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Abstract

Background: Resistance to chemotherapy severely limits the effectiveness of chemotherapy drugs in treating
cancer. Still, the mechanisms and critical pathways that contribute to chemotherapy resistance are relatively
unknown. This study elucidates the chemoresistance-associated pathways retrieved from the integrated biological
interaction networks and identifies signature genes relevant for chemotherapy resistance.

Methods: An integrated network was constructed by collecting multiple metabolic interactions from public
databases and the k-shortest path algorithm was implemented to identify chemoresistant related pathways. The
identified pathways were then scored using differential expression values from microarray data in chemosensitive
and chemoresistant ovarian and lung cancers. Finally, another pathway database, Reactome, was used to evaluate
the significance of genes within each filtered pathway based on topological characteristics.

Results: By this method, we discovered pathways specific to chemoresistance. Many of these pathways were
consistent with or supported by known involvement in chemotherapy. Experimental results also indicated that
integration of pathway structure information with gene differential expression analysis can identify dissimilar modes
of gene reactions between chemosensitivity and chemoresistance. Several identified pathways can increase the
development of chemotherapeutic resistance and the predicted signature genes are involved in drug resistant
during chemotherapy. In particular, we observed that some genes were key factors for joining two or more
metabolic pathways and passing down signals, which may be potential key targets for treatment.

Conclusions: This study is expected to identify targets for chemoresistant issues and highlights the
interconnectivity of chemoresistant mechanisms. The experimental results not only offer insights into the mode of
biological action of drug resistance but also provide information on potential key targets (new biological
hypothesis) for further drug-development efforts.

Background
The development of chemotherapy resistance is of tre-
mendous significance to patients, researchers, and care
providers who rely on conventional cytotoxic agents for
the treatment of cancer. Still, the mechanisms and related
biological pathways that contribute to chemotherapy
resistance are relatively poorly understood. Numerous
attempts have been made to mitigate or eliminate che-
motherapy resistance, based-on certain assumptions
about the various mechanisms, but low response rates

and poor clinical outcomes for patients can be attributed
to our inability to identify and subsequently target major
molecular interactions associated with such resistance.
Many genes have recently been reported to determine
sensitivity to multiple drugs include drug transporters
and metabolizing enzymes [1-4], and certain genes have
also been demonstrated to determine sensitivity to speci-
fic chemotherapy drugs [5-7]. Other studies have
attempted to estimate the chemosensitivity of cancers
using genome-wide expression profile analyses, such as
cDNA microarray and single nucleotide polymorphisms
[8-10]. Although these studies have described genes as
being capable of determining the sensitivity to che-
motherapy drugs, the interactions between such genes
have not been addressed, and considerable attention has
focused on identifying molecular interactions associated
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with chemotherapy resistance. Cabusora et al. reported
particular response sub-networks in the M. tuberculosis
network after treatment with unspecific stress-inducers
and comparison with antibacterial drugs [11]. To identify
rational targets for combination therapy, Riedel et al.
attempted to identify the biological networks implicated
by differential gene expression between sensitive and
resistant cell lines [12].
However these studies did not take into account the

drug active pathways, including the regulatory interac-
tivities of genes influenced by the drug. The drug active
pathway plays an important role in the drug responses
of the cellular system affected by the drug and the pre-
diction of side-effects, which is also a very important
issue for identifying and validating drug target genes
through their regulatory relationships. Moreover, con-
siderations should be taken of drug resistance mechan-
isms, including reduced intracellular drug accumulation,
increased detoxification of the drug by thiol-containing
molecules, increased DNA damage repair, and altered
cell signaling pathways and apoptosis mediators [13]. In
addition, chemotherapy drugs can be categorized based on
their function, chemical structure and interaction with
other drugs. Cisplatin and carboplatin, classified as DNA
alkylating agents, are platinum-based chemotherapy drugs
used to treat various cancers, including sarcomas, small
cell lung cancer, ovarian cancer, lymphomas and germ cell
tumors. These platinum-based chemotherapy drugs react
with DNA in vivo by binding to and causing cross-linking
of DNA which ultimately triggers apoptosis [14]. For
example, cisplatin forms highly reactive, charged, plati-
num complexes which bind to nucleophilic groups
(such as GC-rich sites) in DNA, inducing intra-strand
and inter-strand DNA cross-links, as well as DNA-
protein cross-links. These cross-links result in apopto-
sis and cell growth inhibition. When cells become
resistant to cisplatin, the doses must be increased, and
a large dose escalation can lead to severe multi-organ
toxicities and intractable vomiting. The mechanisms of
cisplatin drug resistance may include decreased intra-
cellular accumulation of cisplatin and increased DNA
repair, which also are drug resistance related pathways
considered in this approach. Hence, a large biological
interaction network was re-constructed by collecting
from public databases DNA damage-related pathways,
cell signalling-related pathways and the regulatory rela-
tionships between genes.
Combining pathway structure information mined

from the re-constructed large biological interaction
network with gene differential expression values, this
study elucidates the particular platinum-based
chemoresistance-associated pathways. Genes deemed
relevant for chemotherapy resistance were also deter-
mined. Results of this study demonstrated that the

identified pathways can increase chemotherapy resis-
tance. This approach can identify pathways with a
response dissimilar to that of known modes of biologi-
cal action, and these new hypotheses can be used early
in the drug development process to avert repeated and
costly clinical trails. The major contributions of this
approach are: (1) to reveal the phenomenon of
chemoresistant mechanisms and related interactions
between genes by combining pathway structure infor-
mation with gene differential expressions; (2) to
provide crossing validation candidate signature gene
sets by calculating the values of betweenness centrality
and degree in large complex networks; and (3) to pro-
pose new hypotheses for chemoresistant mechanisms
through systems biology.

