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Abstract

predictable patients.

confidence level.

clinical practice for personalized medicine.

Background: Molecular classification of tumors can be achieved by global gene expression profiling. Most
machine learning classification algorithms furnish global error rates for the entire population. A few algorithms
provide an estimate of probability of malignancy for each queried patient but the degree of accuracy of these
estimates is unknown. On the other hand local minimax learning provides such probability estimates with best
finite sample bounds on expected mean squared error on an individual basis for each queried patient. This allows
a significant percentage of the patients to be identified as confidently predictable, a condition that ensures that the
machine learning algorithm possesses an error rate below the tolerable level when applied to the confidently

Results: We devise a new learning method that implements: (i) feature selection using the k-TSP algorithm and
(i) classifier construction by local minimax kernel learning. We test our method on three publicly available gene
expression datasets and achieve significantly lower error rate for a substantial identifiable subset of patients. Our
final classifiers are simple to interpret and they can make prediction on an individual basis with an individualized

Conclusions: Patients that were predicted confidently by the classifiers as cancer can receive immediate and
appropriate treatment whilst patients that were predicted confidently as healthy will be spared from unnecessary
treatment. We believe that our method can be a useful tool to translate the gene expression signatures into

Background

As developing gene expression signature from microar-
ray data becomes a routine strategy to predict clinical
outcome or to classify molecular tumor subtypes, com-
putational methods that are capable of extracting accu-
rate and simple decision rules from such microarray
data are of great interest in personalized medicine [1-5].
Various gene expression signatures and classifiers have
been identified recently; however, only a handful of
these signatures are translated from bench research to
clinical trials. Several factors contribute to this problem
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from the bioinformatics perspective: First, the lack of
interpretability in the resulting classification rules (gene
expression signatures), generated from standard machine
learning approaches, leaves a mystery for clinicians. Sec-
ond, the number of genes involved in the classifiers
ranges from tens to hundreds; interpreting, validating,
implementing and translating these classification rules
to the clinician represent a daunting task. Third, in
order to achieve personalized prediction due to a
patient’s tumor heterogeneity, the classification rules
have to be able to provide a predicted probability of
malignancy with a level of confidence where both quanti-
ties vary with the individual patient. This prediction
capability is not available in current machine learning
approaches [6,7]. Finally, other technical and biological
issues were described in [8] that hindered the translation
of gene signatures in clinical practice.
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Motivated by these computational challenges, we
devise a novel statistical framework for personalized pre-
diction with accurate and simple decision rules from
microarray gene expression data [9]; where for each
patient we are able to give an individualized analysis. For
each patient we generate a predictor vector whose
k components consist of the differences of signal intensi-
ties from tissue samples from k gene pairs. For two class
pattern recognition problems (with patient labels 0 for
normal and 1 for cancer), we use local minimax learning
to obtain both an estimate of the probability that a
patient with a given predictor vector belongs to class
1 (cancer) and a confidence interval for the true probabil-
ity. The length of the confidence interval varies (as does
the probability estimate) with the given query so that the
action taken for a given query may depend on both
degree of confidence (inverse of length of confidence
interval) and degree of predictability (nearness of prob-
ability estimate to O or 1). Indeed, in practice, classifica-
tion algorithms are often only one step in a larger
sequential decision procedure. Final decisions may only
be reached if the classification process yields high degrees
of both confidence and predictability. We define confi-
dent predictability for a patient in terms of the above two
degrees and examine the machine learning algorithm
performance for the confidently predictable patients.
Otherwise, for non-confidently predictable patients,
further measurements and testing may be desired.

A local minimax learning algorithm may be applied
directly to (i) raw predictor data or to (ii) predictor data
of reduced dimensionality after feature selection via vir-
tually any favorite machine learning algorithm. However,
although it is believed that local minimax learning will
compete favorably with many machine learning algo-
rithms, for case (i) difficult optimization problems need
to be solved (hopefully they will be solved as a result of
future computational research) to implement the techni-
ques of optimal fusion and optimal local kernel shape
determination derived in [10]. Also it is almost always
the case that understanding the science behind the sta-
tistical problem leads naturally to appropriate feature
selection. Hence we report here on implementations of
type (ii) only.

