http://www.broadinsti-
tute.org/gsea/ to analyze our expression data for
enriched Gene Ontology and motif gene sets. We
uploaded the gct and cls files corresponding to our data
from the YUMAC cell strain, and set the Metric for
ranking genes to Ratio_of Classes, and the Permutation
type to geme_set. All other parameters were set to
default.

Expression response data following decitabine treat-
ment on the MCF-7 breast cancer cell line was down-
loaded from the BROAD Institute Connectivity Map
[22]. Methylation data for the MCF-7 cell line was
downloaded from the supplementary material from a
study by Li et al. that used a modified methylation-spe-
cific digital karyotyping for genome-wide methylation
profiling of two breast cancer cell lines [23]. Methylation
levels were in the form of the number of sequencing
reads per fragment. Using the 90th quantiles from the
MCEF-7 and melanoma datasets, the MCF-7 methylation
levels were scaled so that the distribution of values
between the two datasets occupied an equivalent range.
MCEF-7 promoters were then categorized as having
either low (0-1), intermediate (1-6), or high (>6) levels
of methylation.

A computational model of decitabine-response was
built using the generalized linear model for logistic
regression. This was implemented using the R stats
module glm function with the following arguments: for-
mula = upregulated ~promoter methylation + promoter
CpG content; family = gaussian; method = glm.fit
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(iteratively weighted least squares). Briefly, data from the
YUMAC cell line was filtered for genes with pre-treat-
ment expression levels below 700 units (app. 40% of the
data). For each promoter bin, and for the region as a
whole, the model was then trained and tested using ten-
fold cross-validation, receiver operating curves were
generated and AUCs calculated using the ROCR pack-
age [25]. The class labels were then permuted 500
times, the model trained and tested for each permuta-
tion, and the mean AUC calculated.

Gene expression and promoter methylation data
have been uploaded to GEO (Accession: GSE13706)
and ArrayExpress (Accession: E-MTAB-185).

Additional file 1: Genes identifiers. The file GenesByBin.txt contains
refseq ID, name of the cell line, and class assignment (up-regulation by
Decitabine) for each gene analyzed in the study. The file is organized by
promoter category as defined in the text. The file also contains identifiers
for the MCF-7 genes included in the analysis.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1755-8794-3-4-
S1.TXT]
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