Methods
Materials and databases
This section covers the graph-theoretical properties, bio-
logical network constructions, and data sets.
Graphs and networks
Basic graph-theoretical properties and representations
used by this study are as follow:
DEFINITION. A graph G = (V, E) = (V(G), E(G))

consists of a vertex set V(G) with vertices (or nodes) vi
Î V(G), and an edge set E(G) with (vi, vj)ÎE(G).
A graph G with biological information yields a biologi-

cal network NB as follows:
DEFINITION. Let NB = (V, E, δ) be a network with

vertices vÎV, edges eÎE, and a function δ: Y ® P (Y =
V ∪ E) that maps vertices and edges onto their respec-
tive properties pÎP.
Depending on the particular network representation,

in a biological network vertex properties can include
genes, proteins or chemical elements, and edge proper-
ties may refer to specific interactions, such as binding or
regulating. The mapping δ: Y ® P is at least subjective
because for all pÎP, there exists a yÎY with δ(y) = p.
Heterogeneous biological network integration and re-
construction
To integrate heterogeneous biological networks, we
identified three types of interactions relevant to a net-
work: (i) protein interactions, such as protein-DNA
binding or multi-state protein phosphorylation by
kinases during signaling, (ii) regulatory reactions includ-
ing co-expressions in regulons, and positive and negative
regulation, and (iii) metabolic reactions. For protein
interaction data, we parsed the Pathway Interaction
Database (PID) [15], a highly-structured, curated collec-
tion of information about known biomolecular interac-
tions and key cellular processes assembled into signaling
pathways. Furthermore, the TRANSFAC [16] database
provided information on regulatory reactions including
co-expressions in regulons, and positive and negative
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regulation. For metabolic reaction data, we used the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
[17,18] to construct molecular interaction and reaction
networks for metabolism. KEGG contains reaction net-
works of cellular processes, human diseases and drug
development. Given this study’s focus on identifying dif-
ferential expression pathways during platinum-based
chemotherapy drugs resistance, we determined diversi-
fied pathways correlated with cancer diseases, DNA
repair, and metabolism for parsing and integration.
Pathway selection criteria and the overall pathway sets
collected in this study are listed in Additional file 1.
Our goal was to use protein interactions and regula-

tory reactions assembled into metabolic pathways with-
out introducing duplicated links and elements. To
merge interactions from various sources, the genes’ alias
names must be arranged in advance. Furthermore, we
recorded the directions of interactions between genes
(or proteins) as well to the graph. We joined the pro-
teins as vertices to the integrated large network and
connected them to any co-regulated genes by adding
new edges. From a biological viewpoint of transcrip-
tional relationships, a number of genes may regulate
themselves or regulate each other, resulting in cyclic
relationships while re-constructing the large network,
which makes it more difficult to determine simple short-
est paths. We dealt with this problem by merging ver-
tices as demonstrated in Figure 1. Taking Figure 1(b) as
an example, the transcription factors AR (androgen
receptor) and DDIT3 (DNA-damage-inducible transcript
3) regulate their target genes and regulate each other as
well. To preserve the biological truth and avoid loops
being represented in the graph, vertices AR and DDIT3
were merged during the shortest paths algorithm. Next,
while scoring the identified pathways according to gene
expression data, each vertex (or gene) was considered
separately and identically.
Microarray data
Peters et al. presented the results of a preliminary inves-
tigation into the molecular phenotype of patient-derived
ovarian tumor cells in the context of sensitivity or resis-
tance to carboplatin [19]. They correlated chemore-
sponse data with gene expression patterns at the level of
transcription. Primary cultures of cells derived from
ovarian carcinomas of individual patients (n = 6) were
characterized using the ChemoFx assay and classified as
either carboplatin sensitive (n = 3) or resistant (n = 3).
Three representative cultures of cells from each indivi-
dual tumor were then subjected to Affymetrix gene chip
analysis (n = 18) using U95A human gene chip arrays.
They identified numbers of differentially expressed
genes that define transcriptional differences between
chemosensitive and chemoresistant cells and temporal
responses to carboplatin expressed in an ex vivo setting.

Gabriela et al. investigated the response to cisplatin of a
panel of NSCLC cell lines and found an inverse correla-
tion between sensitivity and damage formation resulting
from this agent [20]. Further analysis of multiple alter-
nate cellular end-points including cell cycle analysis,
apoptosis and gene expression changes, revealed cispla-
tin damage tolerance to be a mechanism of chemoresis-
tance in this model system. Both gene expression data
sets were available through the Gene Expression Omni-
bus (GEO) at NCBI [21] (GEO platform accession num-
ber GDS 1381 and GSE 6410, respectively).

Systems and implementation
System overview
A system flow diagram of the corresponding processes is
shown in Figure 2. The system is composed of four
major parts, including heterogeneous biological network
integration, the selection of seed nodes, identification of
pathways, and analysis of differential expressions. As
described in the previous section, the large integrated
biological network was constructed and stored in
MySQL database. By stripping away unambiguous ver-
tices according to the genes’ official symbols and the
duplicated interactions between them, the k-shortest
path algorithm could be implemented to obtain the
shortest pathways for given seed nodes. The seed nodes
are particular nodes given by users or selected from
transcription factors, and paths between them are iden-
tified by the k-shortest path algorithm. The identified
pathways were scored using gene expression values as
metrics for weighted edges. Finally, the top scoring n
pathways were selected and further analyzed.
Pathway identification
The first step in the pathway identification process was
seed node selection. Here, particular vertices were
tagged as “seed nodes”, and the shortest paths between
them were identified by Yen’s algorithm [22]. From a
mathematical viewpoint, this procedure extracts from
the large, integrated biological network a pathway that
is spanned by selected seed nodes. Yen’s algorithm is
still the best known approach to the k-shortest simple
paths problem with respect to its worst case running
time, i.e., O(kn(m + nlog n)) time for a graph with m
vertices and n edges. Seed nodes were determined either
by users’ interesting genes [23] or were selected by biol-
ogists in advance. The criteria of selecting seed nodes
are listed as follows: (i) genes with functional annota-
tions such as ‘DNA damage’, ‘DNA repair’ and other
related functional annotations [24], (ii) genes that are
known transcription factors and are implicated in drug
resistance [25], and (iii) genes that have been reported
to have significantly altered expression patterns between
platinum-based drugs chemosensitive and chemoresis-
tant cells. We were specifically interested in a
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transcription factor CEBPD (CCAAT/enhancer binding
protein (C/EBP), delta) which has been implicated in
tumor suppression [26-29]. Interestingly, CEBPD exhi-
bits a pro-oncogenic function in cisplatin resistance phe-
notype [23]. Therefore, we conducted a gene expression
study to further identify CEPBD-regulated genes which
might contribute to cisplatin resistance (Huang, el al.
unpublished data). The merged CEBPD-regulated genes
are listed as user-interested genes in Table 1.
Scoring and filtering pathways
The main procedure of pathway scoring was calculating
the differential expression values for the genes as
metrics for weighted edges in the pathway. In this study,
genes, proteins and other cellular components were
coded as vertices which are connected by their edges to
represent the interactions in the integrated biological
network. However, the scoring step assumes weights on
the edges for summing scores, and such edge weights