Our framework consists of two major steps: 1) feature
selection and 2) prediction and error estimation. We
used the k-Top Scoring Pairs algorithm (k-7SP) [9] for
feature selection yielding a k dimensional feature space
with coordinates given by the gene pair intensity differ-
ences described previously. The prediction and error
estimation are based on the theory of Local Minimax
learning [10]. We applied the local minimax prediction
algorithms based on the Improved Tikhonov Estimator
for kernel machine learning to estimate a given patient’s
probability of having cancer. The idea of local learning
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is to individualize the prediction process: the determina-
tion of the probability of cancer for a patient is
“tailored” to the neighborhood of the patient’s predictor
vector. For comparison a nearest neighbor algorithm
with a (only asymptotically valid) confidence interval
was similarly applied.

Methods

Feature selection method

We used k-Top Scoring Pairs (k-TSP) [9] algorithm as
feature selection method in this study. Suppose we have
N patients with known diagnoses (0 for normal or 1 for
cancer) and for each patient we are given a vector g of
real numbers consisting of the values of signal intensi-
ties of tissue samples from G genes. For any pair of
genes (i, j) we can determine the relative frequency that
g < g; among the normal patients and also compute this
relative frequency for the cancer patients. We determine
a gene pair (i, j) for which the absolute difference of the
two relative frequencies is greatest. Using this absolute
difference, we can order all the gene pairs from the
greatest to the lowest. In case of ties, we replace the sig-
nal intensities of each gene by their ranks among the
N patients and compute the average within class rank
difference for gene pairs and break the tie by maximiz-
ing the absolute class difference (See [9] for more effi-
cient algorithms.). In this study, we fixed k = 10 to
select the top 10 disjoint gene pairs as the learning fea-
tures for the local minimax algorithm.

We note that in the feature selection the true classes
of the patients are used. This will affect the local mini-
max probability estimate as discussed below but the
width of the confidence interval will remain valid.

Prediction and error estimation
Suppose we have N patients with known diagnoses and
for each patient we are given a vector of k real numbers
consisting of the values of k selected features. The i-th
number represents the difference of signal intensities for
the i-th top scoring pair. Typically N is in the range of a
few dozen to a few hundred and we set k = 10 in this
study. We represent the j-th patient vector by x;. Let Y;
be 1 for those who have cancer and 0 for those who do
not. A new patient is now considered and we are given
his feature values in the vector x,. Let f (x) Prob {cancer
| feature vector x}j. We will assume that f (x) is a con-
stant plus a finite sum of kernel functions centered at
arbitrary points in a given sphere V about xo in k
dimensional space. (Actually this representation only
needs to equal the above probabilities at «; for j = 0,1,...,
N ) We represent the kernel function as K (z, x)where z
is the center and x varies over the sphere V. We used
0.5(x—2)" (x-2)

K(z,x)ze_[ o’

the kernel ] although our
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analysis remains valid for many kernels. Here ¢ is a
fraction of the distance of the query x, to the
furthest x;. We took that fraction as 0.5 and 0.7 in the
experiments reported here. Other fixed fractions could
also be used. Or one could use a fixed fraction of the
mean distance from the query to a patient in the train-
ing set, or a fixed fraction of the distance to the j-th clo-
sest patient, etc. Cross validation for determining is not
recommended as it will give a global average for which
would detract from accurate local analysis.