must be calculated from the vertices’ scores. Therefore,
the identified pathway was subsequently transformed
and represented as a line graph in which the edges
represent genes, proteins and other cellular components,
and vertices refer to interactions. Edges can then be
directly weighted by gene expression values.
REMARK. Give a biological network NB , its line

graph L(NB) is a graph such that each vertex of L(NB)
represents an edge of NB; and two vertices of L(NB) are
adjacent if and only if their corresponding edges share a
common endpoint in NB.
To filter and identify the “significant pathways” (e.g.,

connected sets of genes with high levels of differential
expression) we followed Ideker et al.’s statistical scoring
system which captures the amount of gene expression
change in a given pathway [30]. To rate the biological
activity in a particular pathway, we first assessed the sig-
nificance of the differential expression for each gene.

Figure 1 An overview of merging vertices. Figure 1(a) shows the concept of merging auto-regulate genes. From a biological viewpoint of
transcriptional relationships, a number of genes may regulate themselves or regulate each other, resulting in cyclic relationships while re-
constructing the large network, which makes it more difficult to determine simple shortest paths. Figure 1(b) demonstrates how to merge genes
that regulate each other. Transcription factors, AR (androgen receptor) and DDIT3 (DNA-damage-inducible transcript 3), regulate their target
genes and regulate each other as well. To preserve the biological truth and avoid loops being represented in the graph, vertices AR and DDIT3
were merged during the shortest paths algorithm. Next, while scoring the identified pathways according to gene expression data, each vertex
(or gene) was considered separately and identically.
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We extracted the p-value pm for each expressed gene m
in the microarray data and then converted the pm into a
z-score by Formula 1.

zm = �−1(1 − pm) (1)

where F-1 denotes the inverse normal cumulative dis-
tribution function. In random data, p-values are distrib-
uted uniformly from 0 to 1 and z-scores follow a
standard normal distribution, with smaller p-values cor-
responding to larger z-scores. The aggregate score of a
set of genes in a pathway can be calculated by summing
the zm over all m in the pathway,

zNB =
1√
m

∑
m∈NB

zm (2)

Under this scoring function, the pathways of all sizes
can be compared, with a high score indicating a biologi-
cally active pathway and pathways were then filtered by
an assigned threshold score. In summary, the k-shortest
path approach guarantees effective pathway identifica-
tion through a particular set of seed nodes. The scoring
functions (Formulas 1 and 2) contribute an appropriate
constraint filtering pathways. Once the top n pathways
have been selected, the analysis of pathways process can
be performed.
Analyze the pathway signatures
The main purpose of performing pathway intersections
is to determine whether different cancers have identical
chemoresistant mechanisms. Comparing two pathways
requires the identification of the corresponding vertices.
The correspondences between vertices in the pathways

Figure 2 System architecture. The system is composed of four major parts, including heterogeneous biological network integration, seed
nodes selection, pathways identification, and differential expression analysis. The large integrated biological network was constructed and stored
in MySQL database. By stripping away unambiguous vertices according to the genes’ official symbols and the duplicated interactions between
them, the k-shortest path algorithm could be implemented to obtain the shortest pathways for given seed nodes. The seed nodes are particular
nodes given by users or selected from transcription factors, and paths between them are identified by the k-shortest path algorithm. The
identified pathways were scored using gene expression values as metrics for weighted edges. Finally, the top scoring n pathways were selected
and further analyzed.
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are given by matching the genes’ official symbols. In
general, the correspondences can be many-to-many for
the reason that a vertex (e.g. representation of an
enzyme) may catalyze different reactions in the pathway
and may be catalyzed by multiple vertices as well. In
other words, graph comparison is an NP-hard problem
which typically can only be addressed by exhaustive
enumeration techniques. Here, we present an approach
using the vertices and edges labels of the given path-
ways. Consider two graphs, N1

B (V1, E1) and N2
B (V2,

E2), and a matrix representing the correspondences
between V1 and V2. Let s(e) and t(e) be the origin and
terminal nodes of edge e so the intersection of the path-
ways is defined as:

�(N1
B,N2

B) =

{
v, e : δ(v1) = δ(v2) ∧ [δ(e1) = δ(e2)

if δ(s(e1)) = δ(s(e2)) ∧ δ(t(e1)) = δ(t(e2))]

}
(3)

where v1ÎV1, v2ÎV2 and e1ÎE1, e2ÎE2. In other words,
the intersection between all v1ÎV1 and v2ÎV2, and the inter-
section between corresponding edges e1ÎE1, e2ÎE2 under
the condition that ∀ v1, v2: δ(v1) = δ(v2) and ∀ e1, e2: δ(e1) =

δ(e2). An edge eÎ N1
B is selected if both the originating and

terminating vertices have δ-corresponding vertices in N2
B.

To assess the importance of genes within each filtered
pathway, we also implemented the betweenness central-
ity and degree centrality for each node. The degree and
betweenness centrality of genes were calculated using
the Reactome database [31] as a base to cross validate
our experimental results. The betweenness centrality of
a node in a network topology measures how many
shortest paths go through that node. If bi is the ratio of
the number of shortest paths between a pair of nodes in
the network that pass through node i and the total
number of shortest paths between those two nodes, the

unscaled betweenness of node i is B′
i =

∑
all pairs

bi, and the

(scaled) betweenness centrality is

Bi =
2B′

i

(n − 1)(n − 2)
(4)

where n is the number of nodes in the network. The
betweenness centrality is positive and always less than

Table 1 Lists of seed nodes

User interested gene symbols ⟡ CEBPD (CCAAT/enhancer binding protein (C/EBP), delta)
⟡ SOD1(superoxide dismutase 1, soluble)
⟡ XRCC4 (X-ray repair complementing defective repair in Chinese hamster cells 4)
⟡ PTGS2 (prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase), (COX2))
⟡ RBMS3 (RNA binding motif, single stranded interacting protein)
⟡ STK39 (serine threonine kinase 39 (STE20/SPS1 homolog, yeast))
⟡ CUTL1 (cut-like homeobox 1)
⟡ CREG1 (cellular repressor of E1A-stimulated genes 1)
⟡ APBB2 (amyloid beta (A4) precursor protein-binding, family B, member 2)
⟡ ADAMTS1(ADAM metallopeptidase with thrombospondin type 1 motif, 1)
⟡ JAZF1(JAZF zinc finger 1)
⟡ JMJD2C (Jumonji domain 2)
⟡ MSI2 (musashi homolog 2 (Drosophila))
⟡ RABGAP1L (RAB GTPase activating protein 1-like)
⟡ NAV2 (neuron navigator 2)
⟡ ZMIZ1 (zinc finger, MIZ-type containing 1)
⟡ ZNF291 (SCAPER, S-phase cyclin A-associated protein in the ER)
⟡ ZRANB3 (zinc finger, RAN-binding domain containing 3)
⟡ CENTG2 (AGAP1, Homo sapiens ArfGAP with GTPase domain, ankyrin repeat and PH)
⟡ ATXN1 (ataxin 1-like)
⟡ THSD4 (thrombospondin, type I, domain containing 4)
⟡ CYP27C1 (cytochrome P450, family 27, subfamily C, polypeptide 1)

Resistance genes ⟡ IL1A (interleukin 1, alpha)
⟡ IL1B (interleukin 1, beta)
⟡ NFKB1 (nuclear factor of kappa light polypeptide gene enhancer in B-cells 1)
⟡ NFKB2 (nuclear factor of kappa light polypeptide gene enhancer in B-cells 2)
⟡ CDK4 (cyclin-dependent kinase 4)
⟡ MCM2 (minichromosome maintenance complex component 2)
⟡ MCM4 (minichromosome maintenance complex component 4)
⟡ CDC45L (CDC45 cell division cycle 45-like (S. cerevisiae))

DNA damage genes ⟡ MYC (v-myc myelocytomatosis viral oncogene homolog (avian))
⟡ TP53 (tumor protein p53)
⟡ PCNA (proliferating cell nuclear antigen)
⟡ TP73 (tumor protein p73)
⟡ ATF4 (activating transcription factor 4 (tax-responsive enhancer element B67))

Seed nodes were determined either by users’ interesting genes [23] or were selected by biologists in advance. The criteria of selecting seed nodes are listed as
follows: (i) genes with functional annotations such as ‘DNA damage’, ‘DNA repair’ [24], (ii) genes that are known transcription factors and are implicated in drug
resistance [25], and (iii) genes that have been reported to have significantly altered expression patterns between platinum-based drugs chemosensitive and
chemoresistant cells.
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or equal to 1 for any network. The degree of a node in a
network is the number of connections or edges by
which the node is related with other nodes. Degree cen-
trality is the number of links that connect the node to
the network divided by the number of nodes in the net-
work minus 1. It is a local measure that does not
account for network context. However, changes in
nodes with high degree centrality are likely to influence
a large number of nodes in the network. The degree
centrality was calculated by Formula (5).

D(v) =
deg(v)
n − 1

(5)

Formula (5) indicates the degree centrality of an
undirected graph. As for a vertex representing the gene
(or protein) in an undirected graph, the higher the
degree, the more reactions it interacts with and the
more important the vertex is.

Results and Discussion
As described in previous section, we integrated the PID,
KEGG and TRANSFAC public databases, and further
eliminated duplicated reactions and elements. Accord-
ingly, 8173 genes and 9308 interactions were retained,
for which both detailed and summarized database
results are presented in Table 2. In the next section, we
present the experimental results and analysis of the
pathway intersections.