Since taking any linear combination of kernels above
will be equivalent to assuming the set of such f’s is dense
in the set of all continuous functions, we restricted the
linear combinations to be possibly probability functions
(meaning 0 <f (x) < 1) and to have a degree of smooth-
ness directly proportional to . In particular f{x) = o +(1-
a)f;(x) - of5(x) (for o fixed, 0 < < 1) where each f; (I =
1,2) is a positive finite sum of kernels centered at arbi-
trary points {z;} €V where each 0 <f; (x) < 1 in V. (Denote
the class of such f’s by PK, (V). We took a = 0.5 in our
experiments although we present the results for any ).
Actually we only need to assume that there is an fin PK,,
(V;) that takes the same values as the true probabilities at
the data points and query in the sphere V; below and

where {z;} €V;. We obtain an estimate of f (x) of the
N
form F(w)=w* +Z w;Y; , together with a bound on mean

=1

squared error (I\]/[SE) and a one sided 90% confidence
interval. These three quantities are furnished by the
improved Tikhonov estimator (1),(2) and (3) below:
(which is derived in full in [10] (and outlined in the
appendix) by the method of local minimax learning).

First assume the patient training vectors are ordered
by their distance to the query x,. V; is the ball centered
at xo of radius equal to the distance from x, to the i -th
closest training vector where ic {1,2,...,N} is optimally
chosen to minimize the bound (1). (i.e. an optimal
neighborhood is chosen to which the contextual Tikho-
nov estimator of [10] is applied).

1
£ = = MSE bound,
( * 2 +\7! (1)
o *+M}K; )00
(-Lwy,wy, ..., w;)= st row of (U*JrM‘Z"K;)? and Wiy, Wiy, ..., Wy =0 (2)

£l

where

—_

1 1
_ _ 2 _ 212 . 5’
M—Mvi_(a +(1-a)?) (IJI%E‘I/XI)};IVHK()/QC))

w* = -0 (-1 + wy + ... + w;) and (denoting by zg the (1 -
B) -th normal quantile) (1 - 8) confidence intervals
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1 1 1 1
(F(w)—£?(l+zf] )5,+w)and(—oo,F(w)+£?(1+zf, )E) (3)

where the i + 1 dimensional diagonal matrix 6* = diag
{0,0.25,0.25,...,0.25}, K; = K(x]-,xm ), jm = 0,1,2,..,i .

(In [10] it is proposed to further optimize by varying the
kernel function appropriately over those with trace of
the kernel covariance equal k/c?).

In fact our estimator is identical to that furnished by
first least squares fitting the data in the above V; to a
function g(x) with a penalty term (0.5/MV; )* [gg] 2,
where [, ] is the reproducing kernel inner product (see
appendix), and then using g(x,) as the estimate. This
penalized least squares procedure is the well known
Tikhonov regularization. For a proof of the identity of
our estimator and a Tikhonov regularization see Theo-
rem VI in [10].

A complete outline of Reproducing Kernel Hilbert
space (RKHS) and the derivation from 3 stated local
minimax results (to which the reader may give his/her
own proofs) is given in the appendix. References are
given to the full proofs of these three results in [10].

Now the preceding results are valid provided the fea-
ture selection process does not depend on the patient
classes Y; but only on the patient raw predictor vectors g.
However if we could find N new patients with exactly the
same N x;’s as the training set then the results using the
Y; ’s for these new patients would be valid for the queried
patient. Of course we can not find such patients easily
but the MSE bounds (and hence the width of confidence
intervals) depend only on the x; . Hence with top scoring
pairs as a feature selection method only the probability
estimators F (w) depend on the new Y;. We can approxi-
mate such F (w) by adjusting the estimator by an
(expected) resampling shift and then using the invariant
MSE bound to form the approximate confidence interval:
First suppose the true overall total error rate with the
given feature space is 0. Then the new patients (even
though we can not find them in practice) will have the
same Y; and the results are valid for the original training
set. For a true overall total error rate of e we can generate
an approximate new “adjusted” F (w) by replacing the
original Y} in the formula for F (w) by the value e if ¥; = 0
or 1-e if Y¥; = 1. Now the true overall total error rate is
likely to be quite small as machine learning suffers from
the curse of dimensionality. So we report results here
with adjustments (e) of e = 0.00 and e = 0.05.