Significant pathways in ovarian cancer
Ovarian cancer is among the most malignant of all lethal
diseases in women. Currently, the preferred treatment

regimen for ovarian cancer is combination chemotherapy
primarily with platinum-based drug such as cisplatin or
carboplatin. While this treatment course has shown pro-
mising effects in a high percentage of cases, the develop-
ment of chemoresistance is a significant hurdle to
successful treatment outcomes [32]. Hence, we have
focused our research on elucidating the mechanisms
induced by chemotherapeutic agents; that is, the DNA
damage, DNA repair, and apoptosis in ovarian cancer cells
resulting from platinum-based drug chemotherapy and
chemoresistance. One of the significant pathways identi-
fied from the ovarian cancer expression data is shown in
Figure 3, with the notations presented in Additional file 2.
As shown in Figure 3, c-KIT (also called KIT or C-kit

receptor) is one of target genes regulated by CEBPD, a
growth factor receptor exhibiting tyrosine kinase activ-
ity. Moreover, c-KIT is not only a biochemical marker;
its involvement in autocrine, paracrine or endocrine
growth loops may represent a molecular mechanism
behind aggressive tumor growth [33,34]. Raspollini et al.
performed an immunohistochemistry analysis of 56
patients with advanced serous ovarian carcinomas using
archival paraffin-embedded specimens and demonstrated
that c-KIT was expressed in ovarian carcinoma and was
statistically correlated with chemotherapy resistance
[35]. C-KIT expression has been shown to be statisti-
cally correlated with the progression of disease after
first-line chemotherapy. Moreover, c-KIT was identified
by our pathway mining procedure with p-value < 0.05
(listed in Table 3) by t-test calculated from the ovarian
expression data, indicating this approach identify genes
involved in chemoresistant mechanisms.

Table 2 Lists of # of genes and relations in integrated database

Statistics information of integrated databases

Database Organism # of gene # of relation

PID+KEGG+TRANSFAC Homo sapiens 8173 9308

Reactome Homo sapiens 538 31240

Statistics information on each of the three
databases

Database # of TFs # of target gene parsed # of pairing regulate relation
parsed

TRANSFAC 157 825 529625

Database # of
pathways

# of gene, protein, enzyme
parsed

# of relation parsed

PID + KEGG 197 18937 8880

PID 60

KEGG 137

We integrated the PID (the date of version, July 15, 2008), KEGG (release 47.0, July 1, 2008) and TRANSFAC public databases (version 7.0), and further eliminated
duplicated reactions and elements. Accordingly, 8173 genes and 9308 interactions were remained. To assess the importance of genes within each filtered
pathway, we also implemented the betweenness centrality and degree centrality for each node. The degree and betweenness centrality of genes were calculated
using the Reactome database [31] as a base to cross validate our experimental results. Pathways downloaded from PID and KEGG were parsed by batch
processing. A gene (or protein) may be involved in several pathways, which means some genes were repeated. Therefore, the number of parsed entity (including
genes, proteins, and enzymes) was 18937. Moreover, one gene may be regulated by several TFs, or one TF may regulate numerous target genes. As a result, the
total number of pairing regulate relation parsed was 529625.
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As indicated in Figure 3, the PI3K (Phosphatidylinosi-
tol 3-kinas)/AKT gene family are involved as well. The
PI3K pathway is stimulated as a physiological conse-
quence of many growth factors and regulators. In addi-
tion, the activation of the PI3K pathway results in
disturbances of cell growth and survival control, which
contributes to a competitive growth advantage, meta-
static competence and, frequently, therapy resistance
[36]. Therefore, this pathway is an attractive target for
the development of novel anticancer agents. The PI3K/
Akt cascade plays an important role in the resistance of
ovarian cancer cells to cisplatin in vitro. Ohta et al.
investigated whether the inhibition of PI3K increased
the efficacy of cisplatin in an in vivo ovarian cancer
model [37]. Blocking the PI3K/Akt cascade with a PI3K
inhibitor (wortmannin) increased the efficacy of

cisplatin-induced inhibition of intra-abdominal dissemi-
nation and production of ascites in athymic nude mice
inoculated ip with the Caov-3 human ovarian cancer
cell line. In addition, wortmannin increased the efficacy
of cisplatin-induced apoptosis in tumors cells. Ohta
et al. also confirmed that wortmannin blocked Akt
phosphorylation and the downstream targets of the
PI3K/Akt cascade, such as BAD (Bcl-2-associated death
protein) and nuclear factor-kB in vivo by immunohisto-
chemical staining and Western blotting. Moreover, Lee
et al. used human ovarian cancer cell OVCAR-3 and
cisplatin-resistant subclone OVCAR-3/CDDP cells to
study the roles of PIK3CA (alias name PI3K) and PTEN
on the resistance of human ovarian cancer cells to cis-
platin-induced apoptosis [38]. They systematically exam-
ined the expressions of apoptosis regulating proteins

Figure 3 One experimental result of identified pathways from ovarian expression data. This diagram shows one of identified signature
pathways. Genes represented by red squares indicate the connected nodes; that is, these genes connect pathways. Connected nodes are key
factors for joining two or more metabolic pathways or passing down signals. The blue square indicates the PI3K/AKT pathway. The PI3K/AKT
cascade plays an important role in the resistance of ovarian cancer cells to cisplatin in vitro. This pathway is therefore an attractive target for the
development of novel anticancer agents.

Table 3 Genes identified in figure 3 with p-value < 0.05 by t-test

Gene Symbol Ovarian
p-value

Betweenness
(mean =
3.8E-4)

Degree
(mean =
9.71E-4)

Connected
nodes

c-KIT
(v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog, also called KIT or

C-kit receptor)

3.53E-07 0.00178 0.006483

GRB2
(growth factor receptor-bound protein 2)

5.74E-06 0.020155 0.023064 V

AKT2
(v-akt murine thymoma viral oncogene homolog 2)

0.022784 3.89E-04 0.002369 V

PIK3CG
(phosphoinositide-3-kinase, catalytic, gamma polypeptide)