Results

Microarray gene expression datasets

To demonstrate the utility of the local minimax algo-
rithm, we tested it on three publicly available microarray
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gene expression data sets. Leukemia. This data is
described in [11] for separating ALL from AML using
microarray gene expression profiles. In total, there are
47 ALL and 25 AML samples and 7,129 gene features.
Prostate Cancer. This data set is described in [12]. The
gene expression profiles contain 38 tumors and 50 nor-
mal prostate samples and 12,625 gene features. Global
cancer map (GCM). This gene expression data set repre-
sents a collection of 280 various tumors (190) and nor-
mal (90) samples. The classification task is to
distinguish tumors from normal based on 16,063 gene
features [13].

Leave-one-out cross-validation

For all the experiments, we employed leave-one-out
cross-validation to assess the classification performance.
In brief, for each data set of size N, we left out one sam-
ple, and performed feature extraction and classifier con-
structed based on the N-1 member training set. The
classifier constructed from the N-1 member training set
is used to predict the left out sample. This procedure is
repeated N times.

Predictability threshold and accuracy

When applying one of our classification algorithms to a
given patient’s predictor vector (gene expression profile),
we not only obtain an estimate F of the probability that
a patient has cancer (whence we classify the patient into
class 0 for normal if F is less than 0.5, or else we classify
the patient as class 1 for cancer), but we also obtain a
90% one-sided confidence interval for that patient’s pre-
dicted probability. Since we are estimating a probability
-0 and +co may be replaced in the confidence interval
expressions (3) by 0 and 1 respectively.

One use of such an algorithm is to divide patients into
a group of those for whom we may confidently predict
and those for whom lack of sufficient confidence or pre-
dictability may warrant further (possibly invasive) test-
ing. This dichotomy is achieved using what we call a
predictability threshold p as follows: we fix a probability
value, call it p; for example p = 0.35. We then designate
as confidently predictable at level p, all patients whose
confidence interval associated with their prediction lies
entirely inside of the interval [0, p] or lies entirely inside
the interval [1-p, 1]. All other patients are considered to
be non-confidently predictable. It follows that if a
patient is confidently predictable (CP) with threshold p
then either [0, p] or [1-p, 1] contains the true probabil-
ity with 90% or more confidence.

Table 1 summarizes our results using 10-Top Scoring
Pairs for feature selection on the three microarray gene
expression data sets. Predictions for each patient were
made based on their raw predictor vector using the raw
predictor and response data for the remaining patients
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Table 1 Kernel method, sigma = 0.5 and 0.7, threshold,
p = 0.35, adjustment, e = 0.00 and 0.05

Data set Sigma Adjustment CP (%) Error in CP Total Error
(e) (%) (%)
Leukemia 05 0 36 0 (0%) 3 (4.17%)
(50.0%)
0.05 25 0 (0%) 3 (4.17%)
(34.7%)
0.7 0 43 0 (0%) 3 (4.17%)
(59.7%)
0.05 36 0 (0%) 3 (4.17%)
(50.0%)
Prostate 05 0 32 4 (12.5%) 21 (23.9%)
(36.4%)
0.05 30 3 (10.0%) 21 (23.9%)
(34.1%)
0.7 0 34 4 (11.8%) 22 (25.0%)
(38.6%)
0.05 25 2 (8.00%) 22 (25.0%)
(28.4%)
GCM 05 0 154 6 (3.90%) 39 (13.9%)
(55.0%)
0.05 134 3 (2.24%) 39 (13.9%)
(47.9%)
0.7 0 160 6 (3.75%) 42 (15.0%)
(57.1%)
0.05 134 5 (3.73%) 42 (15.0%)
(47.9%)

("leave-one-out” method). That is, the feature space was
determined using the raw data for the remaining patients.

Sigma (o) denotes the bandwidth of the Gaussian ker-
nel in units of distance in predictor feature space from
the queried patient’s predictor to the furthest predictor
among the rest of the patients. We report two sigma
values (0.5 and 0.7) using the threshold p = 0.35 on
these data sets in Table 1. In Table 1, we reported the
results of e = 0.00 and 0.05 as adjustments to F (w).

From Table 1, we observed that, with 10 pair differences
as features, more than 50% of the AML/ALL patients may
be identified as confidently predictable and that their error
is reduced from 4% to 0%. Similarly 55% of the GCM
patients may be separated and their error is reduced from
14% to less than 4%. For the prostate data set about one-
third of the patients get their error rate cut by 70%.

Varying sigma (o)

In Figure 1 we plot %CP and %error in CP as a function
of sigma from 0.2 to 1.4. In general confidence widths
may be narrower for larger sigma but the true probabil-
ity function must be assumed to be very smooth.

Confident predictability with 3-nearest neighbor predictor
We only demonstrate improved classification for the
kernel classifier using squared error loss. Finite sample
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Figure 1 The relationships between sigma, percentage of confidence predictable (CP) patients and the percentage of error in CP

local accuracy bounds are not available for other
machine learning algorithms. However, for nearest
neighbor algorithms, we may use asymptotic properties
to define confident predictability and compare with our
finite sample methods. The 3-nearest neighbor algo-
rithm represents a simple local learning method whose
predictions represent a baseline predictive power of
asymptotic local learning approaches. The gain of our
proposed methods can be assessed by comparing to the
3-nearest neighbor predictor. For this purpose, we
implemented a 3-nearest neighbor predictor in this
study. Employing the same leave-one-out cross valida-
tion procedure as previously described, we compared
the 3-nearest neighbor predictor against the kernel pre-
dictors with sigma 0.5 and 0.7 on the three microarray
data sets. Assuming the true probability of cancer for
any patient is either at most 0.30 or at least 0.70, confi-
dent predictability for p = 0.35 (as sample size
approaches infinity) can be defined as “all 3-nearest
neighbors belong to the same class”. Table 2 shows the
results of the comparisons of CP (%), error in CP (%)
and total error(%).

As indicated in Table 2, the local minimax kernel
methods had a greatly reduced % error in CP while the
3-nearest neighbor predictor had little or no reduction
in two cases and, in the remaining case, had a CP (%)
error nearly double that for the kernel method. This is
expected since the 3-nearest neighbor confidence
depends on virtually infinite sample size while local
minimax learning bounds are optimal for finite samples.

Application to individual patients

One of the novel contributions of the current method is
its ability to provide both predictive power and confi-
dence level for individual patients. We selected four
patients from the GCM data set to illustrate these
unique features of personalized prediction. For the
patients in the GCM data set, the kernel method for
10-TSP with sigma = 0.5 was used. In this data set, we
applied confident predictability (CP) with the assump-
tion p = 0.35. We took the adjustment parameter e = 0.

Patient 12

Based on the gene expression profile of this patient’s tis-
sues, they are correctly predicted to be cancerous with
an estimated probability of 0.962. The square root of
the mean square error bound (RMSE) is 0.081 (90% CI,
0.831 to 1.0). This patient is in the confidently predict-
able group. Given a prediction with this accuracy, a phy-
sician can initiate the treatment for this patient without
further invasive diagnostic tests which might cause the
disease to spread more rapidly. Giving the right treat-
ment at the right time may stabilize the tumor cells.

Patient 209

From the gene expression profile, the kernel algorithm
(correctly) predicted this normal patient’s tissue as can-
cerous with an estimated probability of 0. The RMSE
was 0.209 and the confidence interval was [0, 0.226].
This is considered a confident prediction. In the clinical
setting, this patient can be assured by the physician that
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Table 2 Leave-one-out comparisons of the local minimax learning with 3-nearest neighbor predictor and the kernel

predictors (sigma = 0.5 and 0.7, p = 0.35)

3-nearest neighbor predictor

Kernel predictor with sigma = 0.5, e = 0 Kernel predictor with sigma = 0.7, e = 0

Data Set CP (%) Error in CP. (%) Total Error (%) CP (%) Error in CP (%) Total Error (%) CP (%) Error in CP (%) Total Error (%)
Leukemia 71 3 3 36 3 43 3
(98.6%) (4.23%) (4.17%) (50.0%) 0 (0%) (4.17%) (59.7%) 0 (0%) (4.17%)
Prostate 54 11 21 32 4 21 34 4 22
(61.4%) (20.4%) (23.9%) (36.4%) (12.5%) (23.9%) (38.6%) (11.8%) (25%)
GCM 204 15 38 154 6 39 160 6 42
(72.9%) (7.35%) (13.6%) (55.0%) (3.9%) (13.9%) (57.1%) (3.75%) (15%)

no further diagnostic tests are required in the near
future.