1.29E-04 9.77E-05 0.001247

Genes listed in this table are significant in ovarian expression data with p-value < 0.05. Moreover, the betweenness and degree centrality of each gene are also
listed. Both GRB2 and AKT2 gene are connected nodes; which indicates they pass down signals between pathways. GRB2 with significant betweenness and
degree centrality indicates it has potential to act as a “hub node” in biological interaction networks and to involve in chemoresistant mechanisms as well.
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and PI3K/Akt signaling proteins, finding that OVCAR-
3/CDDP cells were 4.8-fold more resistant to cisplatin
than OVCAR-3 cells following 72 h exposure to the
drug. This resistance correlated with reduced suscept-
ibility to cisplatin-induced apoptosis. Apoptotic proteins
were differentially expressed in the OVCAR-3/CDDP
cells, resulting in the inhibition of Bax translocalization.
Their experimental results indicate that the development
of resistance in OVCAR-3 cells is derived from increas-
ing PIK3CA transcription and reducing of PTEN expres-
sion. These alterations confer resistance to cisplatin
through the activation of PI3K. These in vivo results
support the proposition that our algorithm can identify
chemoresistance-associated pathways.
In Figure 3, genes are represented by red squares indi-

cating the connected nodes; that is, these genes connect
two pathways. Connected nodes are key factors for join-
ing two or more metabolic pathways or passing down
signals. Taking GRB2 (Growth factor receptor-bound
protein 2) as an example, L’Esperance et al. [39] found
that upregulated genes in post chemotherapy ovarian
tumors included a substantial number of genes with
previously implicated in mechanisms of chemoresistance
including COX2 and tumorigenesis, GRB2. As seen in
Figure 3, AKT was also identified as a connected gene,
and had significant betweenness centrality and degree
values (shown in Table 3), indicating that AKT has
potential to act as a “hub node” in biological interaction
networks and be involved in chemoresistant mechan-
isms as well [40].

Significant results following pathway intersections
The main analysis of this experiment focused on
whether different cancers identical chemoresistant
mechanisms and whether these chemoresistant mechan-
isms share some genes in common. After performing
intersection by Formula (3), 88 pathways remained (the
Additional file 3). The following sections include further
analysis.
The major goals of this analysis were: (1) to explore

pathways or genes involved in chemoresistant mechan-
isms; (2) to delineate how these genes or pathways
interact with each other; (3) to test whether the p-values
of the genes in this pathway are significantly differen-
tially expressed; (4) to analyze the betweenness central-
ity (Formula 4) and degree (Formula 5) values of genes
in this pathway; and (5) to identify the chemoresistance-
associated genes.
As shown in the Diagram 4, several pathways contrib-

uted to this result: the colorectal cancer related pathway,
the hedgehog signaling pathway, the WNT signaling
pathway and the notch signaling pathway. In addition,
some other pathways, such as the p53 signaling pathway,
the MAPK signaling pathway, and the focal adhesion

were partially involved as well. Platinum-based cancer
drugs (including cisplatin and carboplatin) are among
the most potent anti-tumor agents, displaying clinical
activity against a wide variety of solid tumors. Its cyto-
toxic mode of action is mediated by its interaction with
DNA to form DNA adducts, primarily intrastrand cross-
link adducts, which activate several signal transduction
pathways, including those involving ATR, p53, p73, and
MAPK, and culminate in the activation of apoptosis
[41]. Resistance mechanisms that limit the extent of
DNA damage include reduced drug uptake, increased
drug inactivation, and increased DNA adduct repair.
Mechanisms that inhibit the propagation of the DNA
damage signal to the apoptotic machinery include loss
of damage recognition, overexpression of HER-2/neu,
activation of Akt (indicated by the red square in
Figure 4), and loss of p53 function [5]. The molecular
signature defining the resistant phenotype varies
between tumors, and the number of resistance mechan-
isms activated in response to selection pressures dictates
the overall extent of resistance. This experimental result
implies the complicated nature of chemoresistance
progression, which reflects that several mechanisms con-
tribute to the multi-factorial nature of the chemoresis-
tance problem. Although ovarian and lung cancers are
assorted malignancies, based on the results of the pathway
intersections experiment, several mechanisms are together
responsible for platinum-based chemoresistance.
Table 4 shows the genes that involved in intersected

pathways with p-value < 0.05 calculated in the expres-
sion data for ovarian cancer and lung cancer. For exam-
ple, the expression values for the AKT gene, are not
only significantly different in both cancer expression
data sets, but the value of betweenness centrality and
degree are higher than 3.8E-4 and 9.71E-4 (the respec-
tive average values). In biological terms, the betweenness
centrality of a gene measures how many pathways or
signal transductions go through that gene. Our experi-
mental result indicates that the AKT gene plays an
important role in chemoresistance-associated pathways.
Gagnon et al. suggested that some Akt isoforms, such
as Akt2 and Akt3, are involved in chemoresistance to
cisplatin and that these isoforms could be putative tar-
gets for gene therapy for uterine cancers [42]. They per-
formed biological experiments to demonstrate that Akt
activity was directly involved in chemoresistance to cis-
platin and to find Akt phosphorylation in KLE cells
since it was a wild-type expressing PTEN cancer cell
line. As shown in Table 4, PTEN was the first tumor
suppressor gene to be identified in the phosphatase
family, and the principal function of its gene product
appears to be dephosphorylation of the second messen-
ger PIP3 [43]. The expression of PTEN in two indepen-
dent glioblastoma cell lines results in the disruption of
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Figure 4 One of experimental result from pathways intersection. This figure demonstrates the experimental result after performing pathway
interaction. Several pathways contributed to this result: the colorectal cancer related pathway, the hedgehog signaling pathway, the WNT
signaling pathway and the notch signaling pathway. The connected gene DVL (disheveled, dsh homolog) connects two critical pathways: the
WNT signaling pathway and the Notch signaling pathway. Gatcliffe et al. suggested that WNT signaling plays a role in ovarian tumorigenesis [45].
WNT signaling has a significant influence on the embryonic development of the ovary and is also involved in normal follicular development and
ovarian function [46,47]. The WNT signaling pathway is involved in ovarian cancer development via multiple, diverse mechanisms, including
gene mutations and changes in pathway components such as extracellular inhibitors and intranuclear transcription cofactors. According to Wang
et al., the WNT signaling pathway passes signals to the Notch signaling pathway [48]. The Notch signaling pathway is known to be responsible
for maintaining a balance between cell proliferation and death and, as such, plays an important role in the formation of many types of human
tumors. In our computational results, WNT signaling connects the Notch signaling pathway through DVL gene, which indicates DVL is a critical
gene for passing signals through pathways. In addition, the computational evidence provided by the values of betweenness centrality, degree
and p-value indicate that DVL may be involved in platinum-based chemoresistance.