Patient 244

The predicted probability for cancer was 0.579 with
RMSE of 0.072. The 90% CI was [0.462, 1.0]. Although
the RMSE was quite small the true probability of cancer
was too close to 0.5 to make a firm decision. The
patient may be advised by the physician to undertake
further different noninvasive diagnostic tests. This non-
confidently predictable patient did not have cancer but
would have been classified as cancer if the decision were
based on the probability estimate alone.

Patient 253

The predicted probability for cancer was 0.837 with
RMSE of 0.159. Although the probability estimate was
quite high the RMSE was more than double that of
patient 244 and the confidence interval was [0.579, 1.0].
This patient may be advised by the physician to under-
take further different noninvasive diagnostic tests. This
non-confidently predictable patient did not have cancer
but would have been certainly been diagnosed as having
cancer if the decision were based on the probability esti-
mate alone.

We also plotted the probability estimate and upper
and lower confidence curves as a function of sigma for
the four patients in Figure 2. In general the user may
want to set a lower limit on sigma - say the fraction
given by the distance to the (N/5)-th closest predictor
vector divided by the distance to the furthest. Except for
patient 209 (whose fraction was 0.42) these lower limits
were less than 0.2.

Discussion

We have developed a local minimax kernel learning
algorithm that is capable of making individualized pre-
diction in several microarray cancer gene expression
data sets. This method incorporates two learning algo-
rithms: the unique features of the k-TSP algorithm by
retaining its simple and accurate decision rules, and
adding estimated probability and confidence interval for

individualized prediction from a local minimax kernel
learning algorithm. Moreover, our predictions can be
made on an individual basis with local estimated prob-
ability and confidence level, which are currently not
available in the predictions of other learning methods.

Cancer is heterogeneous in nature, where every
patient’s tumor harbors different genetic alterations,
even though they have the same cancer type [14].
Understanding these genetic variations between indivi-
duals could have a profound impact in combating this
disease; as one of the major clinical challenges is to
identify a subset of patients who could benefit from cer-
tain type of chemotherapies, both in metastatic and
adjuvant settings [1,2].

Machine learning or statistical learning approaches
have been widely used to classifying and stratifying can-
cer patient data based on gene expression data [5-7]. In
general, current machine learning classifiers only report
global error rates over a large population [5-7]. Such
rates are useful for epidemiologists and hospital admin-
istrators trying to predict future trends, loads, and dis-
ease rates. However, in a clinical setting, a global error
rate is of little comfort to the patient and his or her
doctor. This is where our methods have a distinct
advantage. Since we are able to label our predictions as
either being confidently predicted or non-confidently
predicted, these methods have the potential to be more
powerful in the context of sequential analysis than the
current standard methods.

Physicians requiring a greater level of confidence may
decide to classify using a smaller predictability thresh-
old. Similarly, doctors seeking to be able to confidently
predict for a larger number of patients may choose to
use a slightly higher threshold. These values may be
investigated and adjusted over time so as to be of the
most appropriate usefulness given whatever analytical
context the doctor is working in at that time. Thus, by
providing the physician with not only the prediction,
but also with a level of confidence, and with error
bounds associated with that prediction, we are able to
empower the physician to make use of a larger number
of more finely-grained protocols that he or she may
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Figure 2 Estimated predicted probability and 90% confidence intervals (90% Cl) for the four patients in GCM data set.

follow as regards the care of his or her patient. This
allows the physician many more options when designing
how they want to sequentialize their various treatment
options for various types of patients given various
observations.

It must be emphasized that we only demonstrate
improved classification for the kernel classifier using
squared error loss. The analogous finite sample local
accuracy bounds are not available for other methods
(with the exception of linear regression [10]). So a very
important question is whether similar localization
results which identify confident prediction are valid for
other algorithms. To this end we formulate important
new open mathematical questions whose solutions
would characterize confident predictability for a local
version of kernel learning with hinge loss (Support Vec-
tor Machine- SVM), for single hidden layer neural net-
work local learning with squared error loss, and for
logistic regression local learning with squared error loss.
Solution to these questions will provide both the oppor-
tunity to compare various algorithms for individualized
performance as well as lead to possible fusion of several

algorithms into an algorithm with superior global per-
formance. For instance a classifier which applies both a
neural net and a local kernel algorithm to a queried
patient, making a decision based on the more confi-
dently predictable output, could have a global error rate
significantly lower than either classifier.

Open Problems

In this study we have only applied finite sample local
minimax bounds for Tikhonov kernel learning (i.e. using
squared error loss) and obtained improved accuracy. An
important open problem is to obtain local accuracy
bounds for the support vector machine (which uses
hinge loss and fits linear combinations of the kernel
with prescribed bandwidth ¢ while penalizing by adding
a constant times square of the reproducing kernel norm
of the linear combination) and examine the improve-
ment via confident predictability for that machine. One
approach to this problem is to optimally map the SVM
discriminant function g(x) to the interval 0[1] by s(g(x))
yielding a probability of cancer estimate and then obtain
results on the mean squared error of that estimate at x,,.
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Also open is the local minimax bound with squared
error loss for logistic regression or more generally for a
probability of cancer expression which is a ridge func-
tion. Here consiq\]er the same affine estimators of the
form F(w)=w"+3 w;¥;, but assume f{x) is a sigmoidal
function exp{a, fmx}/(l + expla, + a-x}) with a pre-
scribed bound on the length of 4, and then get a bound
on the mean squared error at x,. We might also do this
when f'is of the form h(a, + a-x) ,where a is a unit vec-
tor, for some class of univariate /’s. Finally a local accu-
racy bound is desired for the single hidden layer neural
network and its potential for extending confident pre-
dictability to neural network classifiers. Here consider
again affine estimators but assume f{x) is a convex com-
bination of #n sigmoidal functions, where the i’th is of
the form expia;, + ayx}/(1 + exp{ a;, + ayx }) with a
prescribed bound on the lengths of the 4;, and then get
a bound on the mean squared error at x,,.

Conclusions

In summary, we have devised a new learning method
that implements: (i) feature selection using the k-TSP
algorithm and (ii) classifier construction by local mini-
max kernel learning. We tested our method on three
publicly available gene expression datasets and achieved
significantly lower error rate for a substantial identifiable
subset of patients. Our final classifiers are simple to
interpret and they can make prediction on an individual
basis with an individualized confidence level. We believe
that our method can be a useful tool to translate the
gene expression signatures into clinical practice for per-
sonalized medicine.

Appendix

We will outline the derivation of the bounds and algo-
rithms for the case i = N (all N training vectors are
used). The results are clearly also valid for i = 1,2,..., N.
We suppress the subscript N and just use the notation
V, K,6%, £ etc.

Consider the pre-Hilbert space of models f (x;a) =
Ya,K(x’, x) where the sums are initially over finitely
many x ;where K (u,v), is a piecewise continuous,
bounded symmetric, non-negative kernel function on V'
x V', positive at diagonal points (z u); and where the
matrix K (z; z;) is positive semi-definite for any finite
{z;} € V (positive definite for distinct z; ). Define an
inner product [f (x;a), f (x;0)] = XXa,b.-K(x'x”). Now
extend this to form a real Hilbert space by completion.
For any g in the constructed Hilbert space, g can be
identified with the point wise limit of a sequence of
models in the pre-Hilbert space which converges to g in
the constructed Hilbert space. It can easily be shown
that [g,K(u,-)] = g (1), where g (u) is the value of the
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associated point wise limit at z . Hence the space is
called a reproducing kernel Hilbert space (RKHS).
Assume, throughout that || || equals RKHS norm and
that there are N predictors {x;}S V.