Table 4 Genes identified in figure 4 with p-value < 0.05 by t-test

Gene Symbol ovarian
p-value

lung
p-value

Betweenness
(mean = 3.8E-4)

Degree
(mean = 9.71E-4)

Connected nodes

KRAS
(v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog)

6.23E-04 0.001393 0.00703 0.009226

TP53
(tumor protein p53)

0.011083 1.82E-04 0.046039 0.029049

AKT
(v-akt murine thymoma viral oncogene homolog)

1.87E-05 4.60E-06 0.009775 0.013091 V

GSK3b
(glycogen synthase kinase 3 beta)

3.09E-06 1.81E-04 0.003932 0.006483 V

WNT
(wingless-type MMTV integration site family)

0.009519 0.002234 1.51E-04 4.99E-04

PTEN
(phosphatase and tensin homolog)

0.001494 0.016189 0.002282 0.002618 V

DVL
(dishevelled, dsh homolog 1 (Drosophila))

1.95E-08 1.80E-05 0.001653 0.002618 V

HES1
(hairy and enhancer of split 1, (Drosophila))

0.005831 2.82E-07 4.08E-04 0.001745

Genes listed in table 4 are significant in both ovarian and lung expression data with p-value < 0.05. Four connected nodes were identified. These genes also had
significant betweenness and degree centrality. PTEN was the first tumor suppressor gene to be identified in the phosphatase family, and the principal function of
its gene product appears to be dephosphorylation of the second messenger PIP3 [43]. The expression of PTEN in two independent glioblastoma cell lines results
in the disruption of downstream signaling of PI3K to Akt and Bad [44]. Thus, when PTEN is present, Akt phosphorylation is blocked and apoptosis mechanisms
may be activated. The importance of Akt and PTEN genes are as well revealed by this work, which illustrates the accuracy and efficiency of our algorithm.
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downstream signaling of PI3K to Akt and Bad [44].
Thus, when PTEN is present, Akt phosphorylation is
blocked and apoptosis mechanisms may be activated.
The importance of Akt and PTEN genes are as well
revealed by this work, which illustrates the accuracy and
efficiency of our algorithm.
As indicated in Figure 4, the connected gene DVL

(disheveled, dsh homolog) connects two critical path-
ways: the WNT signaling pathway and the Notch signal-
ing pathway. Gatcliffe et al. suggested that WNT
signaling plays a role in ovarian tumorigenesis [45]. The
WNT pathway participates in many physiologic events
in embryogenesis and adult homeostasis including cell
fate specification, control of proliferation, and migration.
WNT signaling has a significant influence on the
embryonic development of the ovary and is also
involved in normal follicular development and ovarian
function [46,47]. The WNT signaling pathway is
involved in ovarian cancer development via multiple,
diverse mechanisms, including gene mutations and
changes in pathway components such as extracellular
inhibitors and intranuclear transcription cofactors.
According to Wang et al., the WNT signaling pathway
passes signals to the Notch signaling pathway [48]. The
Notch signaling pathway is known to be responsible for
maintaining a balance between cell proliferation and
death and, as such, plays an important role in the for-
mation of many types of human tumors. In our compu-
tational results, WNT signaling connects the Notch
signaling pathway through DVL gene, which indicates
DVL is a critical gene for passing signals through path-
ways. In addition, the computational evidence provided
by the values of betweenness centrality, degree and
p-value indicate that DVL may be involved in platinum-
based chemoresistance.

The signature chemoresistance-associated genes
Most of the results analyzed in the previous section are
supported by known biological evidence, which indicates
that this work is able to predict candidate chemoresis-
tance-associated genes. We were particularly interested
in CEPBD (CCAAT/enhancer binding protein delta) and
its transcriptional regulated gene, SOD1 (Cu/Zn-super-
oxide dismutase). Several reports have implicated
CEBPD as a suppressor gene [26-29]. According to
Hour et al., the expression of the CEPBD was induced
by cisplatin and specifically elevated in a cisplatin resis-
tant subline and transactivated SOD1 gene expression in
the human bladder urothelial carcinoma NTUB1 cell
line [23]. This study revealed a novel role for CEBPD in
conferring drug resistance. Therefore, we suspected
CEBPD is involved in ovarian and lung chemoresistance
as well. Moreover, as shown in Figure 5, pathways
including the gene CEBPD and SOD1 were the shortest

pathways in our computational results, which indicates
SOD1 (p-value = 4.01E-04) does not interact with other
genes or pathways. We were curious about what caused
the chemoresistant mechanism after SOD1 was regu-
lated. Cisplatin caused DNA damage as well as reactive
oxygen species (ROS), which triggered cell cycle arrest
or/and apoptosis. Cisplatin induced CEBPD by an as of
yet unidentified mechanism which activated the SOD1
gene expression. Superoxide anion (O2•-) is dismutated
by SOD1 and converted to H2O2 which can be further
neutralized to water and oxygen by catalase [23]. The
reduced ROS levels in their model caused the cisplatin-
resistant phenotype. These results call for an assessment
of CEBPD and SOD1 expression in bladder tumors as a
potential means of predicting cisplatin resistance.
According to our computational results, SOD1 has sig-
nificant differential expressions between chemosensitive
and chemoresistant array data and is activated by
CEBPD as well. Do the reduced ROS levels caused by
SOD1 in ovarian chemotherapy results in the resistant
phenotype as well? We may make a reasonable assump-
tion that this phenomenon occurs in ovarian chemore-
sistance. Based on this biological evidence and our
computational experiment results, we can infer that
SOD1 plays a critical role in ovarian chemoresistance.
As shown in Figure 4, CEBPD interacts with KRAS as

well and led to a domino effect that may cause che-
moresistance. It was found that mutations in this candi-
date gene, KRAS, are one of the most frequent genetic