Let M = {g: the RKHS norm of g is less than or equal
to M}. By translation we may assume that the query
vector xy = 0. The following two theorems are proven in
[10], for the more general case of f (x) being within &(x)
in V (where ¢ (0) = 0) of some member of the family M.

Theorem | (Minimax Query-based Vector Machine)
Let f (x) be any function (not just a “probability of class 1
given x“ function) in M, Y; = f (x;) + N;, j = 1,2,.., N and
noise covariance matrix N the bounded (in the semi-defi-
nite order - i.e. 6 - N is positive semi-definite) by a posi-
tive definite 6 (in this paper ¢ = 0.25 I). Consider the
matrix K* = (K (x;%)))):i , j = 0,1,2,.., N .(V is centered at
the query point xg which we are taking as 0 but the
results obtained are the same for any query point x, by
changing x, to the origin and subtracting x, from each
predictor x;). Set wo = -1 (w has now N + 1 components),
¢6* equal the N + 1 by N + 1 matrix formed by adding a
0-th row and 0-th column of zeros to the noise covar-
iance matrix upper bound 6, and the N + 1 dimensional
1

w (o +MK) u

Then the mean squared error of F(w), where w* = 0
(Note F (w) does not involve wy), is bounded by £ if

vector u = (1,0,0,...,0)". Let £ =

. -1

(6" +MK') u

* «\ 1
u' (" + MK") u
bound on mean squared error if we allow any noise cov-

ariance N bounded in semi definite order by G.
Proof: see theorem VI in [10].

w=-— and this is the best possible

Theorem Il (Vector Machine with Context)
Assume hypotheses and notation of Theorem I except f
(x) takes values in 0[1] and is in PK,, (V). Then the esti-
mator F (w), which equals F (w) of Theorem I except
that w* = -a (wg + wy + ... + wy), has mean squared
error bounded by £ of Theorem I

when

(6" +MX') u
ut(oj+M2K*)_1u

where we have

1 1
M=M, :(17‘2*(1—“)2)2(%%XTE?K(VJ‘))EZSUP:>KH(\/)(H3(X)—0‘H)<

For such M , we call F (w) the contextual Tikhonov
estimator. In fact, for any M greater than or equal the
right hand side of the above inequality, the same result
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holds. A good choice for & is 0.5 (which is used in our
experiments) since it minimizes My as a function of c.
Proof: see theorem VII of [10].

Confidence analysis

As F (w) is near normal in many situations according to
the Lindeberg-Feller theorem, we can give approximate
confidence intervals for f(0). Let F (w) be normal with
mean y, standard deviation ¢ and root mean squard error
p. For B < 0.5 denote by zg the (1 - 8)’'th normal quantile.
Then Pr {F (w) - u < ozg} = 1 - B = Pr {F(w) - f(0) < 0z +

b f O =Pl F(w) - F(0)<(p? ~x*) 22y 42,

with x = g - £(0). (note that p?-x*=c?).
Now maximize the right hand side inside the
brackets as a function of x and we obtain
1

Pr{F(w)-f(0)<p(1+25)2 }=1-p..

1
The inequality Pr{F(w)—f(O)Z—p(Hzf;)z}21—;3 is

derived in an identical fashion. If p is just an upper
bound on the actual root mean squared error, the
inequalities remain valid. Hence for such p we have
level (1 - B) confidence intervals

(F(w)—p(1+z,23 )%,+°o),(—oo,F(w)+p(l+le3 )%) and (using

M=

the inequality) p(w)ip(uzfm) . In particular a 95%

confidence interval is F + 2.22p , instead of the usual F +
1.96c = F + 1.96p for unbiased F . Here we use the 90%
confidence interval (F (w) - 1.621p, + ) or (-oo,F (w) +
1.62p).
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