Figure 5 The shortest pathway identified by our system .
Pathways including the gene CEBPD and SOD1 were the shortest
pathways in our computational results, which indicates SOD1 (p-
value = 4.01E-04) does not interact with other genes or pathways.
We were curious about what caused the chemoresistant
mechanism after SOD1 was regulated. Cisplatin caused DNA
damage as well as reactive oxygen species (ROS), which triggered
cell cycle arrest or/and apoptosis. Cisplatin induced CEBPD by an as
of yet unidentified mechanism which activated the SOD1 gene
expression. Superoxide anion (O2•-) is dismutated by SOD1 and
converted to H2O2 which can be further neutralized to water and
oxygen by catalase [23]. The reduced ROS levels in their model
caused the cisplatin-resistant phenotype. These results call for an
assessment of CEBPD and SOD1 expression in bladder tumors as a
potential means of predicting cisplatin resistance. According to our
computational results, SOD1 has significant differential expressions
between chemosensitive and chemoresistant array data and is
activated by CEBPD as well. We may make a reasonable assumption
that this phenomenon occurs in ovarian chemoresistance. Based on
this biological evidence and our computational experiment results,
we can infer that SOD1 plays a critical role in ovarian
chemoresistance.
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abnormalities in ovarian carcinoma [49]. In other words,
KRAS mutation is a common event in ovarian cancer
primarily in carcinomas characterized by lower grade,
lower FIGO stage, and mucinous histotype. The KRAS
mutational status is not a prognostic factor for patients
treated with standard therapy. However, in line with
experience from colorectal cancer and NSCLC, it may
prove important for predicting the response to EGFR-
targeted therapies [50]. Thus far, there is no biological
evidence directly indicating KRAS gene is involved in
platinum-based chemoresistance but, from the computa-
tional experiment results, we may infer that KRAS plays
a critical role in chemoresistance. More computational
results with high scores of intersected pathways are pro-
vided in Additional file 4, and analysis of these data may
reveal new chemoresistant mechanisms.

Conclusions
Although platinum-based chemotherapeutic agents are
widely used for the treatment of endometrial, cervical
and breast cancers, chemoresistance caused by molecu-
lar mechanisms still remains a major therapeutic
problem. The platinum-based anti-tumor agent is a
DNA-reactive reagent which causes cell cycle arrest at
various phases in the cell cycle and induces apoptosis.
Hence, the drug active pathway plays an important role
in drug resistance in the cellular system. It is also a very
important issue in the identification and validation of
drug target genes by supplying their interactive relation-
ships. This approach elucidated the particular chemore-
sistance-associated pathways in large biological
interaction networks. Genes deemed relevant for che-
motherapy resistance were also likewise determined.
After identifying the chemoresistance-associated path-
ways, the scoring procedure filtered the significant path-
ways according to the genes’ differential expressions.
Consequently, this allowed for the identification of dis-
similarities between the responses of chemosensitivity to
the chemoresistance expression cancer data. In particu-
lar, we identified genes and pathway components such
as the Hedgehog signalling pathway, the WNT signalling
pathway, and the notch signalling pathway, that are rele-
vant to chemoresistance for ovarian and lung cancer.
The advantage of comparison analysis is in recognizing
the divergent and convergent mechanisms of chemore-
sistance between cancers. Through systems biology
methods, biologists can perform a comprehensive survey
to upon which to base hypothetical assumptions.
The advantages of pathway intersections analysis include:

revealing whether different cancers have same chemoresis-
tant mechanisms, and determining whether some common
genes involved in these chemoresistant mechanisms. As
expected, we observed a great deal of correspondence
between the response interactions of ovarian and lung

cancer expression data by intersecting pathways. The ana-
lysis of platinum-based chemotherapeutic agents revealed
insights into common responses among the chemoresistant
mechanisms as well as the candidate genes such as Bcl-2,
AHR and, most importantly, SOD1. The results also indi-
cate that the WNT signaling pathway, the Notch signaling
pathway and the FAK pathway are involved in ovarian and
lung chemoresistance. Therefore, further analysis of our
computational experiment results may reveal additional
chemoresistance mechanisms, which indicates this
approach can anticipate target identification and chemore-
sistance in the future development of cancer drugs.
Pathways with a dissimilar response to that of known

modes of biological action can be easily identified early in
the drug development process to avert repeated and
costly clinical trails. This approach reveals chemoresis-
tance-associated pathways in scilicon and enables easier
comparisons with the generated graphs. Furthermore, by
exploring signature genes involved in chemoresistance
mechanisms, this approach sheds light on how these
genes or pathways interact with each other, and provides
analysis of the betweenness centrality and degree values
of genes in pathways. In summary, this method is suffi-
ciently flexible to accommodate various types of biologi-
cal network information and experimental data, and
offers not only insights into the mechanisms of chemore-
sistance but also provides information on potential candi-
date target genes for future drug-development efforts.

Additional material

Additional file 1: Pathway lists. The pathways used in this study are
shown in additional file 1.

Additional file 2: Representation of the notations used by this work.
This additional file demonstrates the notations used in pathway
representation.

Additional file 3: Significant results following pathway intersections.
The main analysis of this experiment focused on whether different
cancers have same chemoresistant mechanisms and whether these
chemoresistant mechanisms share some genes in common. We
demonstrated the concept and the numeric results in this supplementary
file.

Additional file 4: Pathway intersection results and analysis. We
demonstrated another pathway intersection result. In this pathway, the
start node and end node are NF-KB and CENTG2, respectively. Several
sub-pathways were involved in this experimental result, such as
Apoptosis, Focal adhesion, and Jak-STAT signal pathway. More detailed
analysis was shown in this file.
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